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ABSTRACT

We consider semiparallel and 2-semiparallel invariant submanifolds of Lorentzian para-Sasakian manifolds.
We show that these submanifolds are totally geodesic. We also consider invariant submanifolds of Lorentzian
para-Sasakian manifolds satisfying the conditions Z{X,Y) • a = Q and Z{X,Y) • Va = 0 with T ̂  n{n — 1).
Under these conditions, we prove that the submanifolds are totally geodesic.
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ON INVARIANT SUBMANIFOLDS OF
LORENTZIAN PARA-SASAKIAN MANIFOLDS

1. INTRODUCTION

Let M and M be two Riemannian or semi-Riemannian manifolds, / : M —> M an isometric immersion, a
the second fundamental form and V the van der Waerden-Bortolotti connection of M. An immersion is said to
be semiparallel if

ï î ( X , y ) - a = ( V ^ V y - V y V x - V [ x , Y ] ) a = O (1)

holds for all vector fields X, Y tangent to M [1], where iî denotes the curvature tensor of the connection V.
Semiparallel immersions have been studied by various authors. See, for example, [2], [3], [4], [5] and [6].

In [7], K. Arslan, Ü. Lumiste and the present authors defined and studied submanifolds satisfying the condition

R{X, Y)-Va = O (2)

for all vector fields X,Y tangent to M. Submanifolds satisfying the condition (2) are called 2-semiparallel.

Motivated by the studies of the above authors, in this study, we consider semiparallel and 2-semiparallel
invariant submanifolds of Lorentzian para-Sasakian (briefiy LP-Sasakian) manifolds. We also consider the
conditions Z{X,Y) • a — 0 and Z{X,Y) • Va = 0 on an invariant submanifold of a Lorentzian para-Sasakian
manifold, where Z denotes the concircular curvature tensor of the submanifold.

The paper is organized as follows: In Section 2, we give necessary details about submanifolds and the con-
circular curvature tensor. In Section 3, we give a brief account of Lorentzian para-Sasakian manifolds and their
invariant submanifolds. In Section 4, we study semiparallel and 2-semiparallel invariant submanifolds of LP-
Sasakian manifolds. We show that these type submanifolds are totally geodesic. In Section 5, we prove that
for an n-dimensional invariant submanifold M of an LP-Sasakian manifold M such that the scalar curvature
T ̂  n{n - 1), the conditions Z{X, Y) • a = 0 and Z{X, Y) • Va - 0 imply that M" is totally geodesic.

2. BASIC CONCEPTS

Let {M,^ be an n-dimensional semi-Riemannian submanifold of an (n -\- ci)-dimensional semi-Riemannian
manifold {M,'g). We denote by V and V the Levi-Civita connections of M and M, respectively. Then we have
the Gauss and Weingarten formulas

^xY = VxY + a{X,Y), (3)
and

where X,Y are vector fields tangent to M and A'' is a normal vector field on M, respectively. V"*- is called
the normal connection of M. We call a the second fundamental form of the submanifold M. If a = 0 then
the manifold is said to be totally geodesic. For the second fundamental form a, the covariant derivative of a is
defined by

(Vxa)(y, Z) = W^{a{Y, Z)) - a{VxY, Z) - a{Y, VxZ) (4)

for any vector fields X, Y, Z tangent to M. Then Va is a normal bundle valued tensor of type (0,3) and is called
the third fundamental form of M. V is called the van der Waerden-Bortolotti connection of M, i.e., V is the
connection in TM®T-^M built with V and V""-. If Va = 0, then M is said to have parallel second fundamental
form [8]. From the Gauss and Weingarten formulas we obtain

= R{X, Y)Z + A^^x,z)Y - A,^Y,Z)X. (5)

By (1), we have

{R{X, Y) • a) {U, V) = R^{X, Y)a{U, V) - a{R{X, Y)U, V) - a(i/, R{X, Y)V) (6)
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for all vector fields X, F, U and V tangent to M, where

aud B. denotes the curvature tensor of V. Similarly, we have

-{Va){B.{X, Y)U, V, W) - {Va){UJi{X, Y)V, W) - (Va)(C/, V, R{X, Y)W) (7)

for vector fields X, y, (7, V, W tangent to M, where (Va)(C/, V, W) means (V;7a)(y, W) [7].

