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Digital Variable Sampling Integral Control of Infinite
Dimensional Systems Subject to Input Nonlinearity

Necati Ozdemir

Abstract—In this technical note we present a novel sampled-data low-
gain I-control algorithm for infinite-dimensional systems in the presence of
input nonlinearity. The system is assumed to be exponentially stable with
invertible steady-state gain. We use an integral controller with fixed inte-
grator gain, chosen on the basis of state gain information and a time varying
sampling period determined by the growth bound of the system. We com-
pare this new algorithm with two other algorithms one with fixed gain and
sampling period, the other with time-varying gain.

Index Terms—Infinite dimensional systems, input nonlinearities, integral
control, robust tracking, steady-state gain matrix, variable sampling.

1. INTRODUCTION

The design of low-gain integral (I) and proportional-plus-integral
(PI) controllers for uncertain stable plants has been studied extensively
during the last 30 years. More recently there has been considerable
interest in low-gain integral control for infinite-dimensional systems.

The following principle of low-gain integral control is well
known: Closing the loop around a stable, finite-dimensional, contin-
uous-time, single-input, single-output plant, with transfer function
G(s), pre-compensated by an integral controller C'(s) = k/s (see
Fig. 1) leads to a stable closed-loop system which achieves asymptotic
tracking of constant reference signals, provided that |k| is sufficiently
small and £G(0) > 0.

One of the main issues in the design of low-gain controllers is the
tuning of the integrator gain k. There have been two basic approaches
to the tuning problem; either steady-state data from the plant is used off-
line to determine suitable ranges for the gain £, or else simple on-line
adaptive tuning of & is used. See Cook [2] and Miller and Davison
[12], [13] for the results in the finite dimensional case and Logemann
and Townley [9]-[11] in the infinite dimensional case.

Of particular relevance here are the results on integral control in the
presence of input-nonlinearities see, Ozdemir and Townley [14], [16],
Logemann and Ryan [5], [6], and in the presence of actuator and in
the sensor nonlinearities, see Coughlan and Logemann [3]. Note that
no matter what the context is, it is necessary, in achieving tracking of
constant reference signal, that G(0) is invertible.

There are two important issues in the literature:

* Choice of parameters, in particular the integrator gain k and, in a

sampled-data context, the sampling period 7.

* Robustness with respect to parametric uncertainty (e.g. in esti-

mating the steady-state gain) and input nonlinearity.

Inspired, to some extent, by the following result due to Astrém [1],
we adopt an alternative approach.
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Proposition 1.1: (Astrom [1]): Let a stable single-input, single-
output system has a continuous and monotone increasing step-response
t — H(t). Choose a fixed sampling period 7 so that

2H (1) > G(0)
and a fixed integrator gain & so that
kEG(0) < 2.

Then the sampled-data integral controller, with current error integrator,
u(t) =u, fort € [nr,(n+1)7)
Unyr =tn +k(r—y((n+1)7))

achieves tracking of arbitrary constants r.

Remark 1.2: Proposition 1.1 can be proved by following the lines of
the proof of [1, Theorem 1] readily, since the later is mainly based on
Wiener’s theorem, which gives a characterization of the invertibility
of a transfer function as the z-transform of an absolutely summable
sequence, i.e. in the algebra I*.

Proposition 1.1 is appealing in the sense that the parameters 7 and k
are determined from available knowledge of the open-loop system, in
this case knowledge of the system step-response.

We continue with the flavor of Proposition 1.1, but with the added
features that there is input nonlinearity and we do not need to assume
that the system has a monotone step-response. We find that & and the
growth of a variable sampling period 7,, can be determined from knowl-
edge of the steady-state gain and the decay rate of the system. The rest
of the technical note is organized as follows: In Section II, we consider
system (1) with divergent sampling period 7,,. This allows us to study
first the stability of a much simpler system. The main result Theorem
2.2 is given and its effectiveness is shown in Example 2.6. In Section III,
conclusions are given.

II. ROBUSTNESS TO INPUT NONLINEARITY

In [17], Ozdemir and Townley considered robustness in the choice
of %k with respect to uncertainty in experimental measurement of the
steady-state gain. Another common source of uncertainty in low-gain
integral control is input saturation or more generally input nonlinearity.
Low-gain integral control for infinite dimensional systems in the pres-
ence of input nonlinearity has been studied by Logemann, Ryan and
Townley [7] (continuous time), Logemann and Ryan [5] (continuous
time, adaptive), Logemann and Mawby [4] (continuous time, hysteresis
nonlinearity) and Ozdemir [15].

