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In this paper, we study submanifolds of Kenmotsu manifolds. We prove that if the second
fundamental form of a submanifold of a Kenmotsu manifold is recurrent, 2-recurrent or
generalized 2-recurrent then the submanifold is totally geodesic. Furthermore, we show
that a submanifold of a Kenmotsu manifold with parallel third fundamental form is again
totally geodesic. We also consider quasi-umbilical hypersurfaces of Kenmotsu space forms.
We show that these type hypersurfaces are generalized quasi-Einstein.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Let ðM1; g1Þ and ðM2; g2Þ be two Riemannian manifolds and f a positive differentiable function on M1. The warped product
of M1 and M2 is the Riemannian manifold
M1�f M2 ¼ ðM1 �M2; gÞ;
where g ¼ g1 þ f 2g2 [3].
It is well known that the notion of warped products plays some important role in differential geometry as well as in Physics.

For instance, the best relativistic model of the Schwarzschild space-time that describes the out space around a massive star or a
black hole is given as a warped product (see, for instance, [1,6,14]).

In [18], S. Tanno classified ð2nþ 1Þ-dimensional almost contact metric manifolds M with almost contact metric structure
ðu; n;g; gÞ, whose automorphism group possess the maximum dimension ðnþ 1Þ2. For such a manifold, the sectional curva-
ture of plane sections containing n is a constant, say c. (1) If c > 0;M is a homogeneous Sasakian manifold of constant u sec-
tional curvature. (2) If c ¼ 0;M is global Riemannian product of a line or a circle with a Kaehler manifold of constant
holomorphic sectional curvature. (3) If c < 0;M is a warped product space R�f C

n.
Kenmotsu [10] characterized the differential geometric properties of manifold of class (3); the structure so obtained is

now known as Kenmotsu structure. A Kenmotsu structure is not Sasakian.
In this study, we consider submanifolds of Kenmotsu manifolds whose second fundamental forms are recurrent, 2-recur-

rent or generalized 2-recurrent. We also consider quasi-umbilical hypersurfaces of Kenmotsu space forms.
The paper is organized as follows: In Section 2, we give a brief information about recurrent manifolds, submanifolds and

quasi-umbilical hypersurfaces. In Section 3, some definitions and notions about Kenmotsu manifolds and their submanifolds
are given. In Section 4, we consider submanifolds of Kenmotsu manifolds whose second fundamental forms are recurrent,
2-recurrent or generalized 2-recurrent. We show that these type submanifolds are totally geodesic. We also prove that a
submanifold of a Kenmotsu manifold with parallel third fundamental form is again totally geodesic. In the final section, we
consider quasi-umbilical hypersurfaces of Kenmotsu space forms. We show that these type hypersurfaces are generalized
quasi-Einstein hypersurfaces.
. All rights reserved.
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2. Immersions of recurrent type

We denote byrpT the covariant differential of the pth order, p P 1, of a ð0; kÞ-tensor field T; k P 1, defined on a Riemann-
ian manifold ðM; gÞ with the Levi–Civita connection r. According to [17], the tensor T is said to be recurrent, respectively,
2- recurrent, if the following condition holds on M
ðrTÞðX1; . . . ;Xk; XÞTðY1; . . . ; YkÞ ¼ ðrTÞðY1; . . . ; Yk; XÞTðX1; . . . ;XkÞ; ð2:1Þ
respectively
ðr2TÞðX1; . . . ;Xk; X; YÞTðY1; . . . ;YkÞ ¼ ðr2TÞðY1; . . . ; Yk; X; YÞTðX1; . . . ;XkÞ;
where X;Y ;X1;Y1; . . . ;Xk;Yk 2 TM. From (2.1) it follows that at a point x 2 M if the tensor T is non-zero then there exists a
unique 1-form /, respectively, a ð0;2Þ-tensor w, defined on a neighborhood U of x, such that
rT ¼ T � /; / ¼ dðlog Tk kÞ; ð2:2Þ
respectively
r2T ¼ T � w; ð2:3Þ
holds on U, where kTk denotes the norm of T, kTk2 ¼ gðT; TÞ. The tensor T is said to be generalized 2-recurrent if
ððr2TÞðX1; . . . ;Xk; X;YÞ � ðrT � /ÞðX1; . . . ;Xk; X;YÞÞTðY1; . . . ;YkÞ

