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Abstract: In the present paper, we define f-biminimal immersions. We consider f-biminimal curves in a Riemannian
manifold and f-biminimal submanifolds of codimension 1 in a Riemannian manifold, and we give examples of f-

biminimal surfaces. Finally, we consider f-biminimal Legendre curves in Sasakian space forms and give an example.
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1. Introduction and preliminaries

Let (M,g) and (N, k) be two Riemannian manifolds. A map ¢ : (M, g) — (N, h) is called a harmonic map if

it is a critical point of the energy functional

1 2
B(o) =5 [ Il du,
Q
where (2 is a compact domain of M. The Euler-Lagrange equation gives the harmonic map equation
() = tr(Vdyp) =0,

where 7(p) = tr(Vdy) is called the tension field of the map ¢ [6]. The map ¢ is said to be biharmonic if it
is a critical point of the bienergy functional

Bae) = 5 [ Ir(o)IP v,

where Q is a compact domain of M [10]. In [10], Jiang obtained the Euler-Lagrange equation of E2(y). This

gives us the biharmonic map equation
Ta(ip) = tr(VPV? = VE)T(p) — tr(RY (dp, 7(¢))di) = 0, (1.1)
which is the bitension field of ¢, and RY is the curvature tensor of N, defined by

RY(X,Y)Z = VYVYZ - V¥VYZ - VX y|Z.

An f-harmonic map with a positive function f : M Y R is a critical point of f-energy
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1
Bi(e) =5 | 1ldelP v,

where Q is a compact domain of M. Using the Euler-Lagrange equation for the f-harmonic map, in [5] and

[16] the f-harmonic map equation is obtained by

71(p) = f1(p) + dp(gradf) = 0, (1.2)

where 7¢(yp) is called the f-tension field of the map ¢. The map ¢ is said to be f-biharmonic [13] if it is a

critical point of the f-bienergy functional

1 2
Baylo) =5 [ £Ir()IP v,
Q
where  is a compact domain of M. The Euler-Lagrange equation for the f-biharmonic map is given by
TQ,f(‘)O) = fT2(@) + AfT((p> + ZVZTadfT“D) = 07 (13)

where 75 f(¢p) is the f-bitension field of the map ¢ [13]. If f is a constant, an f-biharmonic map turns into
a biharmonic map.

In [12], Loubeau and Montaldo defined and considered biminimal immersions. They studied biminimal
curves in a Riemannian manifold, curves in a space form, and isometric immersions of codimension 1 in a

Riemannian manifold.
An immersion ¢ is called biminimal [12] if it is a critical point of the bienergy functional Ea(p) for

variations normal to the image ¢(M) C N, with fixed energy. Equivalently, there exists a constant A € R such

that ¢ is a critical point of the A-bienergy
Ex () = Ex(p) + AE(p) (1.4)

for any smooth variation of the map ¢; :] — €, +¢€[, wo = ¢, such that V = % lt=0= 0 is normal to ¢(M).

The Euler-Lagrange equation for a A-biminimal immersion is

[2A(@)]* = [m2(e)] = Alr(9)] - =0 (1.5)

for some value of A € R , where []+ denotes the normal component of [-]. An immersion is called free biminimal
if it is biminimal for A =0 [12].

In [12], Loubeau and Montaldo studied biminimal immersions. In [9], Inoguchi and Lee completely
classified biminimal curves in 2-dimensional space forms. In [8], Inoguchi studied biminimal curves and surfaces
in contact 3-manifolds. In [13], Lu defined f-biharmonic maps between Riemannian manifolds. In [15], Ou
considered f-biharmonic maps and f-biharmonic submanifolds. In [7], Giiveng and the second author studied
f-biharmonic Legendre curves in Sasakian space forms. Motivated by the studies [12] and [13], in this paper, we
define f-biminimal immersions. We consider f-biminimal curves in a Riemannian manifold. We also consider
f-biminimal submanifolds of codimension 1 in a Riemannian manifold and give some examples of f-biminimal
surfaces. Furthermore, we give an example for an f-biminimal Legendre curve in a Sasakian space form.