We consider sampled-data low-gain I-control with input nonlinearity
and in particular the robustness of the design of & with respect to such
input nonlinearity. Our basic system is given by

#(t) = Ax(t) + BO(un), x(0) e X (la)
y(t) =Cua(t) (1b)
here ®(u,, ) represents input nonlinearity and u(t) is given by
u(t) =u, fort € [t,,t,4+1) with (2a)
Unt1 = U + ke(t), e(t) =7 — y(ta) (2b)
tn,+1 =t, + Tn with to = 0 (ZC)

where y(t,,) = Cz(t,) is the sampled output at the sampling time ¢, .
Typically t,, = n7 such that 7 is a fixed sampling period and 7,, is an
adaptive sampling period.
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Fig. 1. Low-gain integral control.

In (1), X is a Hilbert space, with inner product (-, -) and norm || - ||,
A is the generator of an exponentially stable, strongly continuous (Co)
semi group T(¢), ¢ > 0 on X thus, in particular, there exists M > 1
and w > 0 so that | T(¢)x|| < Me™“!||z|| for all 2. The input operator
B is potentially unbounded but we assume A~ ' B is bounded, i.e. B €
L(R, X_1) (where X_; is the completion of X with respect to the
norm ||z||—1 := ||A~'2||x) while we assume that the output operator
C'isbounded sothat C' € L£(X, R).Itis necessary for tracking constant
reference signals, we assume the invertibility of the steady-state gain

G(0):=—-CA'BER.

Remark 2.1:

(a) The class of systems encompassed by (1) is large. Note that
because we use piecewise-constant inputs arising from sam-
pled-data control, well-posedness of the open-/closed-loop
control system does not involve difficulty to check admissibility
type assumptions. We only need A™' B to be bounded, see [18,
Section 12.1]. In addition, we need C' to be bounded because the
output y(-), which is sampled directly, needs to be continuous.
If C' was not bounded, then usually the free output y(-) would
not be continuous so that sampling would require pre-filters.

(b) We emphasize that while our results are valid for a very large
class of infinite dimensional systems, they are new even in the
finite dimensional case.

The closed-loop system is depicted in the block diagram given in
Fig. 2, wherein S is the sampling operator, y(-) — y(t,), and
H, is the hold operator, w,, — u(t,+1-+-), which is certainly not
the same as (2a). After sampling the closed-loop system becomes

(3a)
(3b)

Tn41 :T(Tn)wn + (T(Tn> - I) f/l_lB@(’an)
Un41 = Un + k(T - an)

where @, = x(t,). Here k > ( is the scalar integrator gain. The
operator T'(7,,) is T'(#) sampled at t = 7.

We assume throughout this section that there exists v, such that
®(v,) = &, where &, = [G(0)] 'r € clos(im®) and r € R.
We apply change of coordinates

Zn = Tp — Ty, Vp = Up — Up

where 2, = —A"'B®, and ¥(v) = (v + v,) — ®, asin
Ozdemir and Townley [17], then (3) becomes

Zn41 :T(Tn)zn + (T(Tn) - I) ‘4713\1/(1711)

Ung1 =Un — kCzy.

(4a)
(4b)

We use available step-response data. We consider an integral
controller with fixed integrator gain, time-varying sampling and
input nonlinearities. The main result of this note is the following
theorem.
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Fig. 2. Sampled data low-gain I-control with input nonlinearity.

Theorem 2.2: Consider the infinite dimensional system defined by
(1a) and (1b) with input nonlinearity ®, where ® is monotone non-
decreasing and globally Lipschitz, with Lipschitz constant A. Define
the control input by (2a) and (2b). If

EAG(0) € <(), %) and 7, > Jlog(n +2) 5)

with 3w > 1, where w > 0 is such that | T(¢)|| < Me™™", then

() limp—o||n — 2| =0

(ii) limy—oo @ (u(t)) = &, := [G(0)] " »
(iii) limy oo (1) = 2, 1= —A” " B®,
(fv) lmy—oo y(t) = 1.

Lemma 2.3: Define
W i= af|zn||? + E5|C 2| + (vn — kCz0)°.

If 7, = Alog(n + 2), then there exists « > 0 small enough, M>1
and N € N, so that Vn > N

"/['Yn+1 - v‘fn S _%H:WHZ - Z‘Ijz(l’n) + l1zl€7uyr,l ‘/I'/Yn (6)

where ¢ := (2k/A)G(0) — 3k*G(0)* > 0. The proof of Lemma 2.3
is given in Appendix.

Remark 2.4: In [6], discrete-time integral controllers are developed
for systems with input nonlinearities using time-varying integrator
gains satisfying

lim %, = 0.

