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Abstract. We give an efficient exhaustive search algorithm to enumer-
ate 6×6 bijective S-boxes with the best known nonlinearity 24 in a class of
S-boxes that are symmetric under the permutation τ(x) = (x0, x2, x3, x4,
x5, x1), where x = (x0, x1, . . . , x5) ∈ F6

2. Since any S-box S : F6
2 → F6

2

in this class has the property that S(τ(x)) = τ(S(x)) for all x, it can
be considered as a construction obtained by the concatenation of 5×5
rotation-symmetric S-boxes (RSSBs). The size of the search space, i.e.,
the number of S-boxes belonging to the class, is 261.28. By performing our
algorithm, we find that there exist 237.56 S-boxes with nonlinearity 24 and
among them the number of differentially 4-uniform ones is 233.99, which
indicates that the concatenation method provides a rich class in terms of
high nonlinearity and low differential uniformity. Moreover, we classify
those S-boxes achieving the best possible trade-off between nonlinear-
ity and differential uniformity within the class with respect to absolute
indicator, algebraic degree, and transparency order.

1 Introduction

The design of vectorial Boolean functions, or so-called S-boxes, is one of the most
important subjects in secret-key cryptography since the S-boxes are the only non-
linear parts of iterated block ciphers, providing confusion for the cryptosystem. It
is usually crucial for an S-box to be bijective, e.g. in a Substitution-Permutation
Network (SPN), which in practice is required to exist in even dimension for im-
plementation efficiency. Constructing such S-boxes with desirable cryptographic
properties such as high nonlinearity, low differential uniformity, and high al-
gebraic degree is essential in order to resist against linear [20], differential [1],
and higher order differential [17] cryptanalyses, respectively. For instance, the
SPN-based block cipher Advanced Encryption Standard (AES) uses the S-box
affine equivalent to the inverse function [24] over F28 , which achieves the best
known trade-off (in dimension 8) among these cryptographic properties, i.e.,
the nonlinearity 112, differential uniformity 4, and maximum possible algebraic
degree 7. Yet, in even dimension n, there are very few differentially 4-uniform
constructions that are bijective with the nonlinearity 2n−1−2

n
2 (conjectured [7]

to be the maximum) in the relevant literature (e.g., Gold [10], Kasami [11], the



binomial function [3], and the constructions in [2, 18, 19, 31]). In fact, most of
these constructions exhibit some potential weaknesses; for instance, the bino-
mial function and the power mappings except the inverse and Kasami functions
have low algebraic degrees, which should be greater than 3 to provide robustness
against higher order differential cryptanalysis. In addition, there exists only one
sporadic example of an Almost Perfect Nonlinear (APN; that is, differentially
2-uniform) permutation in dimension n=6, identified [4] in 2009. It is well-known
that there is no APN bijections over F22 and F24 , and the construction of more
APN bijections over F2n for even n ≥ 6 is an important open problem.

Recall that in [9], a cryptographic criterion, so-called the non-possession of
linear redundancy, was proposed as an indicator of randomness for S-boxes. Let
mlr denote the number of distinct (extended) affine equivalence classes to which
the component Boolean functions of an S-box belong. For any S-box described as
a power map over F2n , it is well-known that mlr = 1 (notice that mlr = 1 for the
AES S-box), and hence such S-boxes are considered [9] as a potential source of a
new cryptanalysis. For our case, if we take the symmetric S-boxes into account
in terms of linear redundancy, mlr can be at most one less than the number
of distinct orbits (which can be deduced from Corollary 5 in [13]). However,
we here focuse only on the most important cryptographic properties mentioned
previously and do not analyze our results in terms of linear redundancy.

While the aforementioned cryptanalytic attacks are realized independently
from the hardware or software implementation of a cryptographic system, the
side channel analysis (SCA) can be mounted using the information leaked through
its implementation such as the timing of operations [15], power consumption [16],
and electromagnetic radiation [28]. Therefore, the resistance of cryptographic
primitives against SCA attacks is of great importance as well. In this class of at-
tacks, one of the most powerful is the differential power analysis (DPA) attacks,
which have received significant attention from cryptographers for nearly two
decades. In 2005, the DPA resistivity of an S-box was quantified [27] introduc-
ing the notion of transparency order (TO). A decade later, the definition of TO
was modified [6] by taking the cross-correlation terms between the coordinate
functions into account. We here use the former definition [27] in our classifica-
tion, for which its validity has been verified by several implementation results
on cryptographic devices such as SASEBO-GII board [21–23] and ATmega163
smartcard [25, 26].

In this paper, we aim to classify 6×6 bijective S-boxes with nonlinearity ≥ 24
and differential uniformity ≤ 4 belonging to a rich class in terms of these cryp-
tographic properties, for which the search space is of size 261.28, with respect
to absolute indicator, algebraic degree, and transparency order. This class cor-
responds to the S-boxes that are symmetric under the permutation τ(x)=(x0,
x2, x3, x4, x5, x1), where x=(x0, x1, . . . , x5) ∈ F6

2 (an n×n S-box is called sym-
metric under a permutation π if it satisfies S(π(x)) = π(S(x)) ∀x ∈ Fn2 ). In [13],
all 6! permutations are classified up to the linear equivalence of 6×6 S-boxes that
are symmetric under them, and 11 different classes are obtained. Among these
classes, the one for which the S-boxes are symmetric under the representative



permutation σ(x)=(x0, x4, x1, x2, x5, x3) seems to be rich in terms of desirable
cryptographic properties, since highly nonlinear S-boxes with low differential
uniformity could be obtained [13] in this class by heuristic search. In fact one
can find that (using Proposition 13 in [13]) the latter class is linearly equiva-
lent to the former one. We here prefer using the former permutation, since in
this case the S-boxes can be interpreted as those obtained by the concatenation
of two 5×5 RSSBs and of two 5-variable rotation-symmetric Boolean functions
(RSBFs). Notice that since an RSSB can be represented by a single rotation-
symmetric Boolean function (RSBF), all the output bits of an S-box that is
symmetric under τ can be described by only four 5-variable RSBFs, which can
be utilized to provide implementaton advantages in both hardware or software.