Now we give the following definition:
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Definition 1.1 An immersion ¢ is called f-biminimal if it is a critical point of the f-bienergy functional
Es () for variations normal to the image (M) C N, with fized energy. Equivalently, there exists a constant
A € R such that ¢ is a critical point of the \- f -bienergy

Eoxf(p) = B2 () + AE¢ ()

for any smooth variation of the map ¢, defined above. Using the Euler—Lagrange equations for f-harmonic and

f -biharmonic maps, an immersion is f-biminimal if

(T2, ()" = [T, ()] = Alrp ()] - =0 (1.6)

for some value of A € R. We call an immersion free f-biminimal if it is f-biminimal for X = 0. If f is a

constant, then the immersion is biminimal.

Remark 1.1 The notions of f-biharmonic submanifolds, biminimal submanifolds, and f-biminimal submani-

folds are distinct. We will see details in the examples given in Section 4 and Section 5.

2. f-Biminimal curves

Let v: I C R — (M™,g) be a curve parametrized by arc length in a Riemannian manifold (M™,g). We

recall the definition of Frenet frames:

Definition 2.1 [11] The Frenet frame {E;},_, , ,, associated with a curve v : I C R — (M™,g) is the

orthonormalization of the (m + 1) — tuple

) 00
{V& dv(at)}k_o’lwm

described by

0

El = d’Y(a)a

V% Ei = k1 Es,
ot
VY Ei=—ki1Ei1+kFE1, 2<i<m-—1,
ot

VLE’ITL = _km—lE’m—17
ot

where the functions {ky =k, ko = 7, ks, ..., km—1} are called the curvatures of . In addition By =T = 'y/ i

the unit tangent vector field to the curve.

First, we have the following proposition for an f-biminimal curve in a Riemannian manifold:

Proposition 2.1 Let M™ be a Riemannian manifold and v : I C R — (M™, g) be an isometric curve. Then

v is f-biminimal if and only if there exists a real number A such that
FAK! = K — k1k3) — kvg(R(Ey, E2)Ev, Es)} + (f" — Af) k1 +2f'K =0, (2.1)
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f {(kikz + (klk‘g)/) - k‘lg(R(El, EQ)El, Eg)} + 2f’k‘1k2 =0, (2.2)
f{kikaks — k1g(R(En, E2)Eq, Eq)} = 0, (2.3)
fklg(R(Ela EQ)Elv EJ) = Ov 5 < ] < m, (24)

where R is the curvature tensor of (M™,g) and {E;},_, 5 ., is the Frenet frame of .

m

Proof Using equation (1.2), Definition 2.1, and 7(y) = k1 Eo (see [12]), the f-tension field of ~ is

74(7) = fkiBa + f'Ex. (2.5)

From Definition 2.1, we have

VrVrT = —kiEy + ki Bz + ki1ko B3, (2.6)

VrVeVeT = —3kiky By + (K — K — kik2) Eq

+ (Kik2 + (kik2)") B + (k1koks) Ea (2.7)

and

VoraasT(7) = f {—KE1 + K\ Bz + k1ko B3} . (2.8)
Using equations (2.6), (2.7), and (2.8) in equation (1.3), its f-bitension field is
To,1(7) = f{(=3kiky) By + (K — ki — k1k3) Bo + (kiks + (kiks)') Es

+ (k1koks) B4 — kiR(Ev, Es)En }

+f k1 By + 2f {—k{E1 + k| Es + k1koE3} . (2.9)

By the use of equations (2.5) and (2.9) in equation (1.6), we find

PR = K = kk3) Ba + (Ko + (k1ks)) By
+ (kikaks) Ex = by [R(By, B By]* |

—l—f”k?lEg + 2f/ {kiiEz + k1k2E3} - A {fklEg} =0. (2.10)

Then taking the scalar product of equation (2.10) with Es, E3, Ey, and E;, 5 < j < m, respectively, we obtain
the desired results. O