This time-varying gain result could be applied to continuous time
systems with sampled-inputs. In this result, the convergence of %, is
not linked to the decay rate of the system. In [8], explicit bounds are
obtained for a fixed integrator gain in a continuous-time integral con-
troller so that tracking is guaranteed. However, such explicit bound-like
results only apply to systems whose step responses have no overshoot.
To some extent our result, motivated by Proposition 1.1, is a hybrid of
these two cases—k converging to 0 is replaced by T diverging to co,
but slowly as determined by the decay rate of the system, and the gain
is obtained from steady-state information but we do not need a step-re-
sponse without overshoot.

Proof of Theorem 2.2: Using (6) we have

Wiy — Wy, < Me ¥ Wy, foralln > N

along solutions of (4). Hence
0<Whpt < (14 Me™"™)W, forn>N

< H (14 Me™ ") Wa.
=N



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 6, JUNE 2009

Taking logarithms gives

log Wog1 < Y log(1+ Me ™) +log Wy
=N

7

<> Me VT 4 log Wi

i=N

Now 7, > Blog(n+2) sothate ™ < 1/(n+2)"". But fw > 1.
Therefore

; = M
log Wit1 < Z H‘W + log Wx < oc.
= (n+2

Hence {W,,} € (o and

Wogr = Wa| < ﬁ for some M >0 and all n> N.
From these we get W,, — W, < co as n — 00. So
i S W) < Y (W= Wi+ M| Wil Y e ™
n=N n=N n=N
=(Wn = Weo) + M||[Wi|lw > e ™
n=N
< o0,

This shows that ¥(v,,) € (2. So lim,,—co ®(us) = &, proving (ii).
Now

Gentr —ao)ll = IT(70) (n = 2r)
+(T(ra) =) A~' BU(v,)||

AT'BIHIT ()l

< Sllew =zl +

for all n > N; where N1 € Np is such that
M 1

<

(N1 +2)8w = 2

So

lim (xp —2r) =0

i.e (i) holds. Finally from

(x(t) —wr) =T —tn)(xn — 2v)
+(T(t—tn) — 1) A 'B(®(un) — ®,)

we have

le(t) = [l < ITC =t s —
+ (Tt = t.) - D)|

2l

AT B 1B (u,) - 3,

so that (iii) holds. It is obvious that (iv) is provided from (iii).

Remark 2.5: Theorem 2.2 is rather satisfying in that it applies if
just two conditions are satisfied, namely ¥AG(0) < 2/3 and 7, >
Blog(n + 2). These conditions involve two crucial system constants:
The steady-state gain G(0) and the growth bound w.

Example 2.6: Consider a diffusion process (with diffusion coeffi-
cient @ > 0 and Dirichlet boundary conditions), on the one-dimen-
sional spatial domain [0, 1] with point actuation and sensing. This leads
to the following controlled partial differential equation:

ze(t, ) = azpe(t, ) + 6(x — 24)P (u(t))
y(t) = z(t, zc)
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Fig. 3. Step response.

with boundary conditions
2(t,0) =0=2(¢t,1) forallt >0
and zero initial conditions
z(0,z) =0, z € [0,1].

Furthermore, we assume a nonlinearity ® of saturation type, defined as
follows:

0, «w<0
wi ®(u(t)):=q u, we 1)
1, u>1

In this case the transfer function is

G(s) = sinh (Jl’b \/?) sinh ((l - xc) ai)
S a,\/gsinh\/g

With this input «(¢) € R and outputs y(¢) € R, this diffusion system
can be represented in the form of (1). Indeed, we have that X =
L?(0,1), A has eigenvalues —an®7?, and eigenfunctions sin(nmx),
n =1,2,3.... So we can write:

. @)

A=diag(—an’7*), B=(by,bs,...)

— sz.n.(kTr:cb) ®)
Sy sin?(kwa)da
C =(ci,c2,...), ck =sin(kmwa.), where k=1,2,... 9)

Then the boundedness of A" B is equivalent to

o0 b2
D i <00 (10)

n=1

which holds. Furthermore, from (7), we have
1
G(0)= - (ws(1 —xc))

so that x; # 0 and 2. # 1. For purposes of illustration, we adopt the
following values:

a=0.1,

T, = -,

=] =

Lo?
=2
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—©6— Time-varying sampling
Astrom algorithm
— — — Time-varying gain

Output y (1)

25 30 35 40 45

Fig.4. Output y(¢., ), against t,,, for the system described in Example 2.6. Our
algorithm is time-varying sampling.

