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Abstract
This paper presents the formulation of an axis-symmetric fractional optimal control problem
(FOCP). Dynamic characteristics of the system are defined in terms of the left and right
Riemann–Liouville fractional derivatives (RLFDs). The performance index of a FOCP is
described with a state and a control function. Furthermore, dynamic constraints of the system
are given by a fractional diffusion-wave equation. It is preferred to use the method of
separation of variables for finding the analytical solution of the problem. In this way, the
closed form solution of the problem is obtained by a linear combination of eigenfunctions and
eigencoordinates. For numerical evaluation, the Grünwald–Letnikov approximation is applied
to the problem. Consequently, some simulation results show that analytical and numerical
solutions overlap for α = 1. This numerical approach is applicable and effective for such a
kind of FOCP. In addition, the changing of some variables related to the problem formulation
is analyzed.

PACS numbers: 02.30.Yy, 02.60.Lj, 02.60.Cb

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

In recent years, researchers in the areas of engineering,
science and mathematics have demonstrated that the dynamics
of many physical systems are described more accurately by
using fractional differential equations (FDEs). Therefore, the
solution of FDEs with analytical and numerical schemes is of
growing interest. If FDEs are used to describe the performance
index and system dynamics, it leads to a fractional optimal
control problem (FOCP). The fractional optimal control
(FOC) of a distributed system is a FOC for which the system
dynamics are described by a partial FDE (PFDE). Although a
significant amount of work has been done in the area of integer
order optimal control, very little work has been published
in the area of FOCPs, especially FOC of the distributed
system. Several papers dealing with fractional order control
are presented in [1–5]. However, these papers do not mention
FOCPs either.

Note that calculus of variations play an important role
in the area of FOC such as classical optimal control. In this

context, the papers [6] and [7] were the first to formulate
a fractional variational calculus (FVC). The differential
equations of fractionally damped systems and the fractional
Euler–Lagrange equations for fractional variational problems
were obtained in [8] and [9], respectively. In [10], a general
formulation and a numerical scheme for FOCPs in terms
of the Riemann–Liouville fractional derivatives (RLFDs) are
presented. Similarly, Agrawal and Baleanu [12] formulate
FOCPs in terms of the RLFDs, which are then solved by using
the Grünwald–Letnikov approach. In [13], a formulation and a
numerical scheme for the FOC of a distributed system whose
dynamics are described by Caputo fractional derivatives
are presented. The FVC is applied to a deterministic and
stochastic analysis of FOCPs in [11].

Recently, an eigenfunction expansion-based scheme for
the FOC of a two-dimensional (2D) distributed system has
been shown in [17]. In addition, Özdemir et al [18] consider
an axis-symmetric fractional diffusion-wave equation.

In this paper, we present a formulation of the FOC of
a 2D distributed system that is defined in polar coordinates.
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Therefore, the solutions of the problem are axis-symmetric.
Polar coordinates are used to formulate the solution of
fractional generalization of the Navier–Stokes equations
in [14]. Fractional radial diffusion in a cylinder and in a
sphere are presented by [15, 16]. In addition, a formulation
and a numerical scheme for FOC for a class of distributed
systems whose dynamic constraints are defined in the Caputo
sense are considered in [11], whereas this paper considers
the problem in terms of RLFDs and in polar coordinates. In
other words, we present a formulation for an axis-symmetric
FOCP. This paper also finds numerical solutions by using the
Grünwald–Letnikov approach.

The paper is organized as follows. In section 2, we give
the RLFD definitions and formulation of a FOCP. In section 3,
the axis-symmetric FOCP is defined. In section 4, simulation
results are analyzed for an initial condition and further
analytical solution for α = 1. Then, section 5 concludes this
work.