Note that the class of 6×6 bijective RSSBs with nonlinearity 24 and differ-
ential uniformity 4 (which is the best possible trade-off within the class) are
classified in [13] in terms of algebraic degree and absolute indicator (later their
TOs are computed in [8]). This class corresponds to another one among the
aforementioned 11 classes. The search strategy in [13] uses the fact that some
of the component functions of an n×n RSSB are k-rotation-symmetric Boolean
functions (k-RSBFs) [12], and thus it is mainly based on first sieving some of
these k-RSBFs and then regenerating the RSSBs containing those k-RSBFs.
Here, since none of the component functions of an S-box (symmetric under the
permutation τ) is a k-RSBFs, it is not possible to apply the search method of [13].
Hence, we give a different search strategy in which the 5×5 RSSBs mentioned
above are eliminated efficiently.

The remainder of this paper is organized as follows. In the following section,
we provide some preliminaries and technical background on the symmetric S-
boxes constructed by the concatenation of RSSBs. In Section 3, we present our
search strategy to enumerate 6×6 bijective S-boxes having nonlinearity 24 that
are symmetric under the permutation τ . The classification results of those with
differential uniformity 4 are presented in Section 4, and we draw our conclusions
in Section 5.

2 Preliminaries

2.1 Cryptographic Properties

For completeness, we briefly review the basic definitions regarding to the cryp-
tographic properties of the S-boxes. Let us consider an n×m S-box S : Fn2 → Fm2
and represent S as a composition of m Boolean functions f0, f1, . . . , fm−1 each
of which is a mapping from Fn2 to F2, that is, S(x) = (f0(x), f1(x), . . . , fm−1(x))
for all x ∈ Fn2 . The functions (fi)0≤i≤m−1 are called the coordinate functions,

and their linear combinations
⊕m−1

i=0 vifi with non all-zero masking (or coeffi-
cient) vectors v = (v0, v1, . . . , vm−1) ∈ Fm2 are called the component functions.

Algebraic degree. There are two notions of the algebraic degree relevant to
cryptography [5]: The maximum degree of the coordinate functions and the



minimum degree of the component functions, which we denote as dmax and
dmin respectively. The degree of a component (or coordinate) function can be
computed using the algebraic normal form (ANF) of a Boolean function f(x) of
n-variable x = (x0, x1, . . . , xn−1) ∈ Fn2 , which is a unique representation in the
form of a multivariate polynomial over F2,

⊕
u∈Fn

2

au

(
n−1∏
i=0

xui
i

)
,

where the coefficients au ∈ F2. The algebraic degree, or simply the degree of f
is defined as the maximum Hamming weight of u such that au 6= 0. A Boolean
function is called affine if its algebraic degree is ≤ 1. An affine function with zero
constant term is called a linear function.

Nonlinearity. Nonlinearity of S is defined as the minimum Hamming distance
of all 2m−1 component functions from all n-variable affine functions, which can
be expressed in terms of its Walsh transformation defined as an even integer-
valued function WS : Fn2×Fm2 → [−2n, 2n]:

WS(ω, v) =
∑
x∈Fn

2

(−1)ω·x⊕v·S(x),

where the inner product is over F2, ω ∈ Fn2 , and v ∈ Fm2
∗. It can be seen that if

one of the component functions v·S(x) is affine, then the maximum value in the
absolute Walsh spectrum is 2n, giving rise to zero nonlinearity. Nonlinearity of
S is then given by

NLS = 2n−1−1

2
max
ω∈Fn

2 ,
v∈Fm

2
∗

|WF (ω, v)|.

Diferential Uniformity. The differential uniformity δ [24] of S is defined as
the maximum number of solutions of the equation S(x)⊕S(x⊕γ) = β, where
γ 6= (0, 0, . . . , 0), i.e.,

δ = max
γ∈Fn

2
∗,

β∈Fm
2

|{x ∈ Fn2 |S(x)⊕S(x⊕γ) = β}| ,

Accordingly, S is called differentially-δ uniform.

Absolute Indicator. The absolute indicator is an important cryptographic
criterion related to the autocorrelation spectrum, which is used to have good
diffusion properties. The autocorrelation function of S is defined as

rS(a, v) =
∑
x∈Fn

2

(−1)v·(S(x)⊕S(x⊕a)),



where a ∈ Fn2 . The maximum absolute value in the autocorrelation spectrum,
except those values for all-zero input difference and masking vectors, is referred
to as the absolute indicator, denoted as

∆S = max
a∈Fn

2
∗,

v∈Fm
2

∗

|rS(a, v)|.

Transparency Order. For an n×m S-box S, it is given [6] by

τS = m− 1

22n−2n

∑
a∈Fn

2
∗

∣∣∣∣∣∣∣∣
∑
v∈Fm

2 ,
wt(v)=1

rS(a, v)

∣∣∣∣∣∣∣∣ .
In the following, we first restate some basic definitions related to RSSBs and

then explain our method to construct a bijective S-box that is symmetric un-
der the permutation τ(x)=(x0, x2, x3, x4, x5, x1) as a concatenation of two 5×5
RSSBs. After that, the search space of size 261.28 (mentioned in Introduction) is
partitioned into four subspaces, each of which is traversed efficiently as explained
in Section 3.

