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Weathering has several adverse effects on the physical, mechanical and deformation
characteristics of rock. However, when determining the weathering degree of rocks, some
difficulties are encountered. Ideally, the weathering degree can be determined by simple
test results and reliable prediction models. Considering this situation, the purpose of the
present study is to construct simple and low cost weathering degree prediction models with
two soft computing techniques, artificial neural networks and fuzzy inference systems.
When developing these models, model results were tested against data from specimens
collected from the Harsit granitoid (NE Turkey) and data published in the literature. Model
inputs are porosity, P-wave velocity and uniaxial compressive strength, andmodel output is
weathering degree. The models developed in this study exhibited high prediction
performances when checked by train and test data sets. This result shows that the
models developed herein can be used for indirect determination of weathering degree. The
artificial neural network model requests numerical data as the input, while the fuzzy
inference system model can take numerical data and expert opinion as the input. As a
conclusion, themodels have a high potential when determining weathering degree of a rock
for various purposes.
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1. Introduction

For a long time,weathering has been one of themajor research
areas of engineering geology and rock mechanics because
weathering has an adverse influence on rock strength and
deformability characteristics which in turn influences the
industrial use of rocks. The properties of rock material are
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controlled by the mineral composition, texture, fabric and the
weathering state [1]. Almost all engineering projects are
carried out at the surface of the earth or at a relatively shallow
depth below the surface. This shallow domain is also the zone
in which the processes of weathering, erosion and deposition
are generally active [2]. For this reason, the correct description
of weathered intact rock is required to predict its engineering
.
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behavior. ISRM [3] suggested a descriptive classification
scheme for the weathering degree of intact rock material,
but correct description requires extensive testing and difficul-
ties may be encountered when applying this or other
descriptive classification schemes.

In the last three decades, various researchers have
attempted to obtain weathering degree using simpler and
more reliable methods. The weathering degree classification
processes can be divided into a qualitative or quantitative
approach. Qualitative classification schemes are based on
observational descriptions and simple index properties. These
are color change [4], chemical weathering degree of feldspars
or biotites [1,4–7], and observational description of physical
weathering degree [3,7,8]. However, application of qualitative
approaches is simple and easy to carry out in field, but may
lead to inconsistent classification, because these include some
subjective aspects.

Quantitative approaches lead to consistent and objective
material descriptionsmore than qualitative approaches, particu-
larly by non-specialist users [1]. Quantitative classification
schemes may consider mineralogical properties, index proper-
ties, or strength characteristics. Various mineralogical indices
have been proposed (for ex. [9–14]), but changes in these indices
maybeaffectedbymore thanweatheringalone.Differentiation in
microcrack density can be controlled by parent rock mineralogy,
local tectonic activity, or the technique used for preparation of
thin-sections. Other quantitative weathering classification
schemes consider some index or strength properties of rocks
[15–20]. According to Gupta and Rao [16], weathering produces
gradational changes in the physico-chemical and mechanical
properties of rocks and, ideally, this would be assessed in
quantitative rather than qualitative terms. All of these studies
have provided important contributions to the classification of
weathering degree of intact rock material. However, determina-
tionofweatheringdegreebyasimpleandreliableway is still open
to development.

The main purpose of the present study is to construct
predictive models for reliable estimation of weathering degree
of granitic rocks using the two soft computing techniques,
fuzzy inference system and artificial neural networks. For this
purpose, samples from the Harsit granitoid (NE Turkey) were
collected and the necessary descriptions and tests were
performed. By using the data obtained from these descriptions
and tests, two prediction models were constructed, and the
models were then checked against the data in the literature.
2. Field and Laboratory Studies
Performed on the Harsit Granitoid