—©6— Time-varying sampling
1F - Astrom algorithm 7
— — — Time-varying gain
0.8k 'l \‘ ying g
A ]
/ - ©- -0 -G
\3’ E
=1
= ]
=
-0.81 k
=4 L ! 1 1 1 !
0 5 10 15 20 25 30 35

Time t

Fig.5. Inputu,, applied, viaidealized hold to the system described in Example
2.6. Our algorithm is time-varying sampling.

This gives w = 0.17% and G(0) = 1.5625. For A\ = 1, we choose
the gain k so that kG (0) < 2/3. One choice is k£ = 0.4. In the simu-
lations, we assume a step-reference

a0, <10

r(t) = {0.8, t>10

and a variable sampling period 7, = Flog(n + 2),i.e. 3 = 1.014.
To compare the results with the other algorithms, we choose the time-
varying gain k = 1/n, (n > 0).

In producing the simulations we use MATLAB 6.5 and a truncated
eigenfunction expansion of order 10, adopted to model the diffusion
process. Fig. 3 shows step-response which is non-decreasing. So,
Proposition 1.1 can be applied. In Fig. 4, we show the plot of three
different outputs and in Fig. 5 the corresponding three inputs. Fig. 6
depicts three controllers against to time #.
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Fig. 6. Controller against ¢, for the system described in Example 2.6. Our
algorithm is time-varying sampling.

To apply Astrom’s controller we need to choose 7 so that 2H (1) >
G(0), where H(7) is the step-response of the system, and % so that
kEG(0) < 2.

It is clearly seen from Fig. 4 and Fig. 5 that time-varying sampling
algorithm is smoother, has no overshoot and converges at the same time
with the others.

While theoretically our controller has a slowly diverging sampling
period, closed-loop performance compared favorably to controllers
which work with similar minimal system information.

III. CONCLUSION

We considered sampled-data integral control law for exponentially
stable infinite dimensional linear systems subject to monotone non-de-
creasing and globally Lipschitz input nonlinearity with Lipschitz con-
stant A. Motivated by existing results in the literature, we focused on
the important aspects: steady state data, adaptation of control parame-
ters and input nonlinearity.

The key idea was the use of the sampling period as a “control”
parameter. We used an integral controller with fixed integrator gain,
chosen on the basis of state gain information and a time-varying sam-
pling period determined by the growth bound of the system. We com-
pared this new algorithm with two other algorithms; one with fixed
gain and sampling period, and the other with time-varying gain. It can
be concluded from the simulation results that time-varying sampling
is smoother, has no overshoot and converges at the same time with the
other algorithms.

It would be interesting to investigate whether we can use more
steady-state information, such as frequency response information
that can be obtained experimentally. This might be helpful in prob-
lems such as non-constant disturbance rejection. An analogous open
problem can be extended to multi-input, multi-output case.

APPENDIX

-

We compute W,,+1 — W,, along solutions of (4a) and (4b) with large
adaptive sampling “7,, = o0”

Watt = W = allzant[I” + K1 Cznt [I” + (0ntr = kCzppr)”
—allznll? = B |Czn” = (v — kCz0)>.
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For brevity set ¥(v,,) = ¥, then

. 2
Wopr — W, =a HT(Tn)(/:n +AT'BY) — A_1B\I/H

~ ~ 112
12| CT () (on + A1 BE) + G(())\I!H
+ [vn — kC'z — KCT(12)

~ ~12
X (zn + AT BY) — kG(O)\I’]

—a||lzall” = B?||Cznl]? = (v — kC2).

So

Wost =W, =a HT(T")(;,L +A'BU) - A*IB\iIHQ
4212 ||OT(m) (20 + A~ BY) + G(O)@H2
— 2(vy — kCzy)
x (kCT(T,,)(z,,, +AT'BE) 4+ kG(O)\i!)
— allzall* = B?(|Czn

Wit — Wy =1+ IT + IIT + IV

where

I=a|T(r)(en + A1 BY) —A*IB@H‘

~ ~ 112
1T =282 || CT (1) (20 + A~ BY) + G(O)\I/H

I = — 2(v, — kCzy,)
x (kC’T(T,,)(z,,, +A7'BY) + kG(O)‘i/)
IV = — a||z.|)” = K*(|C = ||
Now consider

I<2a||A™"'BY|® + 4ad’e™ || A7 BY|?
+4a[\[26—2wrn||2/n||2

and
2 il 2 2002 —2
IT <2k G(())\I/H F 2 |CP M2
X |:2||A_]B\i;||2+2 Zn |2] +2k2||0||.k[(3_“'7—“
~ 12 .
X {2 |e©@F| +pz0” + ||A‘1B\1;2||2],
Finally