2.2 (Concatenation of) RSSBs

Rotation-symmetric S-boxes (RSSBs) were defined in [29]. Let

ρk(x0, x1, . . . , xn−1) = (x0+k (mod n), x1+k (mod n), . . . , xn−1+k (mod n))

be the k-cyclic shift operator. An S-box S : Fn2 → Fm2 is called rotation-
symmetric if ρk(S(x)) = S(ρk(x)) ∀ x = (x0, x1, . . . , xn−1) ∈ Fn2 and 1 ≤ k ≤ n.
If m = 1, then it is called rotation-symmetric Boolean function (RSBF). Let S
be generated from s : F2n → F2n using a normal basis for F2n . Then, as indicated
in [29], the S-boxes satisfying (s(α))2 = s(α2), ∀ α ∈ F2n , can be regarded as
rotation-symmetric. In the rest of this paper, we consider the S-boxes for which
m = n.

The orbit of x ∈ Fn2 under the cyclic rotation is given by the set Gn(x) =
{ρk(x) | 1 ≤ k ≤ n}. Let gn be the number of distinct orbits. Using Burnside’s
Lemma, it can be shown [30] that gn = 1

n

∑
t|n φ(t)2

n
t (≈ 2n

n ), where φ(t) is the

Euler’s phi-function. The lexicographically first element within the ith orbit is
called the orbit representative and denoted by Λi, where 1 ≤ i ≤ gn.

Since an n×n RSSB S is uniquely defined by its outputs for the orbit rep-
resentatives Λi’s, the concatenation F : Fn+1

2 → Fn2 of two n×n RSSBs S1 and
S2, described by F (x) = (x0⊕1)S1(x1, ..., xn)+x0S2(x1, ..., xn), is denoted as

(S1(Λ1), ..., S1(Λgn))||(S2(Λ1), ..., S2(Λgn)),

or simply as S1||S2, where x = (x0, x1, ..., xn) ∈ Fn+1
2 . Let f : Fn+1

2 → F2 be
a Boolean function such that the S-box S : Fn+1

2 → Fn+1
2 , given by S(x) =



(f(x), F (x)), is bijective and symmetric under the permutation τ(x) = (x0, x2,
x3, . . . , xn, x1). Then, notice that as f is invariant under τ , f(x) is either equal
to 1 or 0 for all cyclic rotations of (x1, ..., xn). In addition, since S is bijective,
the outputs of F contain all the orbit representatives Λi’s, i = 1, 2, . . . , gn, and
these orbit representatives are pairwise the same with one another. Accordingly,
for such a pair f(x)=1 for one orbit and f(x)=0 for the other one.

More specifically, let Hn(x) and Hn(x′) be two distinct sets with the same
cardinality, where Hn(x) = {τk(x)|1 ≤ k ≤ n}. Then, for all Λi there ex-
ist ν, µ ∈ Gn(Λi) such that F (τ l(x))=ρl(ν) and F (τ l(x′))=ρl(µ) for which
f(τ l(x))=e and f(τ l(x′))=e⊕1 ∀ l=1, . . . , n, where e ∈ F2. As a consequence, f
is a balanced function such that it is a concatenation of two n-variable RSBFs
f1 and f2, i.e., f(x)=(x0⊕1)f1(x1, . . . , xn)+x0f2(x1, . . . , xn), and the number of
f ’s to construct a bijective S given the concatenation F is equal to 2gn .

2.3 Partitioning Search Space

As already mentioned, the concatenation F = S1||S2 contains each orbit rep-
resentative Λi pairwisely in its outputs, from which one can see that both the
S-boxes S1 and S2 follow a certain structure. For instance, if one of the RSSBs
has a pair of the same orbit representatives in its outputs, then the other one
cannot have these outputs. Following this argument, the output orbit represen-
tatives of S1 can be completely determined given those of S2, and vice versa.
For our case n=5, the number of orbits g5=8 such that six of them are of size 5
and the rest two are of size 1. Therefore, F contains four orbits of size 1, that is,

(F (0, Λ1), F (0, Λ8), F (1, Λ1), F (1, Λ8)) = (S1(Λ1), S1(Λ8), S2(Λ1), S2(Λ8))

∈ P(Λ1, Λ1, Λ8, Λ8),

where Λ1 and Λ8 are the all-zero and all-one vectors, respectively, and P(Λ1,
Λ1, Λ8, Λ8) is the set of permutations of {Λ1, Λ1, Λ8, Λ8}. Similarly, the outputs
(f(0, Λ1), f(0, Λ8), f(1, Λ1), f(1, Λ8)) ∈ P(0, 0, 1, 1).

Now, let us consider the output orbits of size 5. In this case, since the S-box
S = (f, F ) is bijective, any choice of the output orbit representatives for both
S1 and S2 belong to one of the following four sets:

1. S0={(Λ2, . . . , Λ7)},
2. S1={(Λi1 , . . . , Λi6) | i1 = i2, i1 6= i3 6= i4 6= i5 6= i6},
3. S2={(Λi1 , . . . , Λi6) | i1 = i2, i3 = i4, i1 6= i3 6= i5 6= i6},
4. S3={(Λi1 , . . . , Λi6) | i1 = i2, i3 = i4, i5 = i6, i1 6= i3 6= i5},

where i1, . . . , i6 ∈ {2, . . . , 7} and (Λi1 , . . . , Λi6)’s are different up to permutation.
As can be seen, the set S0 consists of only one choice (Λ2, . . . , Λ7) for the output
orbit representatives, which implies that all the output orbits (of size 5) are
different from each other for both S1 and S2. The other sets are interpreted
similarly, e.g., if the representatives of the output orbits of S1 belong to S1,
then those of S2 should also belong to S1, and each of S1 and S2 have one pair



of the same orbit representatives in their outputs. Notice that the numbers of
the choices for the sets S1, S2, and S3 are

(
6
1

)(
5
4

)
=30,

(
6
2

)(
4
2

)
=90, and

(
6
3

)
=20,

respectively.