For au yi-diniensional, (»i > 3), semi-Riemannian manifold (M",5r), the concircular curvature tensor Z of M"
is defined by [9]

Z{X, Y)V = R{X, Y)V - ^ ^ J _ ^̂  {g{Y, V)X - g{X, V)Y} (8)

for vector fields X.Y aud V on M", where r is the scalar curvature of M"'. We observe immediately from the
form of the concircular curvature tensor that semi-Riemannian manifolds with vanishing concircular curvature
tensor are of constant curvature. Thus one can think of the coucircular curvature tensor as a measure of the

• failure of a semi-Riemanniau manifold to be of constant curvature.

Similar to (6) aud (7) the tensors Z{X, Y) • a and Z{X, Y) • Va are defined by

{ZiX, Y) • a) ([/, V) = R^{X, Y)a{U, V) - a{Z{X, Y)U, V) - a{U, Z(X, Y)V) (9)

. and

(Z(X, Y) • Va) (f/, y, W) = R^{X, Y){Va){U, V, W) - (Va)(Z(X, Y)U, V, W)

-{Va){U,Z{X,Y)V,W)-{Va){U,V,Z{X,Y)W), (10)

respectively.

3. LORENTZIAN PARA-SASAKIAN MANIFOLDS

In this section, we give necessary details about Lorentziau para-Sasakian manifolds and their invariant sub-
manifolds.

The notion of a Lorentzian para-Sasakian manifold was introduced by K. Matsumoto [10].

An n-diniensional differentiable manifold M" is said to admit an almost paracontact Riemannian strueture
{ip,i],^,g), where (/? is a (1,1) tensor field, Ç is a vector field, 7? is a 1-form and 5 is a Riemannian metric on M
such that (see [11])

^ 2 ^ / - ^ ® ^ , 77(0 = 1, (11)

g{^X,^Y)=g{X,Y)-7]{X)r^{Y) (12)

for all vector fields X, Y. On the other hand, M is said to admit a Lorentzian almost paracontact strueture
((/?, ?y,̂ , g),iíípis& (1,1) tensor field, ^ is a vector field, 77 is a 1-form and 51 is a Lorentzian metric on M", which
makes ^ a timelike unit vector field such that (see [10])

a) y ,2^ / ,+ 7?®Ç, b) /̂(Ç) = - l , (13)

g{^X,^Y)=g{X,Y)+r^{X)^{Y) (14)

for all vector fields X,Y on M". For more details we refer to [12], [13], [14] and references cited therein.

For both of the structures mentioned above, it follows that • ••

V'e = O, r? 0 ( ^ = 0, • ( 1 5 )

g{X,i)=r,{X), g{^X,Y)=g{X,^Y) (16)

for all vector fields X,Y on M".

A Lorentzian almost para-contact manifold is called Lorentzian para-Sasakian (briefiy, LP-Sasakian) (see
[10]) if

^ , (17)
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where V denotes the operator of covariant difl'erentiation with respect to the Lorentzian metric g. In an LP-
Sasakian manifold M with the structure {ip, rj, ^, g), it is easily seen that

(18)

(19)

R{X,Y)^^rj{Y)X-r,{X)Y, ^ (20)

S{X,O = {n-l)r,{X) (21)

for all vector flelds X,Y on M" [10], where S denotes the Ricci tensor of M". Moreover, from (8), we also have

, X)Y ={l- - ^ ^ {g{X, y)e - rj{Y)X) (22)

and

{ ) ( ^ ^ X). (23)

E x a m p l e 3 . 1 . Let M^ be the 5-dimensional real number space with a coordinate system {x,y,z,t,s). Deflning

r] = ds-ydx-tdz, C == ^ ,

ff = 7? ® ry - {dxf - {dyf - {dzf - {dtf,

iv (â)
the structure {ip,r],^,g) becomes an LP-Sasakian structure in M̂  [15].

