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On the Characterizations of f-Biharmonic Legendre Curves
in Sasakian Space Forms

Saban Giiveng?, Cihan Ozgiir®

“Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, 10145, Balikesir, Turkey

Abstract. We consider f-biharmonic Legendre curves in Sasakian space forms. We find curvature charac-
terizations of these types of curves in four cases.

1. Introduction

Let (M, g) and (N, h) be two Riemannian manifolds and ¢ : (M, g) — (N, ) a smooth map. The energy
functional of ¢ is defined by

1
B =3 [ laof v,

where v, is the canonical volume form in M. If ¢ is a critical points of the energy functional E(¢), then it is
called harmonic [5]. ¢ is called a biharmonic map if it is a critical point of the bienergy functional

Ex() = 3 fM @) v,

where () is the tension field of ¢ which is defined by t(¢) = traceVdd. The Euler-Lagrange equation of the
bienergy functional E(¢) gives the biharmonic equation

72(P) = =] (1(P)) = —A1(p) — traceRN (d¢p, T(¢p))dep = 0,

where J? is the Jacobi operator of ¢ and 7,(¢p) is called the bitension field of ¢ [8].
Now, if ¢ : M — N(c) is an isometric immersion from m-dimensional Riemannian manifold M to
n-dimensional Riemannian space form N(c) of constant sectional curvature c, then

w(¢) = mH
and

() = -mA®H + cm®H.
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Thus, ¢ is biharmonic if and only if
A®H = cmH,

(see [10]). In a different setting, in [4], B.Y. Chen defined a biharmonic submanifold M C E" of the Euclidean
space as its mean curvature vector field H satisfies AH = 0, where A is the Laplacian. Replacing ¢ = 0 in the
above equation, we obtain Chen’s definition.

¢ is called an f-biharmonic map if it is a critical point of the f-bienergy functional

1 2
Erf(@) =35 f Flr@)| v,
M
The Euler-Lagrange equation of this functional gives the f-biharmonic equation

() = frad) + (M) T () +2V2,, 7(6) =0.

(see [9]). It is clear that any harmonic map is biharmonic and any biharmonic map is f-biharmonic. If
the map is non-harmonic biharmonic map, then it is called proper biharmonic. Likewise, if the map is
non-biharmonic f-biharmonic map, then it is called proper f-biharmonic [11].

f-biharmonic maps were introduced in [9]. Ye-Lin Ou studied f-biharmonic curves in real space forms
in [11]. D. Fetcu and C. Oniciuc studied biharmonic Legendre curves in Sasakian space forms in [6] and
[7]. We studied biharmonic Legendre curves in generalized Sasakian space forms and S-space forms in [13]
and [12], respectively. In the present paper, we consider f-biharmonic Legendre curves in Sasakian space
forms. We obtain curvature equations for this kind of curves.

The paper is organized as follows. In Section 2, we give a brief introduction about Sasakian space forms.
In Section 3, we obtain our main results. We also give two examples of proper f-biharmonic Legendre
curves in R7(-3).

2. Sasakian Space Forms

Let (M?"*1, ¢, &, 7, g) be a contact metric manifold. If the Nijenhuis tensor of ¢ equals —2dn ® &, then
(M, ,&,1,9) is called Sasakian manifold [2]. For a Sasakian manifold, it is well-known that:

(Vxp)Y = g(X, Y)E — n(Y)X, 1)
Vxé& = —pX. 2)
(see [3]).

A plane section in T,M is a ¢-section if there exists a vector X € T,M orthogonal to £ such that {X, X} span
the section. The sectional curvature of a ¢-section is called @-sectional curvature. For a Sasakian manifold of
constant ¢-sectional curvature (i.e. Sasakian space form), the curvature tensor R of M is given by

RX,Y)Z = B {g(Y, 2)X - 9(X, Z)Y} +
LI, p2)Y — g(Y, 9 Z)pX + 29(X, pY)pZ (3)
+NXN2)Y = n(Y)n2)X + g(X, Z)n(Y)E - g(Y, Z)n(X)&},

forall X,Y,Z € TM [3].