2. Preliminaries

In this section, we first define RLFDs, then formulate a FOCP
and obtain the necessary terminal conditions for optimality.
Several definitions of fractional derivative, which include
the Riemann–Liouville, Grünwald–Letnikov, Weyl, Caputo,
Marchaud and Riesz fractional derivatives, could be used
to formulate the problem. We begin with the definition of the
left and right RLFDs (LRLFD and RRLFD), which are
given as

The LRLFD:

aDα
t f (t) =

1

0(n − α)

(
d

dt

)n ∫ t

a
(t − τ)n−α−1 f (τ ) dτ. (1)

The RRLFD:

t D
α
b f (t) =

1

0(n − α)

(
−

d

dt

)n ∫ b

t
(τ − t)n−α−1 f (τ ) dτ,

(2)
where f (.) is a time-dependent function, 0(.) is the Gamma
function, and α is the order of the derivative such that n − 1 <

α < n, where n is an integer. These derivatives will be denoted
as the LRLFD and RRLFD, respectively. When α is an
integer the left (forward) and the right (backward) derivatives
are replaced with D and −D, respectively, where D is an
ordinary differential operator. Note that, in the literature, the
Riemann–Liouville fractional derivative generally means the
LRLFD. Using the above definitions, a FOCP can be defined
in the following: find the optimal control u(t) that minimizes
the performance index

J (u) =

∫ 1

0
F(x, u, t) dt (3)

subject to the system dynamic constraints

0Dα
t x = G(x, u, t) (4)

and the initial condition

x(0) = x0, (5)

where x(t) and u(t) are the state and the control
variables, respectively, and F and G are two arbitrary
functions. For α = 1, the above problem reduces to a
standard optimal control problem. In the case of α > 1,
additional initial conditions could be necessary. In optimal
control formulations, traditionally the differential equations
governing the dynamics of the system are written in state
space form, in which case the order of the derivatives turns out
to be less than 1. For this reason, we consider 0 < α < 1. The
necessary terminal conditions that are determined by using the
Lagrange multiplier technique are

0Dα
t x = G(x, u, t), (6)

t D
α
1 λ =

∂ F

∂x
+

∂G

∂x
λ, (7)

∂ F

∂u
+

∂G

∂u
λ = 0, (8)

where λ is the Lagrange multiplier also known as a co-state
variable and

x(0) = x0 and λ(1) = 0. (9)

Equations (6)–(8) are called the Euler–Lagrange equations for
the FOCP such that these equations determine the necessary
conditions for optimality of FOCP.

3. Formulation of an axis-symmetric FOCP

We consider the following problem: determine the control
u(t) that minimizes the performance index

J (u) =
1

2

∫ 1

0

∫ R

0
r
[
Ax2(r, t) + Bu2(r, t)

]
dr dt (10)

subject to the system dynamic constraints

∂αx

∂tα
= β

(
∂2x

∂r2
+

1

r

∂x

∂r

)
+ u (r, t), (11)

the initial condition

x(r, 0) = x0(r), (0 < r < R), (12)

and the boundary condition

x(R, t) = 0, (t > 0), (13)

where x(r, t) and u(r, t) are the state and the control functions
subject to the variables r and t , which represent polar
coordinates in the case of axis-symmetry. A and B are two
arbitrary functions and R is the radius of the membrane on
which the problem is defined. The upper limit of time t is 1
for convenience. This limit can be any positive number. We
assume that x(r, t) and u(r, t) can be written as

x(r, t) =

m∑
i=1

xi (t)J0

(
µi

r

R

)
, (14)

u (r, t) =

m∑
i=1

ui (t)J0

(
µi

r

R

)
, (15)

2
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where J0
(
µi

r
R

)
, i = 1, 2, . . . , m, are the eigenfunctions that

are determined by the method of separation of variables; m is
a finite positive integer that theoretically should go to infinity.
By substituting equations (14) and (15) into equation (10), we
obtain

J =
R2

4

1∫
0

m∑
i=1

J 2
1 (µi )

[
Ax2

i (t) + Bu2
i (t)

]
dt (16)

and substituting equations (14) and (15) into equation (11),
and equating the coefficients of J0

(
µi

r
R

)
, we get

0Dα
t xi (t) = −β

(µi

R

)2
xi (t) + ui (t), i = 1, 2, . . . , m.