Example 3.2. A Lorentzian unit sphere 5"(1) is an Einstein LP-Sasakian manifold with scalar curvature
T = n{n — 1). :

A submanifold M of an LP-Sasakian manifold M is called an invariant submanifold oí M if ip {TM) c TM.
In an invariant submanifold of an LP-Sasakian manifold

a{X,O = 0, , (24)

for any vector fleld X tangent to M (see [16] and [17]). Now we give the following proposition:

Proposition 3.3. Let M" be an invariant submanifold of an LP-Sasakian manifold M. Then the following
equalities hold on M".

(25)

(26)

(27)

(28)
= g{X, F)e + v{Y)X + 2r]{X)r,{Y)^, (29)

a{X,<pY) = ^a{X,Y), (30)
where Q denotes the Ricei operator of M"- defined by S{X,Y) — g{QX,Y).

Proof. Since M" is an invariant submanifold of an LP-Sasakian manifold M

Using Gauss formula (3), we get

which gives us

so we get (25). Since M is LP-Sasakian, we get from (17),

= g{X, Y)^ + ri{Y)X + 2r,{X)r]{Y)^. (31)
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Then, in view of Gauss Formula, we have

{^X'P)Y = Vx^Y + a{X, <fY) - >fS7xY - <fa{X, Y). (32)

Gomparing the tangential and normal parts of (31) and (32), we get

= g{X, y)Ç -t- 77(y)X -1-

So we obtain (29) and (30). From the Gauss equation (5) we have

R{X, Y)^ = R{X,

Then using Q'(X, <̂) = 0 we find

which, in view of (20), gives (26). A suitable contraction of (26) gives us (27) and (28). D

So we can state the following theorem:

Theorem 3.4. An invariant submanifold M" of an LP-Sasakian manifold M is an LP-Sasakian manifold.

4. SEMIPARALLEL AND 2-SEMIPARALLEL INVARIANT SUBMANIFOLDS OF LP-
SASAKIAN MANIFOLDS

In this section, we consider semiparallel and 2-semiparallel invariant submanifolds of LP-Sasakian manifolds.
Now we prove the following theorem:

Theorem 4.1. Let M" be an invariant submanifold of an LP-Sasakian manifold M. Then M" is semiparallel
if and only if M" is totally geodesic.

Proof. Since M is semiparallel R- a = 0. Then, from (6), we have

R^{X, Y)a{U, V) - a{R{X, Y)U, V) - a{U, R{X, Y)V) = 0. (33)

Taking X = V = S,\\i (33) we get

R^{i,Y)a{U,(,)-

So, using (24), the last equation is reduced to

Then by the use of (20), we have a{U,r]{Y)(^ -I- y) = 0. Hence, in view of (24), we obtain a{Y,U) = 0, which
gives us M" is totally geodesic.

, The converse statement is trivial. This completes the proof of the theorem. D

Theorem 4.2. Let M" be an invariant submanifold of an LP-Sasakian manifold M. Then M" has parallel
second fundamental form if and only if M" is totally geodesic.

Proof. Since M" has parallel second fundamental form, it follows from (4) that

{Vxa){Y, Z) = V^(a(y, Z)) - a{^xY, Z) - a{Y, VxZ) = 0.

So, taking Z = ^ in the above equation and using (24), we get

Hence, in view of (25), we have
a{Y, ipX) = 0. (34)

Replacing X with ipX in (34) and using (13) (a) and (24) we get

a(X,y)=O,

whence M" is totally geodesic.
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The converse statement is trivial. Hence our theorem is proved. D

Theorem 4.3. Let M" be an invariant submanifold of an LP-Sasakian manifold M. Then M" is 2-semi-parallel
if and only if M" is totally geodesic.