Now we investigate f-biminimality conditions for a surface or a three-dimensional Riemannian manifold
with a constant sectional curvature. We have the following corollary:
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Corollary 2.1 1) A curve v on a surface of Gaussian curvature G is f-biminimal if and only if its signed

curvature k satisfies the equation
f(E" =k +kG) + (f" = Af)k+2fk' =0 (2.11)

for some A € R.
2) A curve v on Riemannian 3-manifold M of constant sectional curvature c is f-biminimal if and

only if its curvature k and torsion T satisfy the system

F (K" =k —kr® + ke) + (" = M)k +2f'K =0

KT+ (kr))+2f' kT =0 (2.12)

for some A € R.

Proof 1) Since v is a curve on a surface, if v is f-biminimal then by the use of equation (2.1), we obtain
f{K — k> —kg(R(T,N)T,N)} + (f" = M) k+2f'K = 0. (2.13)

Then we have
g(R(T,N)T,N) = —G. (2.14)

Finally, substituting equation (2.14) into equation (2.13), we obtain
F{E" — >+ kG} + (f" — \f) k+2f'K = 0.

2) Since v is a curve on a Riemannian 3-manifold, the Frenet frame of v is {T, N = By, B = B3},

and then equations (2.1) and (2.2) turn into
[ — k> —km® — kg(R(T,N)T,N)} + (f" = M) k+2f'K' =0 (2.15)

and
F{k'T + (k7)' — kg(R(T, N)T, B)} + 2f'k7 = 0. (2.16)

Since M has constant sectional curvature we have

g(R(T,N)T,N) = —c (2.17)

and
9(R(T,N)T, B) = 0. (2.18)

Finally, substituting equations (2.17) and (2.18) into equations (2.15) and (2.16), respectively, we get
[ =k —km® + ke} + (f" = M)k +2f'K =0

and
FAK'T+ (k7)'} + 2f kT = 0.

This completes the proof. O
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Remark 2.1 In Proposition 2.1 and Corollary 2.1, if we take f as a constant, we obtain Proposition 2.2 and
Corollary 2.4 in [12].

Now assume that M2 C R? is a surface of revolution obtained by rotating the arc length parametrized
curve a(u) = (h(u),0,g(u)) in the xz-plane around the z-axis. Then it can be easily seen that the Gaussian

curvature GG of the surface of revolution is
h// (u)
h(u) -

G = (2.19)

The Gaussian curvature G depends only on u; that is, G is constant along any parallel. This implies that if the
Gaussian curvature is constant along a curve, then either the curve is a parallel or the curve lies in a part of the
surface with constant Gaussian curvature [4]. From equation (2.19) and equation (2.11), it is easy to see that
if a parallel of M is f-biminimal then f is a constant, which means that the parallel is biminimal. Biminimal

curves in a surface of revolution was studied by Aykut in [1]. Hence, we can state the following result:

Proposition 2.2 An f-biminimal parallel in a surface of revolution is biminimal.

3. Codimension-1 f-biminimal submanifolds

Let ¢ : M™ — N™%! be an isometric immersion of codimension 1. We shall denote by B, n, A, A, and
H, = Hn the second fundamental form, the unit normal vector field, the shape operator, the Laplacian, and
the mean curvature vector field of ¢ (H the mean curvature function), respectively.

Then we have the following proposition:

Proposition 3.1 Let ¢ : M™ — N™T1 be an isometric immersion of codimension 1 and H, = Hn its mean

curvature vector. Then ¢ is f-biminimal if and only if

AH — H||B|?* 4+ HRicci(n,n) + (Aff - )\> H +2gradln f (H) =0 (3.1)

for some value of A in R.

Proof Assume that ¢ is f-biminimal. Let {e;}, 1 <i < m be a local geodesic orthonormal frame at p € M.