¼ ððr2TÞðY1; . . . ; Yk; X; YÞ � ðrT � /ÞðY1; . . . ;Yk; X;YÞÞTðX1; . . . ;XkÞ
holds on M, where / is a 1-form on M. From this it follows that at a point x 2 M if the tensor T is non-zero then there exists a
unique ð0;2Þ-tensor w, defined on a neighborhood U of x, such that
r2T ¼ rT � /þ T � w; ð2:4Þ
holds on U.
Let f : ðM; gÞ ! ð eM; ~gÞ be an isometric immersion from an n-dimensional Riemannian manifold ðM; gÞ into ðnþ dÞ -dimen-

sional Riemannian manifold ð eM; ~gÞ; n P 2; d P 1. The Gauss and Weingarten formulas are given by
~rXY ¼ rXY þ rðX;YÞ; ð2:5Þ
~rXN ¼ �ANX þr?X N; ð2:6Þ
for all vector fields X;Y tangent to M and normal vector field N on M, where r is the Riemannian connection on M deter-
mined by the induced metric g and r? is the normal connection on T?M of M.

The Gauss equation is given by
eRðX; Y; Z;WÞ ¼ RðX; Y; Z;WÞ � gðrðX;WÞ;rðY ; ZÞÞ þ gðrðY ;WÞ;rðX; ZÞÞ; ð2:7Þ
where Z;W are vector fields tangent to M. The first and second covariant derivative of the second fundamental form r are
given by
ð �rXrÞðY ; ZÞ ¼ r?X rðY ; ZÞ � rðrXY; ZÞ � rðY ;rXZÞ ð2:8Þ
and
ð �r2rÞðZ;W;X;YÞ ¼ ð �rX
�rYrÞðZ;WÞ ¼ r?X ðð �rYrÞðZ;WÞÞ � ð �rYrÞðrXZ;WÞ � ð �rXrÞðZ;rY WÞ � ð �rrX YrÞðZ;WÞ;

ð2:9Þ

respectively, where �r is called the van der Waerden–Bortolotti connection of M [5].

An n-dimensional hypersurface M;n P 3, in a Riemannian manifold eM is said to be quasi-umbilical [9] at a point x 2 M if at
the point x its second fundamental tensor H satisfies the equality
H ¼ ag þ bx�x; ð2:10Þ

where x is a 1-form and a and b are some functions on M. If a ¼ 0 (respectively, b ¼ 0 or a ¼ b ¼ 0) holds at x then it is called
cylindrical (respectively, umbilical or geodesic) at x. If (2.10) is fulfilled at every point of M then it is called a quasi-umbilical
hypersurface.
3. Kenmotsu manifolds and their submanifolds

Let eM be a ð2nþ 1Þ-dimensional almost contact metric manifold with structure ðu; n;g; gÞwhere u is a tensor field of type
ð1;1Þ; n is a vector field, g is a 1-form and g is the Riemannian metric on eM satisfying
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u2 ¼ �I þ g� n; un ¼ 0; gðnÞ ¼ 1; g �u ¼ 0;
gðuX;uYÞ ¼ gðX;YÞ � gðXÞgðYÞ;
gðXÞ ¼ gðX; nÞ; gðuX;YÞ þ gðX;uYÞ ¼ 0;
for all vector fields X;Y on eM [2]. An almost contact metric manifold eM is said to be a Kenmotsu manifold [10] if the relation
ð ~rXuÞY ¼ gðuX;YÞn� gðYÞuX; ð3:1Þ
holds on eM , where ~r is the Levi–Civita connection of g. From the above equation, for a Kenmotsu manifold we also have
~rXn ¼ X � gðXÞn: ð3:2Þ
A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of u equals �2dg� n) but not Sasakian. Moreover, it is also
not compact since from the Eq. (3.2) we get divn ¼ 2n. In [10], Kenmotsu showed (1) that locally a Kenmotsu manifold is a
warped product I�f N of an interval I and a Kaehler manifold N with warping function f ðtÞ ¼ set , where s is a non-zero con-
stant; and (2) that a Kenmotsu manifold of constant u-sectional curvature is a space of constant curvature �1, and so it is
locally hyperbolic space.