The Harsit granitoid crops out between Dogankent (Giresun)
and Kurtun (Gumushane) in the northern zone of the Pontides
(NE, Turkey) (Fig. 1). Field observations and sampling proce-
dure were applied in this area. The younger formations in the
sampling area are cross cut by the Harsit granitoid. Quartz
diorite, quartz monzonite, quartz monzodiorite and leucogra-
nite exist in the contrast zones of the batholith while the
center of the Harsit pluton is formed by granodiorite [21]. All
these granitic rocks intruded into the eastern Pontide volcanic
arc during the period of Upper Cretaceous to Eocene [22,23].
The first stage of the studywas todetermine theweathering
zones in the area. The selected profiles typically show weath-
ering state changes gradually in the vertical section. Toprovide
a representative sampling, samples with different degrees of
weathering were collected from more or less uniform zones.
The weathering classes of the rock material were determined
by using the weathering classification suggested by [3]. The
residual soils do not have their original volume due to frame
collapse. Considering this problem, no sample was collected
from the residual soil parts in the weathering profiles of the
Harsit granitic rocks. A total of 32 block sampleswere collected,
each with the approximate dimensions 30×30×30 cm3. Core
samples from each weathering class were tested to determine
various physical and mechanical properties such as unit
weight, porosity, Schmidt hardness, P-wave velocity, point
load index and uniaxial compressive strength. All core speci-
mens were extracted in the vertical orientation. To provide
standardization, the uniaxial compressive strength and P-
wave velocity tests were applied on the air-dried core speci-
mens extracted from a vertical direction. The uniaxial com-
pressive strength tests on core specimens were performed
using a standard stiff compression-testing machine. Physical
and index properties, P-wave velocity and uniaxial compres-
sive strength were determined during the laboratory testing
program in accordance with the procedure suggested by [3]
(Table 1). However, extracting standard core specimens from
the completely weathered blocks for the uniaxial compressive
strength tests was not possible. For this reason, some cubic
specimens having 5×5 cm2 dimensions were prepared and
these testswere applied on the cubic specimens obtained from
the completelyweathered blocks. Theunitweight values of the
fresh samples are around 26.3 kN/m3 while that of completely
weathered samples decrease to 22.8 kN/m3. When applying
the point load index and Schmidt hammer tests on highly or
completely weathered specimens, some serious difficulties
were encountered. The Schmidt hammer test is one of the
easiest tests to perform in rock mechanics. However, this test
did not yield reasonable results when applied to highly
weathered samples, especially completely weathered sam-
ples. Due to this difficulty, the Schmidt hammer test results
could not be used as an input for the prediction models.
Another easy-to-perform test is the point load index, but
similar difficulties were encountered so again the test results
could not be used as an input. Changes for all weathering
classes except residual soil could be measured during the
porosity, unit weight, P-wave velocity and uniaxial compres-
sive strength tests (Table 1).

Data for themodel inputs should be easy to acquire. This is
only possible if the models' inputs are the results of easy-to-
perform tests. The porosity values of the specimens were
calculated using the specific gravity and the dry density. The
porosity values of the fresh samples varied between 1.4% and
3.7% while those of the completely weathered samples
reached 19.5%, thus porosity was accepted as an indicator of
the weathering degree and model input. The results of the
tests on velocity of elastic waves and uniaxial compressive
strength were directly dependent on degree of weathering, so
the results may be used as model inputs. Although some
difficulties have been encountered when preparing test
specimens from the completely weathered blocks for P-wave



Fig. 1 – Location map of the sampling area.
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velocity and uniaxial compressive strength tests, the results of
these tests are highly characteristic for the indirect determi-
nation of theweathering degree of the granitic rocks. For these
reasons, porosity, P-wave velocity and uniaxial compressive
strength were selected as the inputs of the weathering degree
prediction models.

A total of 32 cases including degree of weathering, porosity,
P-wave velocity and uniaxial compressive strength were used
for constructing prediction models. Before constructing the
models, to apply a learning stage independent from magni-
tude of data and to provide standardization among the inputs
and the outputs, all data were normalized by using the
following equations due to its simplicity (Eq. (1)):

Xn =Xi=Xmax ð1Þ
where, Xn is the normalized parameter; Xi is the measured
parameter and Xmax is themaximum value of the X parameter
data set.

The normalization process may increase the usability of
the models because the models will be independent from the
magnitude of data. The normalization parameters (Xmax) are 5
for the weathering degree, 21.4 for the porosity, 4285 for the P-
wave velocity and 167.9 for the uniaxial compressive strength.
As seen from Table 1, the degree of weathering leads to an
increase in the average porosity value. Input parameter
ranges, however, show an important overlap in weathering
classes. In other words, it is impossible to determine the
weathering class of a granite sample by employing only one
absolute value of physical or engineering properties. The
uniaxial compressive strength is proposed to be reliable as an
index parameter, which consistently changes throughout the
weathering spectrum. However, the direct use of unconfined
compressive strength as an index parameter of weathering for
common rocks is ineffective due to a high overlapping degree
of given values [16].