Here, we give an example which shows that given the output orbit represen-
tatives of S1, those of S2 and all possible choices of the Boolean function f can
be completely found.

Example 1. Let

(S1(Λ1), . . . , S1(Λ8)) = (F (0, Λ1), . . . , F (0, Λ8)) =

(1, π1(ρk1(Λ4), ρk2(Λ4), ρk3(Λ7), ρk4(Λ7), ρk5(Λ2), ρk6(Λ3)),0),

where (k1, ..., k6) ∈ {1, ..., 5}6, π1 is any permutation of the six outputs, 0 and 1
are the all-zero and all-one vectors, respectively. It can be seen that the output
orbit representatives (of size 5) of S1 belong to the set S2. Hence, those of S2

should also belong to the same set as given below:

(S2(Λ1), . . . , S2(Λ8)) = (F (1, Λ1), . . . , F (1, Λ8)) =

(u, π2(ρl1(Λ5), ρl2(Λ5), ρl3(Λ6), ρl4(Λ6), ρl5(Λ2), ρl6(Λ3)), u⊕1),

where u ∈ {0,1}, (l1, ..., l6) ∈ {1, ..., 5}6, and π2 is also a permutation. Further,
if F (x) = F (x′) for two distinct x, x′ ∈ F6

2, then f(τ l(x′)) = f(τ l(x))⊕1 ∀ 1 ≤
l ≤ 5. For instance, considering the orbits Λ1 and Λ8, if (F (0, Λ1), F (0, Λ8),
F (1, Λ1), F (1, Λ8)) = (1,0,0,1) (i.e. u = 0), then

(f(0, Λ1), f(0, Λ8), f(1, Λ1), f(1, Λ8)) ∈
{(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)}.

Otherwise, if (F (0, Λ1), F (0, Λ8), F (1, Λ1), F (1, Λ8)) = (1,0,1,0) (i.e., u = 1),
then

(f(0, Λ1), f(0, Λ8), f(1, Λ1), f(1, Λ8)) ∈
{(0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 1, 0, 0)}.

Let us refer to the set of S-boxes S = (f, F ) for which the output orbit rep-
resentatives (other than Λ1 and Λ8) of both S1 and S2 belong to Sk as ‘Set-k’,
k = 0, 1, 2, 3. Then, each Set-k is generated by the algorithm given below.



Algorithm 1: Forming Set-k from the orbit representatives in Sk.

Input: Sk
Output: Set-k

1 Set-k is empty;
2 for each (S1(Λ1), S1(Λ8), S2(Λ1), S2(Λ8)) ∈ P(Λ1, Λ1, Λ8, Λ8) do
3 for each (S1(Λ2), ..., S1(Λ7)) ∈ Sk do
4 for each (S1(Λ2), ..., S1(Λ7)) ∈ P(S1(Λ2), ..., S1(Λ7)) do
5 Determine the output orbits of S2 from S1;
6 for each (S2(Λ2), ..., S2(Λ7)) ∈ P(S2(Λ2), ..., S2(Λ7)) do

7 for each (k1, ..., k6) ∈ {1, ..., 5}6 do
8 S1 = (S1(Λ1), ρk1(S1(Λ2)), ..., ρk6(S1(Λ7)), S1(Λ8));

9 for each (l1, ..., l6) ∈ {1, ..., 5}6 do
10 S2 = (S2(Λ1), ρl1(S2(Λ2)), ..., ρl6(S2(Λ7)), S2(Λ8));
11 F = S1||S2;

12 F = {f : F6
2 → F2|f(τ l(x)) = f(τ l(x′))⊕1,

for all two distinct x, x′ ∈ F5
2 s.t. F (x) = F (x′)};

13 for each f ∈ F do
14 Add S = (f, F ) to the Set-k;
15 end

16 end

17 end

18 end

19 end

20 end

21 end

In the algorithm, we see that |P(Λ1, Λ1, Λ8, Λ8)|=6, |F|=28, and the number
of all rotations is equal to 512 (as can be seen from the fifth and sixth loops of the
algorithm) for each Set-k. Hence, the number of S-boxes, e.g., in Set-1 is com-
puted as 6×30×3602×512×28 ≈ 260.34, since |S1|=30 and |P(S1(Λ2), ..., S1(Λ7))|
=|P(S2(Λ2), ..., S2(Λ7))|=360 for all (S1(Λ2), ..., S1(Λ7)), (S2(Λ2), ..., S2(Λ7)) ∈
S1. Similarly, the numbers of S-boxes in Set-0, Set-2, and Set-3 are found to be
257.43, 259.92, and 255.75, respectively.

3 Search Strategy

In this section, we present our search strategy, which can be considered as a
three step process, to enumerate the S-boxes with nonlinearity 24 in each of the
subsets Set-k, k = 0, 1, 2, 3, formed by Algorithm 1.

3.1 Sieving Affine Equivalent Concatenations

Recall that the number of pairwise the same orbit representatives in the outputs
of S1 should be the same as the number of those in the outputs of S2. Let



S
(k)
j denote the RSSB Sj (j = 1, 2) for which this number is represented by

k ∈ {0, 1, 2, 3}. Then, taking all possible permutations of (S
(k)
1 (Λ1), S

(k)
1 (Λ8),

S
(k)
2 (Λ1), S

(k)
2 (Λ8)) into account, the number of choices in Sk is multiplied by

6. More specifically, it can be computed as
(
6
k

)
×
(
6−k
6−2k

)
×6 for each Sk. Here, we

sieve some of these choices leading to affine equivalent S-boxes, due to the fact
that the nonlinearity is invariant under affine transformations.

Let us define the circulant matrix Ci(a), used in the following proposition,
which is formed by taking a=(a0, a1 . . . , an−1) ∈ Fn2 as the first row and rotating
each row i-bit to the left relative to the preceding row, where 1 ≤ i ≤ n:

Ci(a)=


a

ρi(a)
...