In case of Kenmotsu manifold, eM has constant u-holomorphic sectional curvature c if and only if
eRðX; YÞZ ¼ ðc � 3Þ
4
½gðY ; ZÞX � gðX; ZÞY � þ ðc þ 1Þ

4
½gðXÞgðZÞY � gðYÞgðZÞX

þ gðYÞgðX; ZÞn� gðXÞgðY ; ZÞnþ gðX;uZÞuY � gðY ;uZÞuX þ 2gðX;uYÞuZ�; ð3:3Þ
where Z is a vector field in eM . In this case, we call eM a Kenmotsu space form c. In [16], Pitis proved that there exist no con-
nected Kenmotsu space forms or connected conformally flat manifolds of dimension P 5.

Now assume that M is a submanifold of a Kenmotsu manifold eM such that n is tangent to M. So from the Gauss formula
~rXn ¼ rXnþ rðX; nÞ;
which implies from (3.2) that
rXn ¼ X � gðXÞn; and rðX; nÞ ¼ 0: ð3:4Þ
for each vector field X tangent to M (see [11]). It is also easy to see that for a submanifold M of a Kenmotsu manifold eM

gðuX; nÞ ¼ 0 ð3:5Þ
and
gðuX;uYÞ ¼ gðX; YÞ � gðXÞgðYÞ: ð3:6Þ
4. Recurrent submanifolds of Kenmotsu manifolds

In [11], Kobayashi showed that a submanifold M of a Kenmotsu manifold eM has parallel second fundamental form if and
only if M is totally geodesic. As a generalization of this result we state the following theorem:

Theorem 1. Let M be a submanifold of a Kenmotsu manifold eM tangent to n. Then r is recurrent if and only if M is totally geodesic.

Proof. Since r is recurrent, from (2.2) we get
ð �rXrÞðY ; ZÞ ¼ /ðXÞrðY; ZÞ;
where / is a 1-form on M. Then in view of (2.8), the above equation can be written as
r?X rðY; ZÞ � rðrXY ; ZÞ � rðY;rXZÞ ¼ /ðXÞrðY ; ZÞ: ð4:1Þ
Taking Z ¼ n in (4.1) we have
r?X rðY; nÞ � rðrXY; nÞ � rðY;rXnÞ ¼ /ðXÞrðY ; nÞ: ð4:2Þ
Making use of relation (3.4) in (4.2) we obtain
rðX; YÞ ¼ 0;
which implies that M is totally geodesic. The converse statement is trivial. This completes the proof of the theorem. h

Theorem 2. Let M be a submanifold of a Kenmotsu manifold eM tangent to n. Then M has parallel third fundamental form if and
only if it is totally geodesic.
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Proof. Suppose that M has parallel third fundamental form. Then we can write
ð �rX
�rYrÞðZ;WÞ ¼ 0:
Replacing W with n in the above equation and using (2.9) we have
r?X ðð �rYrÞðZ; nÞÞ � ð �rYrÞðrXZ; nÞ � ð �rXrÞðZ;rYnÞ � ð �rrX YrÞðZ; nÞ ¼ 0: ð4:3Þ
Taking account of (2.8) in (4.3) and using (3.4), we obtain
�2r?X rðY; ZÞ þ 2rðrXZ; YÞ þ 2rðZ;rXYÞ � gðYÞrðX; ZÞ ¼ 0: ð4:4Þ
Putting Y ¼ n in (4.4), in view of (3.4), we get
rðX; ZÞ ¼ 0;
which shows that M is totally geodesic. The converse statement is trivial. Hence, the proof of the theorem is completed. h

Corollary 1. Let M be a submanifold of a Kenmotsu manifold eM tangent to n. Then r is 2-recurrent if and only if M is totally
geodesic.