Then using equation (1.2), the f-tension field of ¢ is

74(p) = fmHn + dp(gradf) (3.2)
and using equation (1.3) and the definitions of 7(p) and 72(¢) in [12], its f-bitension field is

Ta,1(0) = f {m(AH)n +2m Z ei(H)VEn — mHAy

i=1

-mH Z RN (dy(e;), n)dgﬁ(ei)} +Af(mHn) +2mVy - Hn. (3.3)

i=1

Then taking the scalar product of equations (3.2) and (3.3) with 7, respectively, we find

g((p),m) = fmH (3.4)
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and

9(72,5 (), ) = f{ (AH) + 2mzez )9(VEn,m) —mHg(A%n,n)

—mHg(Y | RN (de(ei), n)dp(es), )} + Af(mH) + 2mg(Vy, a0 Hn,m). (3.5)

i=1

By use of the Weingarten formula, we have
Vgraden - (gTadf( ))77 + varadfn

= (gradf(H))n + H(—=Angradf + V g.qasm)

= (gradf(H))n — HA,gradf.

Hence, taking the scalar product of the above equation with 7, we obtain

g(Vﬁmden, n) = gradf(H). (3.6)
Moreover, we have
g(VEn,n) = %eig(n,n) =0 (3.7)
and
9> RN (dp(es),m)de(es),n) = —Ricei(n, n). (38)

=1

Using the definition of the Laplacian, we get

9(An, ) =Y g(=VEVEN+ VS, n.m)
=1

Z =|B|*. (3.9)
By use of equations (3.6), (3.7), (3.8), and (3.9) in equation (3.5), we have

9(7a,5(9),m) = f {m(AH) = mH |[BI + mRicci(n,n) |

+Af(mH) + 2mgradf(H). (3.10)

Finally, substituting equations (3.4) and (3.10) in equation (1.6), we obtain (3.1).
Conversely, assume that (3.1) holds on M™. If we take the product of equation (3.1) with mf we have

mfAH —mfH | B|?+mfHRicci(n,n)
+(mAf —mfA)H +2mgradf (H) = 0. (3.11)
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It is easy to see that

(ra.s ()" = £ {m(AH) = mH || B|® — mH Ricei(n,n) |

+Af(mH) + 2mgradf (H) (3.12)

and
(r1(9))" = fmH. (3.13)

In view of equations (3.12) and (3.13), equation (3.11) turns into

(r2,7(0))" = A(rr(9)" =0,

which means that M™ is f-biminimal. This proves the proposition. O

Corollary 3.1 Let ¢ : M™ — N™*L(¢c) be an isometric immersion of a Riemannian manifold N™t(c) of
constant curvature c. Then ¢ is f-biminimal if and only if there exists a real number A such that

AH — (m2H2 —s+m(m—2)c— af + /\) H —2gradln f (H) =0, (3.14)

f
where H is the mean curvature function and s the scalar curvature of M™. In addition, let o : M? —s N3(c)
be an isometric immersion from a surface to a three-dimensional space form. Then ¢ is f-biminimal if and
only if
1Af 1

AH—2(2H2—G 2f—|—2)\)H—gmdlnf(H):O (3.15)

for some A € R.

Proof Let {e;}, 1 < i < m be a local geodesic orthonormal frame of M™, {ki,ks,...,ky} its principal

curvatures, and B its second fundamental form. Then using the proof of Corollary 3.2. in [12], we have
I|B||* = m*H? — s + m(m — 1)c

and
Ricci(n,n) = me.

By use of Proposition 3.1, we obtain

A
AH — (mQH2 —s+m(m—2)c— Tf + )\) H —2gradln f (H) = 0. (3.16)
For ¢ : M? — N3(c), substituting m = 2 into equation (3.16), we get the result. O

Remark 3.1 In Proposition 3.1 and Corollary 3.1, if we take f as a constant, we obtain Proposition 3.1 and
Corollary 3.2 in [12].

571



GURLER and OZGUR/Turk J Math

4. Examples of f-biminimal surfaces

In the present section, we give some examples of f-biminimal surfaces. To obtain examples of free f-biminimal

surfaces, similar to Theorem 2.3 in [15], we state the following theorem:

Theorem 4.1 ¢ : (M2,g) — (N™, h) is a free f-biminimal map if and only if ¢ : (M27f_1g) — (N"™,h)
18 a free biminimal map.

