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The conformable heat equation is defined in terms of a local and limit-based defi-
nition called conformable derivative which provides some basic properties of in-
teger order derivative such that conventional fractional derivatives lose some of 
them due to their non-local structures. In this paper, we aim to find the fundamen-
tal solution of a conformable heat equation acting on a radial symmetric plate. 
Moreover, we give a comparison between the new conformable and the existing 
Grunwald-Letnikov solutions of heat equation. The computational results show 
that conformable formulation is quite successful to show the sub-behaviors of heat 
process. In addition, conformable solution can be obtained by a analytical method 
without the need of a numerical scheme and any restrictions on the problem for-
mulation. This is surely a significant advantageous compared to the Grunwald-Let-
nikov solution.
Key words: conformable derivative, conformable heat equation,  

Grunwald-Letnikov

Introduction

In the non-classical theory of fractional heat conduction, the Fourier law is given as 
the time non-local dependence between the heat flux and the temperature gradient in the follow-
ing constitutive equations with the long-tail power kernels:
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Equations (1) and (2) can be rewritten in terms of fractional integrals and derivatives 
as [1, 2]:
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	 (3)
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	 ( ) ( )1grad , 1 2q t kI T tα α−= − < ≤
 	 (4)

which yields to the following time-fractional heat conduction equation in terms of Caputo frac-
tional derivative of order α: 

	 , 0 2T a T
t

α

α α∂
= ∆ < ≤

∂
	 (5)

The cases α → 0, 0 < α < 1, α = 1, 1 < α <2, and α = 2, respectively, correspond to 
localized heat conduction, sub (slow) heat conduction, standard heat conduction, super (fast) 
heat conduction and also ballistic heat conduction [3-5]. The Riemann-Liouville (RL) fraction-
al integral and derivatives of order α is defined as [6-8]:
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The Caputo fractional derivative is regularization of the RL fractional derivative in 
the time domain by incorporating the relevant initial conditions:
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Note that these are non-local operators expressed by convolution integrals with a 
weakly singular kernel. Due to this structure, a lot of implicit or explicit numerical schemes to 
analyze the fractional models in terms of non-local fractional operators have been developed 
because these operators are effective for modelling of sub/super processes in physical events 
[9-17]. 

Although the non-local fractional operators give the memory and hereditary effects 
that naturally occur in the real physical systems, the impossibility of analytical solutions or 
complexity of numerical approximations have led the researchers to introduce new local frac-
tional order derivatives [18, 19]. Conformable fractional derivative is only one of these local 
operators proposed by Khalil et al. [20]. 

(1) Definition: Given a function f  : [0, ∞) → ℝ. Then the conformable fractional de-
rivative of oder is defined by:

	 ( )( ) ( ) ( )1
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for all t > 0.
Often, f (α) is used instead of Tα(f) to denote the conformable derivative of f with frac-

tional order α. In addition, if the conformable derivative of f exists, then we simply say that f 
is  α – differentiable. If f is α – differentiable in some (0, a) and ( )

0
lim ( )
t

f tα
+→

 exists, then define:
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(2) Theorem: Let 0 < α ≤ 1, and f and g be α – differentiable at a point t > 0. Then:
(1)	 ( ) ( ) ( ) for all ,T a f b g aT f bT g a bα α α+ = + ∈

(2)	 ( ) for allp pT t pt pα
α

−= ∈

(3)	 ( ) ( ) ( )T f g f T g g T fα α α= +

(4)	 ( ) ( )
2

gT f f T gfT g g
α α

α

− 
= 

 
(5)	Tα(λ) = 0, for all constant functions f(t) = λ. 
(6)	If, in addition, f is differentiable at a point t > 0, then Tα(f)(t) = t1–α(df/dt).

In the recent years, there has been a growing interest to introduce the new properties 
and to reveal the new applications of conformable fractional derivative. Abdeljawad [21] pro-
posed new notions such as sequential conformable derivative, fractional Laplace transform, 
integration by parts and fractional Taylor power series expansion. Abu Hammad and Khalil  
[22, 23] investigated the solutions of different types of conformable heat equations and intro-
duced the fractional Fourier series with the applications. Khalil and Abu Shaab [24] also studied 
on some conformable differential equations. Atangana et al. [25] presented the conformable 
partial derivative and its properties and also the conformable Stokes and conformable Green’s 
theorems in connection with the classical derivatives. Cenesiz and Kurt [26, 27] researched the 
solutions of conformable heat and wave equations. Avcı et al. [28] studied on a conformable 
fractional wave-like equation and so clarify some uncertain descriptions on Cauchy problems 
of these types of equations. The interested researchers are also referred to different applications 
of conformable operators [29-32]. 

In this study, we aim to find the fundamental solution of a Cauchy problem for a con-
formable heat equation defined on a radial symmetric plate. Furthermore, we are motivated to 
give a comparison between the conformable and the Grunwald-Letnikov (GL) solutions of a 
slow heat conduction process. Hence, we use the problem studied in [33] for this comparison 
and also show the retardation in the diffusion of heat by using the graphics.