Proof. Since M" is 2-semiparallel R • Va = 0. Hence, it follows from (7) that

R^{X, Y)iya){U, V, W) - {Va){R{X, Y)U, V, W) - {Va){U, R{X, Y)V, W) - (ya){U, V, R{X, Y)W) = 0. (35)

Taking X = V = í,m (35) we have

R^{i,Y){Va){U,^,W) - (ya){R{^,Y)U,i,W) - {Va){U,R{^,Y)Í,W) - {Vo){U.X.,R.{LY)W) = 0. (36)

Then, in view of (4), (19) and (24) we have the following equalities:

¿(a(̂ , W)) -
a {ipU, W), (37)

= v{U)a{<fY,W), (38)

(39)

and

= 7](W)a{ipU,Y). (40)

Then substituting (37)-(40) into (36) we obtain

-R^i^, Y)a {^U, W) - v{U)a{ipY, W) - V^a{Y, W)

+a (Vc/ (r?(y)C + Y),W)+a {Y, WfjW) - r){W)a{^U, Y) = 0. (41)

So, taking W = í^ in (41) and using (24), we find

which yields, from (18),

So, analogous to the proof of Theorem 4.2, we obtain a{U,Y) = 0.

The converse statement is trivial. This proves the theorem. D
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5. INVARIANT SUBMANIFOLDS OF LP-SASAKIAN MANIFOLDS SATISFYING Z{X, Y)-a =
0 AND Z{X,Y)-Va = 0

In this section, we consider invariant submanifolds of LP-Sasakian manifolds satisfying the conditions
Z{X,y) • a = 0 and Z{X,Y)-Va = 0. Firstly we have:

Theorem 5.1. Let M" be an invariant submanifold of an LP-Sasakian manifold M such that r ^ n{n — 1).
The condition Z{X, Y) • a = Q holds on M" if and only if M" is totally geodesic.

Proof. Since M satisfies the condition Z{X._ F) • a = 0, it follows from (9) that

R^{X, Y)a{U, V) - a{Z{X, Y)U, V) - a{U, Z{X, Y)V) = 0. (42)

Taking X = K = Ç in (42) we get

R"-(Ç, Y)a{U, 0 - a(Z(C, Y)U, 0 - a{U, Z{^, Y)^ = 0.

So, using (24), the last equation is reduced to

a{

Then, making use of (23), we have

From the assumption, since T ̂  n{n — 1), in view of (24), we obtain a{Y, U) = 0, which gives us that M" is
totally geodesic.

The converse statement is trivial. This completes the proof of the theorem. D

Theorem 5.2. Let M" be an invariant submanifold of an LP-Sasakian manifold M such that T ̂  n{ri — 1).
Then the condition Z{X, Y) • Va = 0 holds on M" if and only if M^ is totally geodesic.

Proof. Since M satisfies the condition Z{X,Y) • Va = 0, we have by (10):

R'-{X, Y){Va){U, V, W) - {Va){Z{X, Y)U, V, W)

-{Va){U,Z{X,Y)V,W)-{^a){U,V,Z{X,Y)W)=O. (43)

Taking X = V = ^m (43) we have

' a)([/,^, W) - {Va){Z{^, Y)U, ^, W)

, W) - {Va){U,^, Z{i, Y)W) = 0. (44)
Then, in view of (4), (22), (23) and (24), we have the following equahties:

, Y)U, e, W) = (V2(i.K)c/a)(Ç, W) = V¿(c,y)y(a(e, W))

• (45)

,W)-a
T

n[n-

and
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, Y)W) - a(Vye, ^(C, ̂ W^) - a(^, VuZ{^, Y)W)

Then, substituting (37) and (45)-(47) into (44), we obtain

-R^it Y)a i<pU, W)-(^l- ; ^ ^ ; ^ ) v{U)ai^Y, W)

So, taking W = ^ in (48) and using (24) and (25), we get

which yields, from (18) and the assumptions of r ^ n{n — 1),

a{ipU,Y)={). (49)

So, analogous to the proof of Theorem 4.2, we obtain a{U,Y) = 0. Whence M" is totally geodesic.

The converse statement is trivial. Hence we get the result as required. D

In view of Theorems 4.1, 4.2, 4.3, 5.1 and 5.2 we can state:

Corollary 5.3. Let M" be an invariant submanifold of an LP-Sasakian manifold M. Then the following
statements are equivalent:

(1) M" is semiparallel;
(2) M" has parallel second fundamental form;
(3) M" is 2-semiparallel;
(4) M" satisfies the condition Z{X, y) • a = 0 with r / n{n — 1);
(5) M" satisfies the condition Z{X, Y) • Va = 0 with T ^ n{n - 1);
(6) M" is totally geodesic.
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