Proof Using equation (1.6), ¢ : (M?2,g) — (N™, h) is a free f-biminimal map if and only if

fra (0. 0)]* = Flralo. @ + A [l gl +2[VEuyr(o.9)] =0,

which is equivalent to

(o9l + (Al f+ || grading I2) [r(@))* + 2[5,y 7(0)] =0

Furthermore, by Corollary 1 in [14], the relationship between the bitension field [r2(,¢)]" and that of map
p: (M2,§ = F_2g) — (N™, h) is given by

1L 4 1 2 2 112 1 © +
[r2(0.9)]" = F* [, 9)] + (Al F?+ || gradn F? ||?) [1(¢)] ™ +2 [ngdhlpﬂ(@)] = 0.

Then map ¢ : (M?,g=F~2g) — (N™,h) is free biminimal if and only if

e ) + (Al P4 | gradin B2 ) [r(@)* +2 [V2 . par(0)] =00 (4.1)

Substituting F? = f into equation (4.1), we obtain the result. O
Examples

1. Let us consider the cone on a free biminimal curve on S? with
¢ (S%d0%) — (R*\ {0} = R x,2 S*,dt* + t°d0?) .

Then it is a free biminimal surface [12], where x;2 denotes the warped product. Hence, from Theorem 4.1,
@ (S?, fd6?) — (R3\ {0} = R x42 S?,dt? + t?d6?) is a free f-biminimal surface.
1

2. Let f: I — R? be the logarithmic spiral whose curvature k = T5s and o : I — R3 be a helix of

the cylinder on the plane curve 8 with its Frenet frame {T', N, B}. Then the envelope S of o parametrized by
X:(R%,g) — (R%,9), X(u,s) = a(s) +u(B+T) is a free biminimal surface [12]. Hence, from Theorem 4.1,
X (R{fg) — (R3,§) is a free f-biminimal surface.

3. The circular cylinder ¢ : D = {(u,v) € (0,27) x R} — R? with ¢(u,v) = (rcosu,rsinu,v) is an
f-biminimal surface for f(u) = Cle‘/wu + C’ge*\/w“7 where C7 and Cs are real constants. It is easy
to see that this surface with f(u) = C; eV=I=A%u 4 e~V =1=2%u s not an f-biharmonic surface because if %]
is f-biharmonic, then using Theorem 3.2 of [15] we get A = 0. Then the function f is indefinite, so this surface
can not be f-biharmonic and free f-biminimal. Moreover, using Proposition 3.1 of [12], we obtain that ¢
cannot be biminimal unless A = *%2' This shows that the f-biharmonicity, biminimality, and f-biminimality

of ¢ are different.
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5. f-Biminimal Legendre curves in Sasakian space forms
Let (M™% ¢, &,n,9) be a contact metric manifold. If the Nijenhuis tensor of ¢ equals —2dn ® &, then

(M 2mtl p Eom, g) is called a Sasakian manifold [2]. If a Sasakian manifold has constant @-sectional curvature

¢, then it is called a Sasakian space form. The curvature tensor of a Sasakian space form is given by

R(X, V)7 = 3

(9, 2)X — g(X, 2)V} + “ 5 {o(X,02)9 — g(¥, p2)pX

+29(X, pY)pZ +n(X)n(2)Y —n(Y)n(Z2)X

+9(X, Z)n(Y)§ — g(Y, Z)n(X)E} (5.1)

forall X,Y,Z € TM [3].

A submanifold of a Sasakian manifold is called an integral submanifold if n(X) = 0 for every tangent
vector X . A 1-dimensional integral submanifold of a Sasakian manifold is called a Legendre curve of M . Hence,
acurve v : I — M = (M?™! ¢, &, n,g) is called a Legendre curve if (T’) = 0, where T is the tangent vector
field of v [3].