A series of simple regression analysis between weathering
degree and the selected input parameters such as porosity, P-
wave velocity and uniaxial compressive strength was per-
formed. A strong exponential relationship between the
weathering degree and the porosity (Fig. 2a) is observed. On
the other hand a moderate–strong inverse-linear relationship
was observed between the weathering degree and the P-wave



Table 1 – Statistical assessments of the test results applied on the samples collected from the Harsit granitoid.

Parameter Number of dataa Minimum Maximum Mean St. deviation

Fresh (F)
Unit weight (kN/m3) 6 26.00 26.49 26.31 0.19
Porosity (%) 6 1.40 2.60 1.85 0.41
Schmidt hardness 6 44.50 48.40 46.25 1.41
P-wave velocity (m/s) 6 4006.00 4285.00 4139.00 105.41
Point load index (MPa) 6 6.01 8.00 6.86 0.66
Uniaxial compressive strength (MPa) 6 138.80 167.90 146.82 15.10

Slightly weathered (SW)
Unit weight (kN/m3) 5 25.70 26.39 25.98 0.29
Porosity (%) 5 1.70 3.70 2.50 0.83
Schmidt hardness 5 31.50 46.30 40.20 5.52
P-wave velocity (m/s) 5 2744.00 3833.00 3275.20 449.96
Point load index (MPa) 5 1.58 4.44 3.56 1.14
Uniaxial compressive strength (MPa) 5 46.00 144.20 96.78 32.08

Moderately weathered (MW)
Unit weight (kN/m3) 7 24.62 25.51 25.31 0.32
Porosity (%) 7 3.80 5.90 4.36 0.70
Schmidt hardness 6 26.00 34.90 29.55 3.42
P-wave velocity (m/s) 7 3014.00 3105.00 2598.43 40,731
Point load index (MPa) 7 0.35 3.20 1.65 0.99
Uniaxial compressive strength (MPa) 7 16.80 110.30 66.50 37.57

Highly weathered (HW)
Unit weight (kN/m3) 7 21.78 25.21 23.63 1.40
Porosity (%) 7 4.30 17.00 10.50 5.07
Schmidt hardness 5 13.20 25.30 18.40 5.14
P-wave velocity (m/s) 7 731.00 2627.00 1339.14 683.29
Point load index (MPa) 2 0.30 1.09 0.70 0.56
Uniaxial compressive strength (MPa) 7 1.40 54.10 12.89 18.85

Completely weathered (CW)
Unit weight (kN/m3) 7 20.70 22.76 21.81 0.81
Porosity (%) 7 11.20 21.40 16.63 3.30
Schmidt hardness Not-available
P-wave velocity (m/s) 7 464.00 920.00 686.29 171.40
Point load index (MPa) Not-available
Uniaxial compressive strength (MPa) 7 1.10 3.30 2.19 0.71

a Each number of data includes at least three test results.
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velocity (Fig. 2b). A strong inverse-exponential relationship
between the weathering degree and the uniaxial compressive
strength was also observed, which can be seen in Fig. 2c. As
mentioned before the overlapping can be clearly seen in Fig. 2.
These assessments revealed that estimating the weathering
class of a granite sample by using the absolute value of only
one parameter, is almost impossible which suggests thatmore
than one input parameter is needed. Therefore, two prediction
models with three inputs and an output were proposed. The
data used for training was also used for checking to provide
standardization between the models. 32 data obtained from
the Harsit granitic rockswere used for trainingwhile a data set
obtained from the literature [16] was employed as a checking
data set (Table 2).
3. Artificial Neural Network Model

The application of artificial neural network (ANN) to rock
mechanics and engineering geology has been presented
recently in the literature [24–27]. A neural network can be
defined as a model of reasoning that is based on the way that
the human brain functions [28]. The human brain comprises
of densely interconnected sets of nerve cells, or basic
information-processing units, called neurons. Considering its
structure, the brain can be described as a highly complex,
nonlinear and parallel information-processing system [28].
Subsequently, in fact an artificial neural network can be
considered as a simplified reproduction or mirror of that
highly complicated system. More than a hundred different
types of artificial neural networks, new or modifications of
existing ones can be encountered in recent literature [28–31].
Back propagation artificial neural networks are the most
widely used type of networks [28] because of their flexibility
and adaptability in modeling a wide spectrum of problems in
many application areas [32].