Proof. Since r is 2-recurrent, from (2.3), we have
ð �rX
�rYrÞðZ;WÞ ¼ rðZ;WÞ/ðX;YÞ: ð4:5Þ
Taking W ¼ n in (4.5) and using the proof of Theorem 2 we get
rðX; ZÞ ¼ 0;
which shows that M is totally geodesic. The converse statement is trivial. This completes the proof of the corollary. h

Theorem 3. Let M be a submanifold of a Kenmotsu manifold eM tangent to n. Then r is generalized 2-recurrent if and only if M is
totally geodesic.

Proof. Since r is generalized 2-recurrent, from (2.4), we can write
ð �rX
�rYrÞðZ;WÞ ¼ wðX;YÞrðZ;WÞ þ /ðXÞð �rYrÞðZ;WÞ; ð4:6Þ
where w and / are 2-form and 1-form, respectively. Taking W ¼ n in (4.6) and taking account of the Eq. (3.4) we get
ð �rX
�rYrÞðZ; nÞ ¼ /ðXÞð �rYrÞðZ; nÞ:
Then making use of (2.9) and (2.8) in above equation, in view of (3.4), we have
�2r?X rðY; ZÞ þ 2rðrXZ; YÞ þ 2rðZ;rXYÞ � gðYÞrðX; ZÞ ¼ �/ðXÞrðY; ZÞ:
Putting Y ¼ n in the above equation and using (3.4) we obtain rðX; ZÞ ¼ 0, which means that M is totally geodesic. The con-
verse statement is trivial. Thus our theorem is proved. h
5. Quasi-umbilical hypersurfaces of Kenmotsu manifolds

A Riemannian manifold ðMn; gÞ; ðn > 2Þ, is said to be an Einstein manifold if its Ricci tensor S satisfies the condition S ¼ r
n g,

where r denotes the scalar curvature of M. The notion of a quasi-Einstein manifold was introduced by Chaki and Maity in [4].
A non-flat Riemannian manifold ðMn; gÞ; ðn > 2Þ, is defined to be a quasi-Einstein manifold if the condition
SðX;YÞ ¼ agðX; YÞ þ bAðXÞAðYÞ ð5:1Þ
is fulfilled on M, where a; b scalars of which b – 0 and A is non-zero 1-form such that
gðX;UÞ ¼ AðXÞ ð5:2Þ
for all vector fields X; U being a unit vector field which is called the generator of the manifold. If b ¼ 0 then the manifold
reduces to an Einstein manifold. In [8], it was shown that a quasi-umbilical hypersurface in a semi-Riemannian space form
is a quasi-Einstein hypersurface. Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field
equations. There are many studies about Einstein field equations (for instance, see [12,13]).

A non-flat Riemannian manifold is called a generalized quasi-Einstein manifold [7] if its Ricci tensor S satisfies the condition
SðX;YÞ ¼ agðX; YÞ þ bAðXÞAðYÞ þ cBðXÞBðYÞ; ð5:3Þ
where a; b; c are certain non-zero scalars and A;B are two non-zero 1-forms. The unit vector fields U and V corresponding to
the 1-forms A and B are defined by
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gðX;UÞ ¼ AðXÞ; gðX;VÞ ¼ BðXÞ; ð5:4Þ
respectively, and the vector fields U and V are orthogonal. i.e. gðU;VÞ ¼ 0. The vector fields U and V are called the generators
of the manifold. If c ¼ 0, then the manifold reduces to a quasi-Einstein manifold.

Now we state the following theorem:

Theorem 4. Let M be a quasi-umbilical hypersurface of a Kenmotsu space form eM2nþ1ðcÞ. Then M is a generalized quasi-Einstein
hypersurface.