IIT = —2(v, — kC2,)kG(0)T
—2(vn — kC=y) (kCT(T,L)(zn + A’IB\TI))
so that
IIT < —2(vn — kCz) )EG(O)E 4+ Me ™ |u,, — kC'z,|*
+2K*M|CI e ([l | + AT BE|?]
Now, we obtain

~ 112 ~
21 G(O)‘I/H — 2 — kC 2 kG (0)F — E2(|C 2 |

p— ;2 2~2 & T ;2 ! I 2
= 3K2G(0)2¥? — 2kv, G(0)T — k? |Cz — G(OYE| . (11)
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Using the estimates for II, IIl and IV obtained above and the bounded-
ness of the operator A~ B, we can find M > 0 so that

Wit = Wi < — a1 = Me™ ™) ||z, |I°+ M (4o~ ") ¥
+ Me U™ v, — kCzp|* + 3K° G(0)*¥?
— 2k, G(0)W — k* |Cz, — G(0)T| .
But v, ¥(v,) > (1/A)¥?(v,,). Substituting ¥ (v,, ) back in for ¥ we
obtain
3E°G(0)° W (u,)? — 2kv, G(0) ¥ (v,)
2k 9 . .
< - <TG(()) - SkZG(()Y) T (0,)
= -0 (v,).
So

Wit — W, < —a(l = Me ™)z ||
— (6 — .W((}t + e )) \I'Q(T,'n) 4+ Me™ "™ |vn, — kC'z,

2

Choosing o small enough so that Ma < ¢/4, wecan find N € N
large enough so that Me™ ™ < max(1/2,£/4) for all n > N and
noting that |v, — kC'z,|? < W, gives

-z

1 p? (vn) + Me™"™W,

|20

Wopr — W, < —%

as required.
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Compensating a String PDE in the Actuation
or Sensing Path of an Unstable ODE

Miroslav Krstic

Abstract—How to control an unstable linear system with a long pure
delay in the actuator path? This question was resolved using ‘predictor’
or ‘finite spectrum assignment’ designs in the 1970s. Here we address a
more challenging question: How to control an unstable linear system with
a wave partial differential equation (PDE) in the actuation path? Physically
one can think of this problem as having to stabilize a system to whose input
one has access through a string. The challenges of overcoming string/wave
dynamics in the actuation path include their infinite dimension, finite prop-
agation speed of the control signal, and the fact that all of their (infinitely
many) eigenvalues are on the imaginary axis. In this technical note we pro-
vide an explicit feedback law that compensates the wave PDE dynamics at
the input of an linear time-invariant ordinary differential equation and sta-
bilizes the overall system. In addition, we prove robustness of the feedback
to the error in a priori knowledge of the propagation speed in the wave PDE.
Finally, we consider a dual problem where the wave PDE is in the sensing
path and design an exponentially convergent observer.

Index Terms—Linear time-invariant (LTI), ordinary differential equa-
tion (ODE), partial differential equation (PDE).

[. INTRODUCTION

The “Smith predictor” and its extensions developed since the 1970s
[11, [3]-[91, [13]-[19], [21]-[31] are important tools in several appli-
cation areas. They allow to compensate a pure delay of arbitrary length
in either the actuation or sensing path of a linear system, even when
the system is unstable. Several results in adaptive control for unknown
ODE parameters have been published [2], [20]. Extensions to nonlinear
systems are also beginning to emerge [10].

In [11] we presented a first attempt of compensating infinite-dimen-
sional actuator dynamics of more complex type than pure delay. We
presented a design for diffusion-dominated partial differential equation
(PDE) dynamics (such as the heat equation). While these dynamics do
not have a finite speed of propagation, they are ‘low-pass’ and “phase-
lag” to the extreme, as they have infinitely many (stable) poles and no
Zeros.

In this technical note we tackle a problem from a different class of
PDE dynamics in the actuation or sensing path—the wave/string equa-
tion. The wave equation is challenging due to the fact that all of its (in-
finitely many) eigenvalues are on the imaginary axis, and due to the fact
that it has a finite (limited) speed of propagation (large control doesn’t
help).

The problem studied here is more challenging than in [11] due to an-
other difficulty—the PDE system is second order in time, which means
that the state is ‘doubly infinite dimensional’ (distributed displacement
and distributed velocity). This is not so much of a problem dimension-
ally, as it is a problem in constructing the state transformations for com-
pensating the PDE dynamics. One has to deal with the coupling of two
infinite-dimensional states.
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