When developing an artificial neural network, the data is
partitioned into at least two subsets such as training and
checking data. It is commonly expected that the training
data include all the data belonging to the problem domain.



Fig. 2 – Results of the simple regression analyses:
(a) porosity-weathering degree; (b) P-wave
velocity-weathering degree; (c) uniaxial compressive
strength-weathering degree.
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Certainly, this subset is used in the training stage of themodel
development to update the weights of the network. On the
other hand, the check data should be different from those
used in the training stage. The main purpose of this subset is
to check the network performance using untrained data, and
to confirm its accuracy. No exact mathematical rule to
determine the required minimum size of these subsets exists.
However, some suggestions for these sampling strategies are
encountered in literature [32]. These studies suggest that
approximately 80% of entire data is common enough to train
the network, and the rest is usually handled to check the final
architecture of the model [33,34]. In this study, only one
artificial neural network model was constructed to estimate
the weathering degree of the Harsit granitoid. The input of the
model is constituted of porosity parameters, P-wave velocity
and the uniaxial compressive strength. In order to train the
network, 32 cases obtained from the laboratory tests per-
formed in this study were used. Each case includes the inputs
(porosity, P-wave velocity and uniaxial compressive strength)
and the output (weathering degree). Another data set adapted
from the literature was used to check the constructed
architecture [16]. Therefore, it can be considered that the
constructed neural network architecture is not a site depen-
dent model, in fact it may be considered as a generalized
model, which can be used to determine the weathering degree
of the granitic rocks.

As being in various multivariate statistical techniques and
also in fuzzy inference system, normalization of the data
constitutes one of the major stages in developing an artificial
neural network model. The term normalization is commonly
defined as the re-stretching of the datawithin a uniform range
such as [0, 1]. The main purposes of this normalization
procedure are to prevent larger numbers from overriding
smaller ones, and to prevent premature saturation of hidden
nodes [32]. For this reason, as an initial step data are
normalized. Another important topic in artificial neural net-
work development is the initialization stage of the network.
This stage comprises assigning of the initial values for the
weights and the thresholds of all connections in the ANN
architecture. Schmidt et al. [35] revealed that the weight and
the threshold initialization can have an effect on the network
convergence whereas Fahlman [36] proposed that this initi-
alization stage has no significant consequence on the
convergence and the final architecture of the network.
Although the final network acquires different weights and
threshold values with different initial conditions the model is
commonly constructed successfully [28]. In general, the
weight and the threshold values are initialized uniformly in
a relatively small rangewith zero-mean randomnumbers [37].
In this study, the initial weight and threshold values of each
connection in the artificial neural network architecture of the
model were randomly selected in the ranges of [−1, 1].

The routine calculation stage is highly extensive in back
propagation artificial neural networks. This extensive compu-
tation routine causes the training stage to be very slow. To
improve the computational efficiency of the back propagation
algorithm, there exist several approaches in the literature.
Many of these are directly related with concepts of the
learning rate (η) and themomentumcoefficients (β) commonly
used to speed up the training stage, and to stabilize the
network training [38,39]. Hence, the learning rates and the
momentum coefficients may be more crucial topics in back
propagation artificial neural networks. The inclusion of the
momentum coefficient in the artificial neural network tends
to accelerate the process in the steady downhill direction, and



Table 2 – Data collected from the literature for checking [16].