ρ(n−1)i (mod n)(a)

 .

The proposition given below defines some affine transformations (which can be
obtained using those among the RSSBs given by Proposition 8 in [13]) among
the concatenations.

Proposition 1. Let F = (S1||S2) be a concatenation of two n×n RSSBs S1 and
S2. Then each of the following functions, denoted by F ′, is also a concatenation
of two n×n RSSBs and affine equivalent to F :

1. (complement) F ′(x) = F (x)⊕1,
2. (reverse) F ′(x) = F (x⊕1),
3. (transposition) F ′ = (S2||S1),
4. (circulant matrix multiplication) F ′(x) = F (xDq(a))Cp(b),

where p, q are co-prime to n such that pq ≡ 1 (mod n), Dq(a)=


1 0 · · · 0
0

Cq(a)
...
0

 ,
a, b ∈ Fn2 , x ∈ Fn+1

2 , and Cq(a), Cp(b) are nonsingular circulant matrices over
F2.

Using these transformations (or their compositions) we sieve the aforementioned
choices for the output orbit representatives, which generate affine equivalent S-
boxes as shown by the next proposition.

Proposition 2. Let S(x) = (f(x), F (x)) be an (n+1)×(n+1) symmetric S-box
under the permutation τ(x) = (x0, x2, x3, . . . , xn, x1), where x = (x0, x1, . . . , xn)
∈ Fn+1

2 , f is an (n+1)-variable Boolean function, and F is a concatenation of
two n×n RSSBs. Assume that F ′, also a concatenation of two n×n RSSBs, is
obtained by the affine transformations given by Prop. 1. Then, there exists an
(n+1)-variable Boolean function f ′ such that S ′ = (f ′, F ′) is symmetric under
τ and affine equivalent to S.



Proof. It is easy to prove for the first three affine transformations in Prop. 1.
Let us consider the last one, i.e., circulant matrix multiplication. Then, we have

S ′(x) = (f ′(x), F ′(x))

= (f(xDq(a)), F (xDq(a))Cp(b))

= (f(xDq(a)), F (xDq(a)))Dp(b)

= S(xDq(a))Dp(a),

where f ′(x) = f(xDq(a)) ∀ x ∈ Fn+1
2 , which shows that S and S ′ are affine

equivalent. Next, we get the following:

S ′(τ(x)) = S(τ(x)Dq(a))Dp(b)

= (f(τ(x)Dq(a)), F (τ(x)Dq(a))Cp(b))

= (f(x0, ρ(x1, . . . , xn)Cq(a)), F (x0, ρ(x1, . . . , xn)Cq(a))Cp(b))

= (f(x0, ρ
n−q((x1, . . . , xn)Cq(a))), F (x0, ρ

n−q((x1, . . . , xn)Cq(a)))Cp(b))

= (f(τn−q(x0, (x1, . . . , xn)Cq(a))), ρn−q(F (x0, (x1, . . . , xn)Cq(a)))Cp(b))

= (f(x0, (x1, . . . , xn)Cq(a)), ρ(n−q)(n−p)(F (x0, (x1, . . . , xn)Cq(a))Cp(b)))

= (f(x0, (x1, . . . , xn)Cq(a)), ρ(F (x0, (x1, . . . , xn)Cq(a))Cp(b)))

= (f(xDq(a)), ρ(F (xDq(a))Cp(b)))

= τ(S(xDq(a))Dp(b))

= τ(S ′(x)),

which follows from the fact that ρ(x1, . . . , xn)Cq(a) = ρn−q((x1, . . . , xn)Cq(a)),
where ρ is the cyclic shift operator. Hence, S ′ is also symmetric under τ . ut

As mentioned previously, for k = 0, 1, 2, 3 the number of choices (obtained
by considering the 6 combinations of the orbits of size 1) for Sk can be found
as 6, 180, 540, 120, respectively. After sieving those yielding affine equivalent
concatenations these numbers are reduced to 2, 8, 21, and 9, respectively. In
Table 1, we give these representative choices for each Sk along with the number
of those generating affine equivalent S-boxes.

In addition, it is clear that any S-box obtained by rotating all of the outputs
of an RSSB by the same number of positions is also an RSSB and this operation is
an affine transformation (for which a more general form is given by the last item
of Proposition 1). Hence, we set F (0, 0, 0, 0, 0, 1) = Λi, for any i ∈ {2, 3, . . . , 7},
where Λi is an orbit representative with orbit size 5, in order to remove affine
equivalent concatenations. This provides a reduction of the search space by a
factor of 1

5 .

At the end of this step, the number of S-boxes in Set-k reduces from 257.43,
260.34, 259.92, and 255.75 to 253.52, 253.52, 252.92, and 249.69, respectively. Hence,
the total search space reduces from 261.28 to 254.97.



Table 1. The representative choices and the number (Ni) of those for which the con-
catenations (S1||S2) are affine equivalent for Sk, k = 0, 1, 2, 3.

i S1 S2 Ni

S0
1 (Λ1,Λ2,Λ3,Λ4,Λ5,Λ6,Λ7,Λ1) (Λ8,Λ2,Λ3,Λ4,Λ5,Λ6,Λ7,Λ8) 2
2 (Λ1, Λ2, Λ3, Λ4, Λ5, Λ6, Λ7, Λ8) (Λ8, Λ2, Λ3, Λ4, Λ5, Λ6, Λ7, Λ1) 4