A submanifold of a Sasakian manifold is called an integral submanifold if n(X) = 0, for every tangent
vector X. A 1-dimensional integral submanifold of a Sasakian manifold (M?"*1, ¢, &, 1, g) is called a Legendre
curve of M [3]. Hence, a curve y : I - M = (M?"*!, ¢, &, 1, g) is called a Legendre curve if n(T) = 0, where T
is the tangent vector field of y.
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3. f-Biharmonic Legendre curves in Sasakian Space Forms

Lety : I — M be a curve parametrized by arc length in an n-dimensional Riemannian manifold (M, g).
If there exist orthonormal vector fields E;, Es, ..., E, along y such that

El = V, = T/
VrEi = 1By,
VrE; = —x1E1 +x0E;, (4)
VrE, = -1,1E,

then y is called a Frenet curve of osculating order r, where «1, ..., k,—1 are positive functionsonland 1 <r < n.
It is well-known that a Frenet curve of osculating order 1 is a geodesic; a Frenet curve of osculating order
2 is called a circle if x; is a non-zero positive constant; a Frenet curve of osculating order » > 3 is called a
helix of order r if k1, ..., k,—1 are non-zero positive constants; a helix of order 3 is shortly called a helix.
An arc-length parametrized curve y : (a,b) — (M, g) is called an f-biharmonic curve with a function
f :(a,b) = (0, o) if the following equation is satisfied [11]:

f(VTVTVTT - R(T, VTT)T) + Zf,VTVTT + fNVTT =0. (5)

Now let M = (M?"*1,¢,&,1,9) be a Sasakian space form and y : I - M a Legendre Frenet curve of
osculating order r. Differentiating

n(T) =0 (6)
and using (4), we get that
1n(Ez) = 0. (7)

Using (3), (4) and (7), it can be seen that

ViVrT = —K%El + KiEz + K1K2E3,

VoVeVeT = —3K1K’1E1 + (Kll/ - K? - Kﬂ(%) E,
+ (21{11{2 + K1K’2) E3 + K1K2K3E4,

(c+3) (c-1)

R(T/ VTT)T =K1 TEZ - 3Kl 4 g((PTr EZ)QDT/

(see [7]). If we denote the left-hand side of (5) with f.73, we find

3 = VoVoVrT — R(T, VTT)T + szVTVTT + fTVTT

(—31{11(1 - ZK%J%) Eq
(c+3)
4

!
+(2K1K2 + Klké + 2K1K2—)E3 + K1K2K3E4

f
c—1
Let k = min {r,4}. From (8), the curve y is f-biharmonic if and only if 73 = 0, that is,
(I)c=1o0r T L E; or T € span {E;, ..., E}; and
(2) g(t3,E;) =0, foralli =1,k.
So we can state the following theorem:

+ 21(1£ + Klj%) E, (8)

” 3 2
+(K1 — K] — K1K; + K1

+3x7
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Theorem 3.1. Let v be a non-geodesic Legendre Frenet curve of osculating order r in a Sasakian space form
(M?™ @, &,1,9) and k = min {r,4}. Then y is f- biharmonic if and only if

(1)c=10r T L Ey or @T € span{E,, ..., Ex}; and

(2) the first k of the following equations are satisfied (replacing . = 0):

3x] +21<1 =0,
124l = et g He D) y [9(¢T, Ez)] + 5y Ly L +2K—J},
K+ 3“ Dy(eT, Ez)g((pT E3) + 21<2 L+ 21<2 4=,

Kaks + 25 (T, Ex)g(gT, Eq) =

From Theorem 3.1, it can be easily seen that a curve y with constant geodesic curvature «; is f-biharmonic
if and only if it is biharmonic. Since Fetcu and Oniciuc studied biharmonic Legendre curves in Sasakian
space forms in [7], we study curves with non-constant geodesic curvature «; in this paper. If y is a
non-biharmonic f-biharmonic curve, then we call it proper f-biharmonic.

Now we give the interpretations of Theorem 3.1.

Casel.c=1.
In this case y is proper f-biharmonic if and only if

3« +2K1f 0, )
K%+K221+K—11+f7,+2h—”%
K£+2K2f7+21<2% =0,

KoK3 = 0.
Hence, we can state the following theorem:

Theorem 3.2. Let y be a Legendre Frenet curve in a Sasakian space form (M*™*1,¢,&,1,9), ¢ = 1 and m > 1. Then
y is proper f-biharmonic if and only if either
(i) v is of osculating order r = 2 with f = ¢; K]_3/2 and « satisfies

1 2+
t+ 3 arctan Ll +c4 =0, (10)

2 \[—K3 —carp — 1

where ¢y > 0, c3 < =2 and cy are arbitrary constants, t is the arc-length parameter and

—( G—4-c) <) < ( 3 —4-cs)or (11)

-3/2

(ii) y is of osculating order r = 3 with f = ar s, % = ¢y and 1 satisfies

1 2+
t + — arctan la| +c4=0, (12)

-1+ )t —csx — 1

wherecy > 0,c > 0,03 < =2 4 /(1 + c%) and cy are arbitrary constants, t is the arc-length parameter and