Formulation of the problem

Let us consider the following conformable heat equation defined on a radial symmet-
ric plate:

	 ( ) ( )
2

2

1, ,u uu r t f r t
t r r r

α

α β
 ∂ ∂ ∂

= + + ∂ ∂ ∂ 
	 (10)

subjected to the following initial and boundary conditions given, respectively:

	 ( ) ( )0,0 , 0u r u r r R= < ≤ 	 (11)

and

	 ( ) ( )0, , , 0u t u R t t= > 	 (12)

where ∂α/∂tα represents the conformable partial derivative with fractional order α (0 < α ≤ 1), β  
is thermal diffusivity coefficient, and f(r, t) denotes a heat source. We can find the fundamental 
solution as a combination of two separate Cauchy problems detailed in the following subsections. 
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Homogeneous conformable heat equation and  
non-homogeneous initial condition

Consider the following conformable partial differential equation:

	 ( )
2
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1, u uu r t
t r r r

α

α β
 ∂ ∂ ∂

= + ∂ ∂ ∂ 
	 (13)

with the initial and boundary conditions:

	 ( ) ( )0,0 , 0u r u r r R= < ≤ 	 (14)

	 ( ) ( )0, , 0, 0u t u R t t= = > 	 (15)

We apply the separation of variables method and so assume that:

	 ( ) ( ) ( ),u r t Q r T t= 	 (16)

By substituting eq. (16) into eq. (13) and after some mathematical computations, we 
obtain the following ordinary differential equations:
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The bounded solutions of eq. (17) can be easily obtained: 
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i

iQ r c J r
R
λ =  

 
	 (19)

where μi = λi/R (i = 1, 2, …) denotes the zeros of the first kind Bessel function J0  and c1 is arbi-
trary constant determined by boundary conditions. We use property (6) in Theorem and so the 
eq. (18) reduces to: 
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and its solution is: 
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Therefore, the fundamental solution of 1st problem is:
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where c = c1c2 is determined by the initial condition (14) and the orthogonality property of J0 
Bessel function:
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Consequently, the solution of 1st problem is obtained:
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Next, we consider the solution of 2nd problem as a similar manner.

Non-homogeneous conformable heat equation and 
homogeneous initial condition

Let us consider the following problem:
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α β
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with the initial and boundary conditions:

	 ( ),0 0, 0u r r R= < ≤ 	 (26)

	 ( ) ( )0, , 0, 0u t u R t t= = > 	 (27)

where f(r, t) is a heat source. Similar to 1st case, J0 = [(λi/R)r], (i = 1, 2, …) are the basis func-
tions of fundamental solution: 
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We shall assume the heat source function is represented by:
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Note that, eq. (29) is not a particular assumption, i. e. we can achieve the same re-
sult by direct calculations. By substituting eqs. (28) and (29) into eq. (25), we have a Bessel 
differential equation as the same as eq. (17) and a conformable differential equation which is 
arranged by using the property (6) in Theorem (2) as:
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Equation (30) is a non-homogeneous ordinary differential equation with variable coef-
ficients and its solution depends on the fi(t). Applying the orthogonality property of J0 and using 
eq. (29), we have that:
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In our computations, we choose f(r, t) = A (constant) only for simplification. Hence, 
we get the solution of eq. (30):
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Finally, the fundamental solution of 2nd problem is in the following form:
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The linear combination of 1st case solution (24) and the 2nd case solution (33) gives the 
whole solution of the main problem:
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Next, we validate the results graphically. The numerical results are held by introduction 
MATLAB codes.

Numerical results

The physical behaviors of conformable heat solution are illustrated under the assump-
tions u0(r) = sin(πr), f(r, t) = 1, and R = 1 for 2-D figures. Moreover, we fix the radius r = 0,5 
and obtain the results with respect to time, t, and also discretize the time interval into N = 100 
sub-intervals with the length of h = 0.01. In fig. 1, we first analyze the dependence of solution 
on the order of time conformable derivative by taking α = 0.5, 0.75, and 1. This figure shows 
the retardation in the diffusion of heat by decreasing of fractional order α. A significant analysis 
is given by fig. 2 in which a similarity between the conformable and the GL solutions appears 
as expected. We can clearly conclude that both of the conformable and GL models are so good 
generalizations to explain the slow diffusion of heat. As a comparison, we see that the settle-
ment time of the solution changes with respect to the type of fractional order model.  

Furthermore, we do not need any restrictions on conformable formulation. For instance, 
we arbitrarily choose the initial condition in the present paper and also do not apply a numeri-
cal approximation. Whereas, we had to use homogeneous initial condition to approximate the 
RL fractional derivative using GL numerical scheme in [33]. Therefore, we give the compari-
sons of the conformable and GL solutions by using the homogeneous initial condition and the 
heat source f(r, t) = 1 in accordance with [33] for different values of α. Figures (3a) and (3b) 
illustrate the surface solutions for α = 0.75 by choosing the initial conditions respectively, as  
u0(r) = sin(πr) and u0(r) = r2 – 1.
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Figure 1. Dependence of conformable heat 
solution on the variation of α
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Figure 2. Comparison of conformable and  
GL solutions
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Figure 3. Surface plots for the initial conditions (3a) u0(r) = sin(πr) and (3b) u0(r) = r2 – 1 
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Conclusion
In the recent years, local fractional operators have increasing interest among the re-

searchers and have been successfully applied to the problems of mathematical pyhsics and 
applied sciences. Conformable derivative is only one of these local operators which have been 
used to research the sub and super behaviours of heat and wave propagations. Moreover, this 
operator provides the basic properties of classical derivative such as product, quotient and chain 
rules, integration by parts, rolle and mean value theorems, and so on. In this work, we consider 
a non-homogeneous conformable heat equation formulated on a radial symmetric plate and 
then use a direct computation technique to find the fundamental solution without the need of 
a numerical method. By the present study, we give attention to the comparison of local and 
non-local solutions by using MATLAB figures. Consequently, we should clarify that the con-
formable formulation is a good alternative to the well-known non-local fractional models of 
heat equation.
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