S1

1 (Λ1,Λ2,Λ2,Λ3,Λ4,Λ5,Λ6,Λ1) (Λ8,Λ3,Λ4,Λ5,Λ6,Λ7,Λ7,Λ8) 6
2 (Λ1, Λ2, Λ2, Λ3, Λ4, Λ5, Λ7, Λ1) (Λ8, Λ3, Λ4, Λ5, Λ6, Λ6, Λ7, Λ8) 24
3 (Λ1,Λ2,Λ2,Λ3,Λ5,Λ6,Λ7,Λ1) (Λ8,Λ3,Λ4,Λ4,Λ5,Λ6,Λ7,Λ8) 12
4 (Λ8, Λ2, Λ2, Λ3, Λ4, Λ5, Λ6, Λ8) (Λ1, Λ3, Λ4, Λ5, Λ6, Λ7, Λ7, Λ1) 6
5 (Λ8, Λ2, Λ2, Λ3, Λ5, Λ6, Λ7, Λ8) (Λ1, Λ3, Λ4, Λ4, Λ5, Λ6, Λ7, Λ1) 12
6 (Λ1, Λ2, Λ2, Λ3, Λ4, Λ5, Λ6, Λ8) (Λ8, Λ3, Λ4, Λ5, Λ6, Λ7, Λ7, Λ1) 24
7 (Λ1,Λ2,Λ2,Λ3,Λ4,Λ5,Λ7,Λ8) (Λ8,Λ3,Λ4,Λ5,Λ6,Λ6,Λ7,Λ1) 48
8 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ6, Λ7, Λ8) (Λ8, Λ3, Λ4, Λ4, Λ5, Λ6, Λ7, Λ1) 48

S2

1 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ5, Λ1) (Λ8, Λ4, Λ5, Λ6, Λ6, Λ7, Λ7, Λ8) 12
2 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ6, Λ1) (Λ8, Λ4, Λ5, Λ5, Λ6, Λ7, Λ7, Λ8) 12
3 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ7, Λ1) (Λ8, Λ4, Λ5, Λ5, Λ6, Λ6, Λ7, Λ8) 24
4 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ5, Λ7, Λ1) (Λ8, Λ4, Λ4, Λ5, Λ6, Λ6, Λ7, Λ8) 24
5 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ5, Λ6, Λ1) (Λ8, Λ3, Λ4, Λ4, Λ6, Λ7, Λ7, Λ8) 12
6 (Λ1,Λ2,Λ2,Λ3,Λ5,Λ5,Λ7,Λ1) (Λ8,Λ3,Λ4,Λ4,Λ6,Λ6,Λ7,Λ8) 12
7 (Λ1, Λ2, Λ2, Λ4, Λ5, Λ5, Λ6, Λ1) (Λ8, Λ3, Λ3, Λ4, Λ6, Λ7, Λ7, Λ8) 6
8 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ7, Λ7, Λ1) (Λ8, Λ3, Λ4, Λ4, Λ5, Λ6, Λ6, Λ8) 12
9 (Λ8, Λ2, Λ2, Λ3, Λ3, Λ4, Λ5, Λ8) (Λ1, Λ4, Λ5, Λ6, Λ6, Λ7, Λ7, Λ1) 12
10 (Λ8,Λ2,Λ2,Λ3,Λ3,Λ4,Λ7,Λ8) (Λ1,Λ4,Λ5,Λ5,Λ6,Λ6,Λ7,Λ1) 24
11 (Λ8, Λ2, Λ2, Λ3, Λ5, Λ5, Λ6, Λ8) (Λ1, Λ3, Λ4, Λ4, Λ6, Λ7, Λ7, Λ1) 12
12 (Λ8, Λ2, Λ2, Λ3, Λ5, Λ5, Λ7, Λ8) (Λ1, Λ3, Λ4, Λ4, Λ6, Λ6, Λ7, Λ1) 12
13 (Λ8, Λ2, Λ2, Λ4, Λ5, Λ5, Λ6, Λ8) (Λ1, Λ3, Λ3, Λ4, Λ6, Λ7, Λ7, Λ1) 6
14 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ4,Λ5,Λ8) (Λ8,Λ4,Λ5,Λ6,Λ6,Λ7,Λ7,Λ1) 48
15 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ4,Λ6,Λ8) (Λ8,Λ4,Λ5,Λ5,Λ6,Λ7,Λ7,Λ1) 24
16 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ7, Λ8) (Λ8, Λ4, Λ5, Λ5, Λ6, Λ6, Λ7, Λ1) 96
17 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ5,Λ7,Λ8) (Λ8,Λ4,Λ4,Λ5,Λ6,Λ6,Λ7,Λ1) 48
18 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ5, Λ6, Λ8) (Λ8, Λ3, Λ4, Λ4, Λ6, Λ7, Λ7, Λ1) 48
19 (Λ1, Λ2, Λ2, Λ3, Λ5, Λ5, Λ7, Λ8) (Λ8, Λ3, Λ4, Λ4, Λ6, Λ6, Λ7, Λ1) 48
20 (Λ1, Λ2, Λ2, Λ4, Λ5, Λ5, Λ6, Λ8) (Λ8, Λ3, Λ3, Λ4, Λ6, Λ7, Λ7, Λ1) 24
21 (Λ1,Λ2,Λ2,Λ3,Λ5,Λ7,Λ7,Λ8) (Λ8,Λ3,Λ4,Λ4,Λ5,Λ6,Λ6,Λ1) 24