1 [ 1 f
2(1—4-5%)(_ Cé - 4(1 + C%) - C3) < K1(t) < m( C% - 4(1 + C%) - C3). (13)

2
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Proof. From the first equation of (9), it is easy to see that f = C1K1_3/ % for an arbitrary constant ¢; > 0. So, we
find

L L G T A L (19
fo2x’ f 4\xa) 2x

If x, = 0, then y is of osculating order r = 2 and the first two of equations (9) must be satisfied. Hence the
second equation and (14) give us the ODE

3(k))?* = 2K1K) = 43 (x5 — 1). (15)

Let 1 = x1(t), where t denotes the arc-length parameter. If we solve (15), we find (10). Since (10) must be
well-defined, —K% —c3k1 — 1 > 0. Since k1 > 0, we have ¢3 < =2 and (11).

If x, = constant # 0, we find f is a constant. Hence y is not proper f-biharmonic in this case. Let
Ko # constant. From the fourth equation of (9), we have k3 = 0. So, y is of osculating order r = 3. The third
equation of (9) gives us {2 = o, where ¢; > 0 is a constant. Replacing in the second equation of (9), we have

the ODE

3(1(1)2 - 2K1k] = 41(%[(1 + C%)K% -1]
which has the general solution (12) under the condition ¢z < -2 /(1 + c%). (13) must be also satisfied. O

Remark 3.3. If m = 1, then M is a 3-dimensional Sasakian space form. Since a Legendre curve in a Sasakian
3-manifold has torsion 1 (see [1]), we can write k1 > 0 and xy = 1. The first and the third equations of (9) give us f
is a constant. Hence y cannot be proper f-biharmonic.

CaselIl.c # 1, ¢T L E,.
In this case, g(¢T, E;) = 0. From Theorem 3.1, we obtain

3ic) +2K1,§ =0, (16)
Kf+;<§=%+%+%+2z—l§,
K + 2105 + 2152 =0,
Ko2K3 =0.

Firstly, we need the following proposition from [7]:

Proposition 3.4. [7] Let y bea Legendre Frenet curve of osculating order 3 in a Sasakian space form (M2, ©,519)
and T L Ey. Then {T = Eq,Ey, E3, T, V1T, &} is linearly independent at any point of y. Therefore m > 3.

Now we can state the following Theorem:

Theorem 3.5. Let y be a Legendre Frenet curve in a Sasakian space form (M*™*,¢,&,1,9), ¢ # 1 and T L E,.
Then y is proper biharmonic if and only if
(1) y is of osculating order r = 2 with f = c1x;
(a) if ¢ > =3, then x; satisfies

32 >0, {T = Ey, Ep, T, V1T, &} is linearly independent and

c+ 3+ 20311
arctan +c4 =0,

Ve +3 VC+3\/—4K%—4C3K1—C—3
(b) if c = =3, then x, satisfies

v—K1(k1 + c3)
tt ——+c4 =0,
C3K1

t+
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(c) if c < =3, then x; satisfies

1 C+3+2C3K1—V—C—3\/—4K%—4C3K1—C—3
t+ 1 =0;
+ S n (C n 3)K1 + C4 or

(2) v is of osculating order r = 3 with f = c11<1_3/2, % = ¢y = constant > 0, m > 3,{T = E;, Ey, E3, T, VT, &}
is linearly independent and
(@) if c > =3, then K satisfies

1 c+ 3+ 2c3x
t+ arctan 31 +c4 =0,

Ve+3 VEH3 =41 + GG — desky — -3

(b) if c = =3, then 11 satisfies

\/—Kl [(1 + o)k + C3]
t+ +c4 =0,
C3K1

(c) if c < =3, then « satisfies

1 c+3+2c3k] — V—C—3\/—4(1+C§)K%—4C3K1—C—3
t+ | =
V—c-3 " (c+3)x1 ta=0

where ¢ > 0, c; > 0, c3 and cy are convenient arbitrary constants, t is the arc-length parameter and «x1(t) is in
convenient open interval.

Proof. The proof is similar to the proof of Theorem 3.2. [J

CaseIll.c # 1, T || Es.
In this case, T = +E,, g(¢T, Ep) = £1, g(T, E3) = g(xE,, E3) = 0 and g(¢T, Es) = g(xE,, E4) = 0. From
Theorem 3.1, y is biharmonic if and only if

3] + 2K1§ =0, (17)
G +KE=c+ o+ f7+2%f7
Ky + ZKZJ% +21<2% =0,
K2K3 =0.