Parameter Weathering degree

F SW MW HW CW

Porosity (%) 0.61 2.09 7.89 Not-available 24.41
P-wave velocity (m/s) 5983.00 3691.00 1849.00 Not-available 178.00
Uniaxial compressive strength (MPa) 132.80 102.70 53.01 Not-available 2.54
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decelerates the process when the learning surface exhibits
peaks and valleys [28]. Differentmomentum coefficient values
were proposed for the training stages of networks. For
example, Wythoff [40] suggests that β should be selected
between the values of 0.4 and 0.9. Hassoun [41] and Fu [42]
proposed a range between [0.0, 1.0]. Swingler [43] mentioned
that β=0.9 can be used in solving all problems unless a
reasonable solution could not be acquired. Negnevitsky [28]
suggested that the momentum coefficient value is commonly
selected as β=0.95. Similarly, various approaches exist for the
use of other crucial topic-learning rate (η) in the literature. For
example, Wythoff [40] proposed that the value of the learning
rate should be chosen between 0.1 and 10. On the other hand,
Zupan and Gasteiger [44] recommended the use of this value
in the range of [0.3, 0.6]. Basheer and Hajmeer [32] stated that
the adaptive learning rate that varies along the course of
training can be more effective in achieving an optimal weight
vector for some problems. The small learning rate values
cause small weight changes in the network from one iteration
to the next one which leads to a smooth learning curve [28].
However, assigning a larger learning rate to speed up the
training processmay result in instabilities due to larger weight
changes which may lead the network to become oscillatory
[28]. Therefore, Jacobs [39] proposed two heuristics to accel-
erate the convergence and to avoid the possible instability of
the network. These are: (i) if the change of the sum of squared
errors has the same algebraic sign for several consequent
epochs, then the value of learning rate should be increased,
and (ii) if the algebraic sign of the change of the sum of
squared errors alternates for several consequent epochs, then
the value of learning rate should be decreased. In this study,
Fig. 3 – ANN structure de
the momentum coefficient of the model was set to 0.95 as
suggested by [28]. Moreover an adaptive learning rate proce-
dure was implemented in the neural network architectures in
this research by considering the various suggestions men-
tioned above.

The determination of the proper number of hidden layers
and number of hidden nodes in each layer constitutes another
crucial topic in developing artificial neural network models. A
hidden layer is described as a layer of nodes between the input
and output layers that contains the weights and processes
data. In general, one hidden layer is sufficient to approximate
continuous functions [32,45]. Masters [46] stated that two
hidden layers are necessary for learning functions with
discontinuities. On other hand, Basheer and Hajmeer [32]
proved that a network with more than two hidden nodes
would be incapable of differentiating between complex
patterns leading to only linear estimate of actual trend. They
also proposed that if the network has too many hidden nodes,
it will follow the noise in the data due to over-parameteriza-
tion leading to poor generalization for untrained data. Various
heuristics depending on the number of inputs, outputs and
training samples were proposed in the literature to compute
the optimum number of hidden nodes in the neural network
architecture [45–53]. However, even if any heuristic allows the
network with too many hidden nodes, the researcher should
be aware that the increase in the number of hidden nodes due
to many hidden nodes causes exponentially an increase in
computational time. Therefore, considering the number of
input and output variables and the amount of the training
data, the artificial neural network structures were selected as
“3-2-1” for the model (Fig. 3). In multi-layer artificial neural
veloped in the study.



Table 3 – Final model parameters for the constructed
artificial neural network architectures.

Weights (w) Thresholds (θ)

w (1,4) 0.130690 θ (4) −0.194840
w (1,5) −0.094799 θ (5) −2.787600
w (2,4) 0.016800 θ (6) 3.882900
w (2,5) −1.867500
w (3,4) −7.026000
w (3,5) 4.764900
w (4,6) 8.832200
w (5,6) 1.168000

1323M A T E R I A L S C H A R A C T E R I Z A T I O N 6 0 ( 2 0 0 9 ) 1 3 1 7 – 1 3 2 7
networks, the weights are commonly called free parameters
[54]. According to Klimasauskas [55] and Messer and Kittler
[56], at least 5 to 10 times the number of free parameters
should be considered as the required number of training
samples. Using the network structure “3-2-1”, the suggestion,
proposed by [55,56] is also satisfied more or less for the model
developed for the research. Consequently, the constructed
artificial neural network models were first trained by the data
produced in this study, then compared with the data
published by [16]. The sum of square errors (SSE) was used
as the convergence criteria during the training stages of the
models. For both models the SSE values and the maximum
iterations were set to 0.001 and 100, respectively. During the
training stages, the SSE value was decreased until approxi-
mately 0.006 value for the training data set of the model was
reached. This SSE value was obtained in 16 epochs in the
model. On the other hand, the SSE value for the check data set
was decreased approximately to 0.001. The final network
weights and thresholds of the model are shown in Fig. 3 and
Table 3.
Fig. 4 – Input and output fuzzy sets used in the fuzzy
inference system.
4. Fuzzy Inference System

In this study, the second model for the prediction of weath-
ering degree was developed by fuzzy inference system. In
classical logic, the membership value of any member is equal
to 1 if it is included in the set; if not, that value is equal to 0.
These kinds of sets are called “crisp sets”. On the contrary, the
members of a fuzzy set can take the membership values
ranging between 0 and 1 in fuzzy logic. The term “fuzzy set”
was first introduced under the title of “Fuzzy Set Theory” by
[57]. Mathematically, it is commonly defined as follows
(Eq. (2)).