S3

1 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ4, Λ1) (Λ8, Λ5, Λ5, Λ6, Λ6, Λ7, Λ7, Λ8) 6
2 (Λ1,Λ2,Λ2,Λ3,Λ3,Λ5,Λ5,Λ1) (Λ8,Λ4,Λ4,Λ6,Λ6,Λ7,Λ7,Λ8) 12
3 (Λ1, Λ2, Λ2, Λ5, Λ5, Λ6, Λ6, Λ1) (Λ8, Λ3, Λ3, Λ4, Λ4, Λ7, Λ7, Λ8) 2
4 (Λ8,Λ2,Λ2,Λ3,Λ3,Λ4,Λ4,Λ8) (Λ1,Λ5,Λ5,Λ6,Λ6,Λ7,Λ7,Λ1) 6
5 (Λ8, Λ2, Λ2, Λ3, Λ3, Λ5, Λ5, Λ8) (Λ1, Λ4, Λ4, Λ6, Λ6, Λ7, Λ7, Λ1) 12
6 (Λ8, Λ2, Λ2, Λ5, Λ5, Λ6, Λ6, Λ8) (Λ1, Λ3, Λ3, Λ4, Λ4, Λ7, Λ7, Λ1) 2
7 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ4, Λ4, Λ8) (Λ8, Λ5, Λ5, Λ6, Λ6, Λ7, Λ7, Λ1) 24
8 (Λ1, Λ2, Λ2, Λ3, Λ3, Λ5, Λ5, Λ8) (Λ8, Λ4, Λ4, Λ6, Λ6, Λ7, Λ7, Λ1) 48
9 (Λ1, Λ2, Λ2, Λ5, Λ5, Λ6, Λ6, Λ8) (Λ8, Λ3, Λ3, Λ4, Λ4, Λ7, Λ7, Λ1) 8



3.2 Sieving RSSBs S1 and S2

In this step, we generate all the RSSBs S1’s and S2’s used to form the con-
catenation F = (S1||S2). One can see that to construct an S-box S = (f, F )
with nonlinearity ≥ 24, the nonlinearities of S1 and S2 have to be ≥ 8. We find
that for some choices given in Table 1 there are no RSSBs (S1 and S2) with
nonlinearity ≥ 8. More specifically, 6 out of the 21 choices (for S2) and 3 out of
the 9 choices (for S3) in Table 1 generate neither S1 nor S2 with nonlinearity ≥
8, and hence they are removed from the search space. These eliminated choices
are N5, N7, N11, N13, N18, N20 for S2 and N3, N6, N9 for S3. Thus, after this
preprocessing, the search space slightly reduces from 254.97 to 254.86.

Next, we apply a more efficient sieving method to reduce the number of
choices for the output orbit representatives of S1 and S2. Let the sets Ω1 and
Ω2 contain all the S1’s and S2’s generated from one of the remaining choices

after the above elimination, respectively. Let the subset Ω
[t,(ω,v)]
1 of Ω1 denote

the S1’s for which the absolute Walsh spectrum value of a component function
v·S1 at a position ω ∈ F5

2 is equal to t (i.e., |WS1
(ω, v)| = t), where v 6= 0 ∈ F5

2

and t ∈ {0, 2, ..., 16}. Similarly, given the triplet [t, (ω, v)], we constitute the

subsets Ω
[0,(ω,v)]
2 , Ω

[2,(ω,v)]
2 , . . ., Ω

[16−t,(ω,v)]
2 of Ω2. As can be seen, the S1’s in

Ω
[t,(ω,v)]
1 can be concatenated only with the S2’s in ∪i∈{0,2,...,16−t}Ω

[i,(ω,v)]
2 , since

otherwise the nonlinearity of the concatenation F cannot reach to or exceed 24,
leading to the fact that the nonlinearity of S is less than 24. Hence, if there is

no S2 in ∪i∈{0,2,...,16−t}Ω
[i,(ω,v)]
2 , then we update Ω1 by Ω1\Ω[t,(ω,v)]

1 . Note that
the set Ω2 can also be updated similarly considering the concatenations formed

by the S2’s in Ω
[t,(ω,v)]
2 and S1’s in ∪i∈{0,2,...,16−t}Ω

[i,(ω,v)]
1 . In addition, since for

an RSSB S the component functions (v·S) for which the corresponding masking
vectors (v) belong to the same orbit are affine equivalent (Prop. 4 in [13]),
it suffices to apply this procedure only for the masking vectors that are orbit
representatives.

Hence, we have performed the above method for all the triplets [t, (ω, v)],
where the v’s are orbit representatives, and found that the updated sets Ω1 and
Ω2 are empty for some of the remaining choices in Table 1. More specifically, we
find that these choices are N1 for S0, N2, N4, N5, N6, N8 for S1, N1, N2, N3,
N4, N8, N9, N12, N16, N19 for S2, and N1, N5, N7, N8 for S3. Thus, the search
space reduces from 254.86 to 253.63. In Table 1, the choices left after the first two
steps of our search strategy are shown by bold font.

3.3 Sieving Concatenations with nonlinearity < 24

Let the updated sets of Ω1 and Ω2 after the previous step be Ω1 and Ω2, respec-
tively. In this last step, we add the coordinate functions f ’s to the concatenations
F = (S1||S2) obtained from the S1’s in Ω1 and S2’s in Ω2. Here, as we enumer-
ate the S-boxes in the form of S = (f, F ) with nonlinearity ≥ 24, we select only
those f ’s that achieve nonlinearity ≥ 24 among all possible f ’s (recall that given
F , there can be only 2g5 = 28 f ’s making S bijective and symmetric under τ).



In addition, since the nonlinearities of S = (f, F ) and S ′ = (f c, F ) are the same,
where f c is the complement of f , we fix f(0) = 0, which reduces the search
space by half.

To make this step more efficient, we apply a method similar to the one used

in the previous step. Consider the subsets Ω1
[t,(ω,v)]

and ∪i∈{0,2,...,16−t}Ω2
[i,(ω,v)]

of Ω1 and Ω2, respectively. We choose each of the S1’s in the former subset and
each of the S2’s in the latter one. If for some S1 and S2, the nonlinearity of F
≥ 24, then we add each possible coordinate function f to form the S-box S.
If the nonlinearity of S ≥ 24, then we save S in a file. After that, as in the

preceding step, since the S1’s in Ω1
[t,(ω,v)]

cannot be concatenated with any S2’s

in Ω2 except those in ∪i∈{0,2,...,16−t}Ω2
[i,(ω,v)]

, we update Ω1 by Ω1\Ω1
[t,(ω,v)]

.

