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The two-dimensional Ising model with nearest-neighbour pair interactions is simulated on the
Creutz cellular automaton by using the finite-size lattices with the linear dimensions L = 80, 120,
160, and 200. The temperature variations and the finite-size scaling plots of the specific heat and the
Binder parameter verify the theoretically predicted expression near the infinite lattice critical temper-
ature. The approximate values for the critical temperature of the infinite lattice Tc = 2.287(6), Tc =
2.269(3), and Tc =2.271(1) are obtained from the intersection points of specific heat curves, Binder
parameter curves, and the straight line fit of specific heat maxima, respectively. These results are in
agreement with the theoretical value (Tc =2.269) within the error limits. The values obtained for the
critical exponent of the specific heat, α = 0.04(25) and α = 0.03(1), are in agreement with α = 0
predicted by the theory. The values for the Binder parameter by using the finite-size lattices with the
linear dimension L = 80, 120, 160, and 200 at Tc = 2.269(3) are calculated as gL(Tc) = −1.833(5),
gL(Tc) = −1.834(3), gL(Tc) = −1.832(2), and gL(Tc) = −1.833(2), respectively. The value of the
infinite lattice for the Binder parameter, gL(Tc) = −1.834(11), is obtained from the straight line fit of
gL(Tc) = −1.833(5), gL(Tc) = −1.834(3), gL(Tc) = −1.832(2), and gL(Tc) = −1.833(2) versus L = 80,
120, 160, and 200, respectively.
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1. Introduction

The application of fractal concepts, first introduced
by Mandelbrot et al. to describe complex natural
shapes and structures as well as mathematical sets and
functions having an intricately irregular form, has been
studied [1 – 4]. The aggregation of particles to form
cluster has, for a long time, been one of the central
phenomena in natural science with important implica-
tions for physical problems such as air pollution, di-
electric breakdown, bacterial colony growth, and natu-
ral formations (snowflakes and manganese dendrites).
The model allow an exploration of the process of
pattern formation in real physical systems which is
based mostly on the model of diffusion-limited aggre-
gation. This model describes the most important mor-
phology patterns observed in various non-equilibrium
systems, such as diffusion-limited aggregation-like,
dendrite, needle, tree-like, dense-branching, compact,
stingy, spiral, and chiral structures [5 – 14].
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The Creutz cellular automaton [15] has simulated
the two dimensional Ising model successfully near the
critical region, and has reproduced its critical expo-
nents within the framework of the finite-size scaling
theory [16, 17]. This algorithm is an order of magni-
tude faster than the conventional Monte Carlo method
and it does not need high quality random numbers.
These features of the Creutz cellular automaton would
make the Ising model simulations in higher dimen-
sions more practical. Compared to Q2R cellular au-
tomaton [18] it has the advantage of allowing the spe-
cific heat to be computed from the internal energy fluc-
tations.

The purpose of this study is to test the finite-size
scaling study of the specific heat and the Binder param-
eter of the two-dimensional Ising model for the frac-
tals obtained by using the model of diffusion-limited
aggregation. However, the test studies in d = 2 dimen-
sions are not available. The simulations are carried out
on the Creutz cellular automaton, which has success-
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fully arisen as an alternative research tool for Ising
models in the dimensionalities 2 ≤ d ≤ 8 [19].

The model is described in Section 2, the results are
discussed in Section 3, and a conclusion is given in
Section 4.

2. Model

In the model of diffusion-limited aggregation, the
central particle is placed in the closed square lattice.
Another new particle is started to move on the edge of
the lattice site. If this fragment passes by the neigh-
bouring site of the central particle during the random
moving, it fixes there. The same conditions are applied
to the other particles. However, when the particle or
a group of particles goes out of the determined lattice
site, at which the particle is cancelled, then another par-
ticle is suggested. The operation is repeated until the
suggested number of particles in the aggregate, i. e. the
behaviour of a particle or a particle group, is obtained.

At the Creutz cellular automaton, four binary bits
are associated with each site of the lattice. The value
for each site is determined from its value and those of
its nearest neighbours at the previous time step. The
updating rule, which defines a deterministic cellular
automaton, is as follows: Of the four binary bits on
each site, the first one is the Ising spin Bi. Its value
may be “0” or “1”. Ising spin energy (internal energy)
of the lattice, HI, is given (in units of the nearest neigh-
bour coupling constant J) by

HI = −J ∑
〈i, j〉

SiS j, (1)

where Si = 2Bi −1, and 〈i, j〉 denotes the sum over all
nearest neighbour pairs of sites. The second and the
third bits are for the momentum variable conjugate to
the spin (the demon). These two bits form an integer
which can take on the value 0, 1, 2, or 3. The kinetic
energy (in units of J) associated with the demon can
take on four times these integer values. The total en-
ergy

H = HI + HK (2)

is conserved; here HK is the kinetic energy of the
lattice. For a given total energy the system tempera-
ture T (in units of J/kB where kB is the Boltzmann
constant) is obtained from the average value of the ki-
netic energy. The fourth bit provides a checkerboard
style updating, and so it allows the simulation of the

Ising model on a cellular automaton. The black sites
of the checkerboard are updated and then their color
is changed into white: the white sites are changed into
black without being updated.