A = fx;μAðxÞgjx∈X ð2Þ

The fuzzy set “A” is represented by a membership function;
μA(x) in the information universe of X. This membership
function μA(x) defines the membership degree of each member
in the set.Additionally, thedegreeofmembershipdemonstrates
the amount of pertaining level of themember to the fuzzy set.
According to Dombi [58], the membership functions require
the following properties: (i) all the membership functions
should be continuous, (ii) all the membership functions
should be described in a certain interval, (iii) themembership
functions may be continuously decreasing or increasing, or
may have both increasing and decreasing parts together, and
(iv) monotonous membership functions may be concave or
convex, or may be concave until a point, and convex here
after.

In the literature, there are two different types of fuzzy
inference systems that are frequently used. These are the
Mamdani and the Takagi–Sugeno–Kang algorithms. The
Mamdani algorithm ismostly preferred in engineering geology
[59]. This algorithm was first developed by [60] to be used in a
steam machine control. They carried the usage of the steam
machine to an upper level and developed a new technique
called “if-then” rules. Considering the conventional mathe-
matical techniques, integrating this technique to an indirect
model seems inapplicable [59]. Alvarez Grima [59] proposed
that the Mamdani algorithm constitutes one of the most
efficient techniques to solve complex geological engineering
problems. The main reason is that the materials studied in
engineering geology are commonly natural, and hence they
involve a high level of uncertainties. For example, when the
weathering description of “high” is used as an input in fuzzy
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models this term can be expressed by a fuzzy membership
function. Due to this flexibility, the fuzzy approach may
decrease uncertainties sourced from complexity and hetero-
geneity. Based on the Mamdani fuzzy algorithm, several rock
mechanics and engineering geology applications have been
carried out [61–65].

To reveal properties of any complex and nonlinear system,
the “if-then” rules are adapted from the Mamdani algorithm
[66]. The notation of these rules used in the algorithm is
commonly given as follows:

Ri : If xi is Ai1 and… and xr is Air then y is Bi i = 1;2;…; k

where, k is the number of rules, xi (i=1, 2,…, l) is the input
variable, and y is the output variable.Aij and Bij are the linguistic
Table 4 – Fuzzy “if-then” rules.

Rule no Precedent

1 If porosity is VL and P-wave is M
2 If porosity is VL and P-wave is H
3 If porosity is VL and P-wave is H
4 If porosity is VL and P-wave is VH
5 If porosity is VL and P-wave is VH
6 If porosity is L and P-wave is L
7 If porosity is L and P-wave is L
8 If porosity is L and P-wave is M
9 If porosity is L and P-wave is M
10 If porosity is L and P-wave is M
11 If porosity is L and P-wave is M
12 If porosity is L and P-wave is M
13 If porosity is L and P-wave is H
14 If porosity is L and P-wave is H
15 If porosity is L and P-wave is H
16 If porosity is L and P-wave is H
17 If porosity is L and P-wave is VH
18 If porosity is L and P-wave is VH
19 If porosity is L and P-wave is VH
20 If porosity is M and P-wave is VL
21 If porosity is M and P-wave is VL
22 If porosity is M and P-wave is L
23 If porosity is M and P-wave is L
24 If porosity is M and P-wave is L
25 If porosity is M and P-wave is M
26 If porosity is M and P-wave is M
27 If porosity is M and P-wave is M
28 If porosity is M and P-wave is M
29 If porosity is M and P-wave is M
30 If porosity is M and P-wave is H
31 If porosity is M and P-wave is H
32 If porosity is M and P-wave is H
33 If porosity is M and P-wave is H
34 If porosity is M and P-wave is VH
35 If porosity is M and P-wave is VH
36 If porosity is H and P-wave is VL
37 If porosity is H and P-wave is VL
38 If porosity is H and P-wave is L
39 If porosity is H and P-wave is L
40 If porosity is H and P-wave is M
41 If porosity is H and P-wave is H
42 If porosity is VH and P-wave is VL
43 If porosity is VH and P-wave is VL
44 If porosity is VH and P-wave is VL
45 If porosity is VH and P-wave is L
46 If porosity is VH and P-wave is L
terms and Aij(xj) and Bi are the fuzzy sets defined by the
membership functions. The fuzzy sets Aij and Bi should be
defined in the universe of the input and the output spaces. The
proposed techniques modified with “if-then” rules have some
linguistic meanings. Such linguistic terms may use “low”,
“moderate”, “high” to indicate the degree of belief. Values of
the membership functions should also be defined in the
universal linguistic variable space. In the Mamdani fuzzy
algorithm, the fuzzy operators such as “and”, “or”, “not” are
commonly used to link the input and the output variables. The
final output of the Mamdani fuzzymodel “B” is also a fuzzy set.
However, numerical values are commonly desired in practice.
For this reason a defuzzification procedure is required. Defuzzi-
fication is briefly defined as the transformation of a fuzzy set
into a numerical value. In literature, many defuzzification
Consequent