Since @T || E,, it is easily proved that k; = 1. Then, the first and the third equations of (17) give us f is a
constant. Thus, we give the following Theorem:

Theorem 3.6. There does not exist any proper f-biharmonic Legendre curve in a Sasakian space form (M*™*1, ¢, &, 1, g)
with ¢ # 1 and ¢T || E.

CaseIV.c # 1 and g(¢T, E,) is not constant 0, 1 or —1.

Now, let (M?>"*1, ¢, &, 1, ) be a Sasakian space form and y : I — M a Legendre curve of osculating order
r,where4 <r <2m+1and m > 2.If y is f-biharmonic, then ¢T € span {E,, E3, E4} . Let O(t) denote the angle
function between ¢ T and E,, that is, g(¢T, E;) = cos 0(t). Differentiating g(¢T, E,) along y and using (1) and
(4), we find

-0'(t)sin0(t) = Vrg(eT,Ez) = g(V1@T,Ez) + g(¢T, VTEy)
= g(& +x1pEy, Ez) + g(T, —x1T + x2E3) (18)
= 1x2g(pT, E3).
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If we write ¢T = g(@T, E2)Es + g(@T, E3)Es + g(¢T, E4)E4, Theorem 3.1 gives us

3k] + 21<1f— =0, (19)
f
2, 2_¢+3 3-1) 5 Kok f

_c+3, 31 S S W 2

K]+ K5 1 + 1 cos 9+K1+f+ - (20)

3(c—1 ’ K]

K) + 37D o 0g(¢T, E3) + 2;<2]i + 21— =0, 1)
4 f K1
3(c—1

KoKz + (C4 ) cos Og(¢T, E4) = 0. (22)

If we put (14) in (20) and (21) respectively, we obtain

7" 7\2
s o €+3 3c-1) , Ky 3K
S S . S e 2
K]+ K5 1 + 1 cos” 6 21<1+4 o) (23)
K 3(c-1
K) — —ky + (-1 cos Og(eT, E3) = 0. (24)
K1 4
If we multiply (24) with 2k, using (18), we find
K 3(c—1
2KpK) — ZK—1K§ + %(—29’ cos Osin 0) = 0. (25)
1
Let us denote v(t) = K%(t), where t is the arc-length parameter. Then (25) becomes
K 3(c-1
v -2y =- (c )(—26’ cos O'sin 0), (26)
K1 4
which is a linear ODE. If we solve (26), we obtain the following results:
i) If O is a constant, then
2o, (27)
K1

where ¢; > 0 is an arbitrary constant. From (18), we find g(¢T,E3z) = 0. Since ||(pT|| =1and ¢T =
cos OE; + g(¢T, E4)E4, we get g(T, E4) = +sin 0. By the use of (20) and (27), we find
c+3+3(c—1)cos? 6

4 i

3(k))? - 2K1K) = 43[(1 + )it —

ii) If 8 = O(t) is a non-constant function, then

-1
K3 = —% cos® 0 + A(b).x3, (28)
where
3(c—1 cos? O«
A == f Lit. (29)
2 K3
If we write (28) in (23), we have
7”7 ’\2
»_C+3+6(c-1)cos’0 K 3(K]
[1+A(0)] 1 = : oot bl B

Now we can state the following Theorem:
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Theorem 3.7. Let y : [ — M be a Legendre curve of osculating order r in a Sasakian space form (M>"*1,¢,&,1, 9),
wherer >4, m>2,c # 1, g(pT,E;) = cos O(t) is not constant 0, 1 or —1. Then y is proper f-biharmonic if and

only if f = c1x; 52 and

()ifOisa constant,

c+3+3(c—1)c0529]

3(k))? = 2K1K) = 43[(1 + )it — 1 i

3(c—1)sin26
8 7
(ii) if 6 is a non-constant function,

-1
2 = _3(c4 )

KoK3 = =

cos® 0 + A(t).x3,

c+3+6(c—1)cos?0
4

3(x})* — 21} = 43 [(1 + A(D)xT — 1,

3(c — 1)sin28sinw
8 4

KoKz = £

where c1 and ¢, are positive constants, T = cos OF; +sin 6 cos wE3 +sin 0 sin wE,, w is the angle function between
E3 and the orthogonal projection of ¢T onto span {Es, E4} . w is related to 6 by cosw = ‘K—f/ and A(t) is given by

3(c—1 cos? Ok
Mﬂ:_(z {f k
(31

We can give the following direct corollary of Theorem 3.7:

Corollary 3.8. Let y : I — M be a Legendre curve of osculating order r in a Sasakian space form (M*"*1,¢,&,1, 9),

where v 2 4, m 2 2,¢c # 1, g(pT,Ey) = cosO is a constant and 6 € (0,271)\{%,7‘(

f-biharmonic if and only if f = c1x; 302 , & = ¢ = constant > 0,

3(c — 1)sin26

KoKz = £

8 7
Es) + g(¢E,, Es)x
Ky = i’?( 5) + 9(bEa, Es)i (fr>4) and
sin 0
(i) if a > 0, then 1 satisfies
1 2a + C3K1
t + —— arctan +c4=0,
2va \/_\/ (1+ K3 — 31 —a
(if) if a = 0, then x4 satisfies
\/—Kl [(1 + o)k + C3]
t+ +c4 =0,

C3K1
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(iii) if a < 0, then x satisfies

1 24 + c3x1 —2V-a \/—(1 + K2 — c3k1 —a
+ In
24-a 2ax

t +c4 =0,

where a = [c +3+3(c — 1) cos? 6] /4, T = cos OE; = sinOEy, c1 > 0, c; > 0, c3 and c4 are convenient arbitrary
constants, t is the arc-length parameter and 1 (t) is in convenient open interval.

In order to obtain explicit examples, we will first need to recall some notions about the Sasakian space
form R?>"+1(=3) [3]:
Let us consider M = R?*"*! with the standard coordinate functions (xy, ..., X, Y1, - Ym, 2), the contact

structure n = 1(dz — Y. yidx;), the characteristic vector field & = 24 and the tensor field ¢ given by
i=1

0 o 0
~5; 0 0.
0

y; 0

(p:

The associated Riemannian metricis g =n®n+ if((dxi)z + (dy:)?). Then (M, ¢, &, 1, g) is a Sasakian space
form with constant g-sectional curvature ¢ = -3 arllzé it is denoted by R*"+1(-3). The vector fields

aiyi, Xnsi = X = 2(% + yi%),i =1,m, {= 2% (30)
form a g-orthonormal basis and the Levi-Civita connection is calculated as
Xj = —0ij¢,
Vx.& = VeXi = =Xpsi, VX, & = VeXni = Xi,

(see [3]).
Now, let us produce examples of proper f-biharmonic Legendre curves in R7(-3):
Lety = (y1,...,77) be a unit speed curve in R7(-3). The tangent vector field of y is

X; =2

Vx.Xj = Vx,.. Xm+j = 0, Vx, Xt j = 0i5&, Vx,

m+i m+i

T= % [)/QXH +yiXo + Y Xs + V1 Xa + vy Xs + y3Xe + (V5 — V1V — VY5 — )/37/6)5] )
Thus, y is a unit speed Legendre curve if and only if 7(T) = 0 and g(T, T) = 1, that is,
Y7 = V174t Va5 +73Ye
and
(7/;)2 +ot ()/’6)2 =4,

For a Legendre curve, we can use the Levi-Civita connection and (30) to write

1 ’ 1’ 1’ 7 " 7
VTTzE()/:lxl+)/5X2+y6X3+y1X4+y2X5+)/3X6), (31)
1 ’ ’ ’ ’ ’ ’
¢T = E(_%Xl —75Xo — V3 X3 + Y, Xa + Y5 X5 + 7 Xo). (32)

From (31) and (32), ¢T L E; if and only if

., "7 ., ’ 0 r 0 ’ 07

YiVatVaVstV3Ve=V1Vs T V2V5 t7V3V6-

Finally, we can give the following explicit examples:
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Example 3.9. Let us take y(t) = (2 sinh_l(t), V1+2,V3V1+12,0,0,0, 1) in R7(=3). Using the above equations
and Theorem 3.5, y is a proper f-biharmonic Legendre curve with osculating order r = 2, k1 = iz, f = c1(1+ £2)3/2
where ¢ > 0 is a constant. We can easily check that the conditions of Theorem 3.5 (i.e. ¢ # 1,T L E;) are verified,
where c3 = =1 and ¢4 = 0.

Example 3.10. Let y(t) = (11,2, a3, \/Et,Zsinh_l(%), V22 + t2,a4) be a curve in R7(=3), wherea; € R,i =1,
Then we calculate

V2 1 V2t

T=—X1+ X5 + X
2 V2 +£2 2V2+ 12

—t VE

Er= —
\/2+1&2 \/2+1E2
E VE 1 V2t
3:
2 V2+ﬂ 2V2+ﬂ
1
= = —F, :3
K1 Ko 2+t2 T

From Theorem 3.5, it follows that y is proper f-biharmonic with f = c¢1(2 + t2)*/2, where c; > 0,c2 =1, ¢c3 = =1 and
cy =0.
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