The updating rules for the spin and the momentum
variables are as follows: For a site to be updated its
spin is flipped and the change in the Ising energy (in-
ternal energy), HI, is calculated. If this energy change
is transferable to or from the momentum variable as-
sociated with this site, such that the total energy, H, is
conserved, then this change is done and the momen-
tum is appropriately changed. Otherwise the spin and
momentum are not changed.

As the initial configuration all spins are taken or-
dered (up or down). The initial kinetic energy is ran-
domly given to the lattice via the second bits of the
momentum variables in the white sites. The quantities
computed are averages over the lattice and the num-
ber of time steps during which the cellular automaton
develops.

The simulations are carried out on simple hyper-
cubic lattices L2 of linear dimensions 80 ≤ L ≤ 200
with periodic boundary conditions by using two-bit
demons. The cellular automaton develops 9.6 · 105

(L = 80, 120, 160, 200) sweeps for each run with seven
runs for each total energy.

3. Results and Discussion

The fractals obtained by using the model of
diffusion-limited aggregation are illustrated in Figure 1
for the lattice with L = 80, 120, 160, and 200. In d = 2
dimension, the finite-size scaling relation for the spe-
cific heat CL is derived below [16, 20]. The finite-size
scaling relations for the critical temperatures and the
free-energy density are given as [16, 20]:

(Tc −Tc(L)) ∝ L−1/ν , (3)

fL = L−dF(tLyt ,hLyh), h → 0, L → ∞, (4)

where yt = 1
ν and yh = ∆

ν , with dν = 2−α and ∆ =
γ +β , t = (T −Tc)/Tc is the reduced temperature with
t > 0 for T > Tc and t < 0 for T < Tc, h is the reduced
external magnetic field, α , β , and γ are the critical ex-
ponents for the specific heat, order parameter, and the
magnetic susceptibility of the infinite lattice, respec-
tively. Thus, fL takes the following form:

fL = L−dF(tL1/v,hL(γ+β )/v). (5)
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(a) (b)

(c) (d)

Fig. 1. Images of the fractals
obtained by using the model
of diffusion-limited aggrega-
tion for lattices with the linear
dimensions (a) L = 80, (b) L =
120, (c) L = 160, and (d) L =
200.

Table 1. The critical temperature and the maximum values
of the specific heat for the finite lattices and the values Tc =
2.269.

L TC
c (L) Cmax

L CL(Tc)
80 2.2624(3) 0.575(6) 0.561(12)

120 2.2646(2) 0.593(12) 0.574(14)
160 2.2669(2) 0.598(24) 0.591(22)
200 2.2678(3) 0.602(39) 0.598(40)

By using the definition CL =− ∂2 fL
∂t2 the following equa-

tion is obtained:

CL = Lα/vF(tL1/v,hL(γ+β )/v). (6)

Since α = 0, β = 1
8 , and γ = 7

4 in d = 2 dimension,
CL takes the following form:

CL = F(tL1/v,hL(γ+β )/v). (7)

At h = 0 (7) becomes

CL = F(tL1/v), (8)

where F = F(x) is the finite-size scaling function (the
shape function) for the specific heat. This is the relation
to be tested. The plots of CL versus temperature (T )

Fig. 2. Specific heat CL as a function of the temperature T for
sizes 80 ≤ L ≤ 200.

and corresponding temperatures of specific heat max-
ima (TC

c (L)) listed in Table 1 versus L−1/v are illus-
trated in Figures 2 and 3, respectively. The intersec-
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Fig. 3. The value of the infinite-lattice critical temperature for
the specific heat CL, Tc = 2.271(1) obtained by extrapolating
the straight line fitted to critical temperatures of the lattice
with linear dimensions 80 ≤ L ≤ 200 as L → ∞.

tion of the curves in Figure 2 for 80 ≤ L ≤ 200 gives
the critical temperature of Tc = 2.287(6) at which the
specific heat maxima occur when L → ∞. The straight
line fit in the plot of TC

c (L) vs. L−1/v also implies
Tc = 2.271(1) as L→∞, seen in Figure 3. These results
are in agreement with the value of the Creutz cellular
automaton result of Tc = 2.263 [17] and the theoretical
prediction of Tc = 2.269 [22]. In order to calculate the
critical exponent for the specific heat we use the gen-
eral relation for CL at h = 0 and t = 0. Thus, (6) reduces
to the following form:

CL ∝ Lα/v. (9)

This relation is also used for the maxima of the finite
lattices. By using the data of Table 1 in getting the log-
log plots of CL(Tc) and Cmax

L vs. L, the following values
of α are obtained: α = 0.04(25) and αmax = 0.03(1),
the average of which is α = 0.03(25). These result
is in agreement with α = 0 results predicted by the
theory.