We can state the following theorem:

Theorem 5.1 Let 7 : (a,b) — M be a nongeodesic Legendre Frenet curve of osculating order r in a Sasakian

space form M = (M2m+1, gp,f,n,g) . Then ~ is f-biminimal if and only if the following three equations hold:

! 1
-1
k'lll — k‘% — k‘lkg =+ (CIS) k1 + 2]€’1f7 + ]{117 — k1 + 3(64 ) [/ﬂlg(ng, EQ)Q]L =0,
, , " 3(c—1
ks (k) + 2huks T+ 2O g, B2)g(er. B2)) =0,
and
3(c—1
bukaks + 2 [ (o, B)g(oT, B = 0.

Proof Let M = (M?™F! o & n,g) be a Sasakian space form and 7 : (a,b) — M a Legendre Frenet curve

of osculating order r. Differentiating

n(T) =0
and using Definition 2.1, we obtain
n(Ez) = 0. (5.2)
Then using equations (5.1) and (5.2), we have
3 -1
R(T, VTT)T = _kl (le_ )Eg — 3]€1 (C 1 )g((pT, EQ)LPT (53)

By use of equations (2.5), (2.9), and (5.3) in equation (1.6), we find

(c+3)
4

/ i /
ki + 2k’1f7 + k17 - Akl) E; + (k;kg + (kik) + 2k1k2J}) F;5

(k’{ k2 +
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3(c—1)

T [kig(eT, B2)eT]" =0. (5.4)

+ (k1koks) By +

Then taking the scalar product of equation (5.4) with Es, FE3,and Ej, respectively, we obtain the desired
results. O

Let us recall some notions about the Sasakian space form R*™+1(-3) [3]:
Let us take M = R?>™*! with the standard coordinate functions (a1, ..., @m, Y1, Ym, ), the contact

structure n = %(dz — 3" yidx;), the characteristic vector field & = 2%, and the tensor field ¢ given by

0 d; O
Y = —(Sij 0 0
0 Y 0

The Riemannian metric is ¢ = n® n + iz ((dxi)2 + (dyi)2) . Then (M2m+1,<p,§,77,g) is a Sasakian space
i=1

form with constant ¢-sectional curvature ¢ = —3 and it is denoted by R?™*1(—3). The vector fields
0 0 0 0
Xi:277 XZ m = XZ:2 1a_/) 1§ S ) :277 5.5
By Kim = ¢ (axi-%y ;) i<m, =25 (5.5)

form a g-orthonormal basis and the Levi-Civita connection is calculated as
VX =Vx 0 Xjtm =0, Vx, Xj1m = 65§, Vx,,,.X; = —04§,

Vx,§=VeXi = —Xonti, Vxi ., 6§ =VeXipm =X

(see [2]).

Now let us produce an example of f-biminimal Legendre curves in R®(—3) :

Example Let v = (71,...,75) be a unit speed Legendre curve in R3(—3). The tangent vector field of v is

1
T= 3 {3 X1 + 74X + 71 Xs + 7 Xa + (05 — 7173 — Y974) €} -
Using the above equation, since «y is a unit speed Legendre curve, we have n(T) = 0 and ¢(7',T) = 1; that is,

Y5 = V178 + Va4

and
() + .+ (15)? =4

For a Legendre curve, we can use the Levi-Civita connection and equation (5.5) to write

1

Vol =5 (V5 X1 4+ 71 Xo + 7/ X3 + 75 X4), (5.6)
1

OT = - (=1 X1 — 19 Xo +13X3 + 7, Xy) . (5.7)

2
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Equations (5.6) and (5.7) and ¢T L E5 hold if and only if

N N i i

Y17Y3 T Y2V4 = Y31 T Va2

Finally, we can give the following explicit example:

Let us take v(t) = (sin2t, — cos 2t,0,0,1) in R?(—3). Using the above equations and Theorem 5.1, v is

an f-biminimal Legendre curve with osculating order r = 2, ky =2, f =et, ©T L FEy. We can easily check

that the conditions of Theorem 5.1 are verified. Using Theorem 3.1 of [7], the curve « is not f-biharmonic.

For X\ # —4, it is easy to see that « is not biminimal. Hence, the biminimality and f-biminimality of v are

different unless A = —4.
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