and UCS is VH then WD is F
and UCS is H then WD is F
and UCS is VH then WD is F
and UCS is H then WD is F
and UCS is VH then WD is F
and UCS is VL then WD is HW
and UCS is L then WD is MW
and UCS is VL then WD is MW
and UCS is L then WD is MW
and UCS is M then WD is MW
and UCS is H then WD is MW
and UCS is VH then WD is SW
and UCS is L then WD is MW
and UCS is M then WD is MW
and UCS is H then WD is SW
and UCS is VH then WD is SW
and UCS is M then WD is SW
and UCS is H then WD is SW
and UCS is VH then WD is F
and UCS is VL then WD is HW
and UCS is L then WD is HW
and UCS is VL then WD is HW
and UCS is L then WD is HW
and UCS is M then WD is MW
and UCS is VL then WD is HW
and UCS is L then WD is MW
and UCS is M then WD is MW
and UCS is H then WD is MW
and UCS is VH then WD is MW
and UCS is L then WD is MW
and UCS is M then WD is MW
and UCS is H then WD is MW
and UCS is VH then WD is MW
and UCS is M then WD is SW
and UCS is H then WD is SW
and UCS is VL then WD is CW
and UCS is L then WD is HW
and UCS is VL then WD is CW
and UCS is L then WD is HW
and UCS is H then WD is MW
and UCS is H then WD is MW
and UCS is VL then WD is CW
and UCS is L then WD is CW
and UCS is M then WD is HW
and UCS is VL then WD is CW
and UCS is L then WD is HW



Fig. 5 – Graph showing the measured and the predicted
weathering degrees of the checking data sets.

Table 5 – Prediction performance indices (r, VAF, RMSE) of the models for both training and checking data sets.

Method Train dataset Checking dataset

r RMSE VAF r RMSE VAF

ANN 0.96 0.08 91.92 0.95 0.11 87.62
Fuzzy inf. system 0.93 0.10 88.37 0.98 0.06 95.99
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methodshavebeenproposed [67] but the center of gravity (COG)
method is mostly preferred to be used (Eq. (3)).

y =
∫
S
BðyÞydy

∫
S
BðyÞdðyÞ ð3Þ

In this study, to decrease the uncertainties in the identifica-
tion of the weathering degrees of the Harsit granitoid, a
Mamdani algorithmwas constructed. Porosity, P-wavevelocity
and uniaxial compressive strength constitute the input vari-
ables, which predict the degree of weathering of the rocks. For
this purpose, all input andoutput variableswerenormalized in
advance. Five different fuzzy sets; “fresh”, “slightly weath-
ered”, “moderately weathered”, “highly weathered”, and
“completely weathered” were constructed as the output
variables of the degree of weathering. Considering these
output fuzzy sets and using the simple regression equations
constructed between the input and theoutput variables before,
five different fuzzy sets; “very low”, “low”, “moderate”, “high”,
and “very high” were also created for the input variables.
Consequently, five for the output variable and 15 for the input
variables, a total of 20 fuzzy sets were produced. The fuzzy sets
constructed in this study are given below in detail. Addition-
ally, graphical representations of these sets are also demon-
strated in Fig. 4. Fuzzy sets for the input variable “Porosity”

VL = f0=0; 1=0;1=0:084;0=0:129g
L = f0=0:084;1=0:129;0=0:229g
M = f0=0:129;1=0:229; 0=0:41g
H = f0=0:229; 1=0:41; 0=0:624g
VH = f0=0:41;1=0:624; 1=1;0=1g
Fuzzy sets for the input variable “P-wave velocity”