(17)
Substituting x(r, t) in equation (14) into equation (12),
multiplying both sides by r J0

(
µk

r
R

)
and integrating from

0 to R, we obtain

xi (0)=
2

R2 J 2
1 (µi )

∫ R

0
r J0

(
µi

r

R

)
x0(r) dr, i = 1, 2, . . . , m.

(18)
Using equations (6)–(8), and replacing functions F and G in
them with F and G in equations (16) and (17), the necessary
conditions are written as

t D
α
1 λi (t) −

R2

2
AJ 2

1 (µi )xi (t) + β
(µi

R

)2
λi (t) = 0, (19)

R2

2
Bui (t)J 2

1 (µi ) + λi (t) = 0, (20)

0Dα
t xi (t) + β

(µi

R

)2
xi (t) − ui (t) = 0, (21)

where λi (t), i = 1, 2, . . . , m, are the Lagrange multipliers.
Arranging the terms of equations (19)–(21), we can obtain

t D
α
1 ui (t) = −

A

B
xi (t) − β

(µi

R

)2
ui (t), i = 1, 2, . . . , m.

(22)
Note that, for α = 1, the fractional differential equations

(17) and (22) reduce to the following form:

ẋi (t) = −β
(µi

R

)2
xi (t) + ui (t), i = 1, 2, . . . , m, (23)

u̇i (t) =
A

B
xi (t) + β

(µi

R

)2
ui (t), i = 1, 2, . . . , m. (24)

The closed form solution for this set of linear differential
equations is given in the appendix.

4. Numerical examples

To solve the FOCP we use the Grünwald–
Letnikov numerical scheme. For this purpose, the entire
domain is divided into N equal subdomains, and the nodes
are labeled as 0, 1, . . . , N . The size of each subdomain
is h =

1
N , and the time at node j is defined with t j = jh.

Consider the following FDEs corresponding to equations (17)
and (22):

0Dα
t = ax + bu, (25)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t (time)

x 1(t
)

Figure 1. Evolution of state x1(t) for different values of α and
N = 100 (5: α = 0.5, �: α = 0.75. For α = 1, ◦: numerical,
∗: analytical).

0 0.2 0.4 0.6 0.8 1
−0.1 

−0.08

−0.06

−0.04

−0.02

0 

t (time)

u 1(t
)

Figure 2. Evolution of control u1(t) for different values of α and
N = 100 (5: α = 0.5, �: α = 0.75. For α = 1, ◦: numerical,
∗: analytical).

t D
α
1 = cx + du, (26)

where a, b, c and d are arbitrary constants. The
Grünwald–Letnikov approximation of the left and the
right RLFDs at node M can be given in the following form:

0Dα
t x =

1

hα

M∑
j=0

w
(α)
j x(hM − jh), (27)

t D
α
1 u =

1

hα

N−M∑
j=0

w
(α)
j u(hM + jh) (28)

where

wα
0 = 1, wα

j =

(
1 −

α + 1

j

)
wα

( j−1). (29)

Therefore, the above equations reduce to

1

hα

M∑
j=0

w
(α)
j x(hM − jh) = ax(Mh) + bu(Mh), (30)

3
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t (time)

x 1(t
)

Figure 3. Evolution of state x1(t) for α = 0.75 and different values
of N (5: N = 4, �: N = 8, ◦: N = 16, ∗: N = 32).

0 0.2 0.4 0.6 0.8 1
−0.14

−0.1 

−0.06

−0.02

t (time)

u 1(t
)

Figure 4. Evolution of control u1(t) for α = 0.75 and different
values of N (5: N = 4, � : N = 8, ◦: N = 16, ∗: N = 32).