Proof. Since eMðcÞ is a Kenmotsu space form, from (3.3), we can write
eRðX; Y; Z;WÞ ¼ ðc � 3Þ
4
½gðY ; ZÞgðX;WÞ � gðX; ZÞgðY;WÞ� þ ðc þ 1Þ

4
½gðXÞgðZÞgðY;WÞ � gðYÞgðZÞgðX;WÞ

þ gðYÞgðWÞgðX; ZÞ � gðXÞgðWÞgðY ; ZÞ þ gðX;uZÞgðuY;WÞ � gðY;uZÞgðuX;WÞ
þ 2gðX;uYÞgðuZ;WÞ� ð5:5Þ
for all vector fields X;Y; Z;W tangent to M. Let N be the unit normal vector field of M in eMðcÞ. So using rðX; ZÞ ¼ HðX; ZÞN in
(2.7) we get
eRðX; Y; Z;WÞ ¼ RðX; Y; Z;WÞ � HðY; ZÞHðX;WÞ þ HðX; ZÞHðY;WÞ: ð5:6Þ
From (2.10), for a quasi-umbilical hypersurface, we know that
HðX; ZÞ ¼ agðX; ZÞ þ bxðXÞxðZÞ: ð5:7Þ
Putting (5.7) in (5.6) we get
eRðX;Y; Z;WÞ ¼ RðX;Y ; Z;WÞ � ½ðagðY; ZÞ þ bxðYÞxðZÞÞðagðX;WÞ
þ bxðXÞxðWÞÞ� þ ½ðagðX; ZÞ þ bxðXÞxðZÞÞðagðY;WÞ þ bxðYÞxðWÞÞ�:
Then by the use of (5.5) we find
ðc � 3Þ
4
½gðY ; ZÞgðX;WÞ � gðX; ZÞgðY;WÞ� þ ðc þ 1Þ

4
½gðXÞgðZÞgðY;WÞ

� gðYÞgðZÞgðX;WÞ þ gðYÞgðWÞgðX; ZÞ � gðXÞgðWÞgðY; ZÞ
þ gðX;uZÞgðuY ;WÞ � gðY;uZÞgðuX;WÞ þ 2gðX;uYÞgðuZ;WÞ�
¼ RðX;Y ; Z;WÞ þ a2½gðX; ZÞgðY ;WÞ � gðY ; ZÞgðX;WÞ� þ ab½gðX; ZÞxðYÞxðWÞ þ gðY;WÞxðXÞxðZÞ
� gðY; ZÞxðXÞxðWÞ � gðX;WÞxðYÞxðZÞ�:
Contracting above equation over X and W and using (3.5), (3.6) we obtain
SðY; ZÞ ¼ ðc � 3Þ
4
ð2n� 1Þ þ ðc þ 1Þ

2
þ a2ð2n� 1Þ þ ab

� �
gðY; ZÞ

� ðc þ 1Þ
4
ð2nþ 1ÞgðYÞgðZÞ þ abð2n� 2ÞxðYÞxðZÞ:
Hence by (5.3), M is a generalized quasi-Einstein hypersurface. Thus, the proof of the theorem is completed. h
6. Conclusions

Study of warped products plays some important role in Differential Geometry as well as in Physics. S. Tanno classified
ð2nþ 1Þ-dimensional almost contact metric manifolds M with almost contact metric structure ðu; n;g; gÞ, whose automor-
phism group possess the maximum dimension ðnþ 1Þ2. For such a manifold, if the sectional curvature of plane sections con-
taining n is a constant < 0, then M is a warped product space R�f C

n. Kenmotsu characterized the differential geometric
properties of manifold of this class which is known as Kenmotsu structure. In this paper, we study submanifolds of Kenmotsu
manifolds whose second fundamental forms are recurrent, 2-recurrent and generalized 2-recurrent. It was proved that these
type submanifolds are totally geodesic. The study of space-times admitting fluid viscosity and electromagnetic fields require
some generalizations of Einstein manifolds and is under process (see [15]). In the final section, it is shown that a quasi-
umbilical hypersurface of a Kenmotsu manifold is generalized quasi-Einstein.
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