VL = f0=0;1=0;1=0:2;1=0:356g
L = f0=0:2;1=0:356; 0=0:562g
M = f0=0:356;1=0:562; 0=0:769g
H = f0=0:562; 1=0:769;0=0:924g
VH = f0=0:769;1=0:924; 1=1; 0=1g
Fuzzy sets for the input variable “UCS”

VL = f0=0;1=0;1=0:053; 0=0:148g
L = f0=0:053;1=0:148; 0=0:308g
M = f0=0:148; 1=0:308;0=0:532g
H = f0=0:308;1=0:532;0=0:793g
VH = f0=0:532; 1=0:793;1=1;0=1g
Fuzzy sets for the output variable “Weathering degree”

F = f0=0:2; 1=0:2;1=0:25;0=0:4g
SW = f0=0:25; 1=0:4;0=0:6g
MW = f0=0:4;1=0:6;0=0:8g
HW = f0=0:6;1=0:8; 0=0:95g
CW = f0=0:8;1=0:95;1=1; 0=1g
based on various possible combinations of input fuzzy sets,
forty-six “if-then” rules were constructed with the data of the
Harsit granitoid (what do you mean). These fuzzy rules are
given in Table 4. To determine the resultant membership
functions that belong to the output parameter weathering
degree, the fuzzy operator “max”was implemented. Addition-
ally, for the defuzzification of these resultant functions, the
center of gravity method was used. Finally, the data set
published by [16] was employed to check out the constructed
models.
5. Comparison of
Prediction Performances

Control performance of a prediction model is an important
concern. For this reason, a series of performance analyses was
carried out with different performance coefficients such as
coefficientof correlationof cross-checks (r), varianceaccount for
(VAF) and root mean square error (RMSE). These indices were
calculated for training and checking data sets (Table 5). As
mentioned earlier, two prediction models were developed
employing two soft computing techniques, which are ANN
and fuzzy algorithm. The high performance of the training data
set shows a good learning capacity of the model while that of
checking data set indicates generalization ability of a prediction
model. The ANN model performs more effectively while
considering three performance indices of the train data set. On
theotherhand, the fuzzymodelperformsmoreeffectivelywhile
considering the checking data set. This result revealed that the
fuzzy model has higher generalization ability than the ANN
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model. The checking data set was adapted from a different
study [16]. It canbe suggested that thepredictionmodels used in
the study may be applied for granitic rocks (Fig. 5). However,
necessity of the entire dataset of all weathering classes (from 1
to 5) of a granitic rock is the main limitation of the models
constructed. It is also suggested that in case of missing input
data set, the linguistic fuzzy model should be used under the
supervision of an expert. On the other hand, it is impossible to
use the ANN model if one or more inputs are missing. In
practice, use of both models is easy and can be accepted as
reliable, because the models developed in the present study
include the test results of all weathering classes of granitic rock.
In addition, to apply a normalization procedure contributes to
the usability of the models on other granitic rocks. The models
developed are data-driven characters. For this reason, if the
models are re-constructed by adding new data, some small
changes in the membership functions of the fuzzy model and
the weights of the ANN model can be expected but a
fundamental change may not be encountered. In fact, each
data-driven model is open to development. Therefore, the
models should be checked by new data despite our claims.
6. Results and Conclusions

The Harsit grainitoid (NE Turkey) was used for this study.
Significant changes in porosity, P-wave velocity and uniaxial
compressive strength due to the weathering degree, were
recorded. Porosity increases with decreasing uniaxial com-
pressive strength and P-wave velocity while the degree of
weathering increases. Twoweathering predictionmodelswith
multi-inputs were constructed with two soft computing
techniques such as artificial neural networks and fuzzy
inference system, considering the difficulties in the determi-
nation of weathering classes of the granitic rocks.

The general performances of these techniques are similar.
The ANN model performed more effectively than the fuzzy
model in learning data set. However, the fuzzy model showed
better generalization ability. The performance analyses
revealed that the prediction models may be used for granitic
rocks, but the character of granitic rock should be similar with
the Harsit granitoid. Otherwise, it is possible to obtain
erroneous weathering classes.

Necessity of the entire dataset of all weathering classes
(from 1 to 5) of a granitic rock is the main limitation of the
models constructed. In additional, it should be kept in mind
that performance capacities of the models should be com-
pared with other data available in literature.
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