In Figure 4 we show the finite-size scaling plot of
the specific heat. In this figure, not all of the data points
for a given L fall on the finite-size scaling curve which
is formed by the overlapping parts of the plots for dif-
ferent L. Since all the scaled quantities of CL for dif-
ferent L values overlap above Tc, the finite-size scaling
relations for CL is valid only in the region above Tc.
Therefore, this scaling for CL is verified only in the re-
gion tL1/v > 0, but not in the region tL1/v < 0. It should

Fig. 4. The data for CL shown in Figure 2 plotted vs the scal-
ing variable tL1/v, where Tc = 2.269(3).

Fig. 5. Same as Figure 2, but for Binder parameter gL.

be mentioned that the contribution to CL from the reg-
ular part is not considered in this plot. That is, the val-
ues of the specific heat computed in the simulations are
used directly in the plots.

The h = 0 finite size renormalized coupling gL
(Binder parameter or Binder cumulant) introduced by
Binder [16, 20, 21]

gL =
〈s4〉L

〈s2〉2
L
−3 =

[
χ (4)

L

L4χ4
L

]
h=0

, (10)
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Fig. 6. L-dependence of the data in Figure 5.

Fig. 7. Same as Figure 4, but for Binder parameter gL.

where χL is the susceptibility and χ (4)
L is the

fourth field derivate; the subcript L denote the cor-
responding finite-size quantities. In the method of
Binder [16, 20, 21], the critical point Tc is located by
finding the common crossing point of plots of gL vs.
temperature for a range of different system sizes L
[16, 20, 21]. The temperature variation of the Binder
parameter for L = 80, 120, 160, and 200 is shown
in Figure 5. In this figure, the intersection point of
the curves for 80 ≤ L ≤ 200 gives Tc = 2.269(3)
which is in good agreement with the theoretical pre-
diction of Tc = 2.269 [22]. From Figure 5 the val-
ues for the Binder parameter by using the finite-size

L gL(Tc)

80 −1.833(5)
120 −1.834(3)
160 −1.832(2)
200 −1.833(2)

Table 2. The values of the
Binder parameter for the finite
lattices.

lattices with the linear dimension L = 80, 120, 160,
and 200 at Tc = 2.269(3) are calculated as gL(Tc) =
−1.833(5), gL(Tc) = −1.834(3), gL(Tc) = −1.832(2)
and gL(Tc) = −1.833(2), respectively. From Fig-
ure 6 and Table 2 the value of the infinite lat-
tice for the Binder parameter, gL(Tc) = −1.834(11),
is obtained from the straight line fit of gL(Tc) =
−1.833(5), gL(Tc) = −1.834(3), gL(Tc) =−1.832(2),
and gL(Tc) = −1.833(2) versus L = 80, 120, 160,
and 200, respectively. This result is in good agreement
with the Monte Carlo simulations results of gL(Tc) =
−(1.830−1.835) [23 – 27].

The finite-size scaling relation for the Binder param-
eter has the following form:

gL = G(tL1/v), h → 0, L → ∞, (11)

where t > 0 for T > Tc and t < 0 for T < Tc. We il-
lustrate gL vs. tL1/v in Figure 7. Since all the scaled
quantities of gL for different L values overlap above
Tc, the finite-size scaling relations for gL is valid only
in the region above Tc. Therefore, this scaling for gL
is verified only in the region tL1/v > 0, but not in the
region tL1/v < 0.

4. Conclusion

Creutz cellular automaton computer simulations are
a tool in scientific fields such as condensed-matter
physics, including surface-physics and applied-physics
problems (metallurgy and diffusion, etc.). With the in-
creasing ability of this method to deal with quantum-
mechanical problems such as quantum spin systems
or many-fermion problems, it may become useful to
answer some questions in the fields of elementary-
particle and nuclear physics as well.

In this work, the two-dimensional Ising model is
simulated on the Creutz cellular automaton using the
finite-size lattices with the linear dimension L = 80,
120, 160, and 200 for the fractals obtained by us-
ing the model of diffusions-limited aggregation. Since
all the scaled quantities of CL and gL for different
L values overlap above Tc, the finite-size scaling re-
lations for CL and gL are valid only in the region
above Tc.
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The computer used was an Intel( R©) Core(TM)

2 Duo CPU E6550 at 2.33 GMhz. The CPU time
invested was 1140 hours for all the simulations.
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