1

hα

N−M∑
j=0

w
(α)
j u(hM + jh) = cx(Mh) + du(Mh) (31)

and
x(0) = x0, u(1) = 0. (32)

In this section, we analyze some simulation results for the
axis-symmetric FOCP defined by equations (3)–(9) for t > 0,

0 < α < 1 and r ∈ [0, R]. An example is given to demonstrate
the applicability of the numerical approach. For different
values of α, we compare the numerical results obtained by
the Grünwald–Letnikov approach. For simulation purposes,
we take the following data: β = R = A = B = 1 and the
term number m = 5. The comparison of the analytical and
numerical results for α = 1 is obtained. Let us consider the
following initial condition:

x0(r) = 1 −

( r

R

)2
. (33)

Substituting equation (33) into (18), we obtain

xi (0) =
8

µ3
i J1(µi )

, i = 1, 2, . . ., m. (34)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t (time)

x i(t
)

Figure 5. Evolution of states xi (t) for m = 5, α = 0.75 and
N = 100 (5: x1(t), �: x2(t), ◦: x3(t), ∗: x4(t), �: x5(t)).

0

0.5

1

0

0.5

1
0

0.5

1

r (radius)t (time)

x
(r

, t
)

Figure 6. Evolution of state function x(r, t) as a function of
r and t for α = 0.75 and N = 100.

Figures 1 and 2 show the analytical results (for α = 1)
and the numerical results (for α = 0.5, 0.75 and 1) for the
state x1(t) and the control u1(t) for N = 100. In these
figures, it can be observed that the analytical and numerical
solutions overlap. Thus, as α approaches 1, the solution
for the integer-order system is recovered. Figures 3 and 4
show the numerical results for the state x1(t) and the control
u1(t), respectively, for α = 0.75 and different values of
N (N = 4, 8, 16 and 32). Note that the solutions converge
as step number N is increased, which indicates that the
algorithm is stable. For computation aspects in equation (3),
this series is truncated after m terms. From figure 5, it can be
seen that the first term x1(t) is different from the rest of the
terms, which are very close to 0. Therefore, we only need a
few terms to calculate. Figures 6 and 7 show the surface of
the state x(r, t) and the control u(r, t) for α = 1, respectively.
These surfaces are plotted for α = 0.75 and N = 100.

5. Conclusions

An axis-symmetric FOCP was defined in terms of the RLFDs.
The performance index of the FOCP was considered as

4
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0

0.5

1

0

0.5

1
−0.08

−0.06

−0.04

−0.02

0

r (radius)t (time)

u
(r

, t
)

Figure 7. Evolution of control function u(r, t) as a function
of r and t for α = 0.75 and N = 100.

a function of the state and the control variables, and the
system dynamic constraints are described as PFDEs. The
method of separation of variables was used to find the closed
form solution of the problem. Eigenfunctions determined as
Bessel functions were used to eliminate the space parameter
terms. The Grünwald–Letnikov approach was used to develop
an algorithm for the numerical solution of the problem.
Simulation results showed that analytical and numerical
solutions overlap for α = 1. Numerical results were compared
for different values of α and N .

Appendix A.

The FDW system reduces to the following form for α = 1: ẋi (t) = −ai xi (t) + ui (t),
i = 0, 1, . . ., m,

u̇i (t) = e0xi (t) + ai ui (t),
(A.1)

and terminal conditions are rewritten as xi (0) = xi0,

i = 0, 1, . . ., m,

ui (1) = 0,

(A.2)

where

ai = β
(µi

R

)2
, (A.3)

e0 =
A

B
. (A.4)

Equation (A.1) leads to

ẍi − k2
i xi = 0, (A.5)

where

ki =

√
e0 + a2

i .

Using equations (A.1) and (A.2), the solution of equation
(A.5) is given as

xi (t)= xi0

[
ki cosh(ki (1 − t)) + ai sinh(ki (1 − t))

ki cosh(ki ) + ai sinh(ki )

]
.

(A.6)
Using equations (A.1) and (A.6), we obtain

ui (t) = xi0

[
(a2

i − k2
i ) sinh(ki (1 − t))

ki cosh(ki ) + ai sinh(ki )

]
. (A.7)

Finally, x(r, t) and u(r, t) are given by equations (14) and
(15), where xi (t) and ui (t) are obtained by (A.6) and (A.7).
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