Note that when we eliminate the S1’s in Ω1
[t,(ω,v)]

, we also eliminate these S1’s
belonging to the other subsets of Ω1. Finally, by performing this procedure for
all the triplets [t, (ω, v)], we reduce the search space to 248.47.

4 Results

We find that in the class of 6×6 bijective S-boxes that are symmetric under the
permutation τ , there are 237.56 S-boxes with nonlinearity 24 and there is no S-box
exceeding this nonlinearity. Further, among these S-boxes, the best differential
uniformity is 4 and the number of differentially 4-uniform S-boxes is 233.99.
In [13], the S-boxes with the same cryptographic properties are enumerated
in the class of bijective RSSBs for which the search space is of size 247.90. In
this class, it has been found that there are 228.25 S-boxes with nonlinearity 24
and among them the number of those that are differentially 4-uniform is 224.74.
Compared to these results, our search identifies a much larger set of S-boxes
achieving the same cryptographic properties than those found in [13].

Since the TO of an S-box is not in general invariant under the affine trans-
formations, in our classification we generate (after completing the search) the
S-boxes using those under which the TO is not invariant and compute the
corresponding TOs. More specifically, let us consider an n×n S-box T (x) =
S(xA⊕d)B⊕e, where A,B are nonsingular binary matrices and d, e ∈ Fn2 . In [8],
it was shown that the TO of T (x) is the same as that of S(xA⊕d)⊕e, and later
in [14] it has been shown that the TO of T (x) is also invariant under the column
permutation of B. Hence, we note that only the affine equivalent S-boxes ob-
tained by the circulant matrix multiplication in Proposition 1 can have different
the TOs.

In Table 2, we present the classification of the 233.99 differentially 4-uniform
S-boxes in terms of their absolute indicator (AI), algebraic degrees (dmin and
dmax, i.e., the minimum and maximum algebraic degrees among the component
functions of a given S-box, resp.), and transparency order (TO). For each Set-k,
k = 0, 1, 2, 3, the classification results are also given in Tables 3-6, from which
it is seen that the numbers of differentially 4-uniform S-boxes with nonlinearity
24 are 229.91, 232.87, 232.82, and 229.09, respectively. It is seen from Table 2 that



the minimum transparency order the S-boxes have in this classification is 5.270.
This value is attained from Set-2 and Set-3 as can be seen from Tables 5 and 6
(shown by bold font).

As mentioned in the previous section, we do not take the concatenations
obtained by rotating all of the outputs by a fixed number of positions into
account reducing the search space by a factor of 1

5 . Recall that, in addition, we
fix f(0) = 0, which further reduces the search space by a factor of 1

2 . Hence, the
numbers of the S-boxes in Tables 2-6 are the multiples of 10.

Table 2. The classification of the 6×6 bijective S-boxes, constructed by the concate-
nation of RSSBs, with nonlinearity 24 and differential uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619,≤ 5.786 10368×10
24 4 4 ≥ 5.413,≤ 5.889 42695424×10
32 3 4 ≥ 5.548,≤ 5.849 165888×10
32 4 4 ≥ 5.349,≤ 5.905 629213184×10
32 4 5 ≥ 5.607,≤ 5.813 10368×10
40 4 4 ≥ 5.421,≤ 5.905 97096320×10
48 4 4 ≥ 5.480,≤ 5.889 3400704×10
64 2 2 ≥ 5.714,≤ 5.714 5184×10
64 2 3 ≥ 5.381,≤ 5.873 730944×10
64 2 4 ≥ 5.270,≤ 5.905 176613696×10
64 3 3 ≥ 5.500,≤ 5.905 383616×10
64 3 4 ≥ 5.341,≤ 5.905 753769152×10
64 3 5 ≥ 5.655,≤ 5.817 10368×10
64 4 4 ≥ 5.607,≤ 5.770 10368×10

The search algorithm is performed on a workstation with 2 CPUs of Intel
Xeon Processor E5-2620v3 (15M Cache, 2.40 GHz, 6 cores) and 16 GB RAM
under Windows 8.1 Professional 64-bit operating system. It takes around 10 days
(236 hours) exploiting all the cores.

5 Conclusions

We have presented an efficient exhaustive search algorithm to enumerate the
6×6 bijective S-boxes with the best known nonlinearity 24 within the class of
symmetric S-boxes under the permutation τ(x) = (x0, x2, x3, x4, x5, x1), where
x = (x0, x1 . . . , x5) ∈ F6

2. Carrying out the search algorithm, which reduces the
space from 261.28 to 248.47, we have classified differentially 4-uniform S-boxes
among them in terms of absolute indicator, algebraic degree, and transparency
order. Our results provide a large pool of choices for small-size S-boxes with
desirable cryptographic properties such as low differential uniformity and high
nonlinearity, especially suitable for lightweight cryptography.



Table 3. The classification of the S-boxes in Set-0 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619,≤ 5.730 288×40
24 4 4 ≥ 5.440,≤ 5.889 438336×40
32 3 4 ≥ 5.655,≤ 5.734 288×40
32 4 4 ≥ 5.421,≤ 5.905 9214560×40
32 4 5 ≥ 5.675,≤ 5.738 288×40
40 4 4 ≥ 5.448,≤ 5.905 1978848×40
48 4 4 ≥ 5.500,≤ 5.845 126144×40
64 2 2 ≥ 5.714,≤ 5.714 288×40
64 2 3 ≥ 5.381,≤ 5.873 26496×40
64 2 4 ≥ 5.302,≤ 5.885 2320704×40
64 3 3 ≥ 5.540,≤ 5.905 25632×40
64 3 4 ≥ 5.341,≤ 5.905 11161440×40
64 4 4 ≥ 5.607,≤ 5.770 288×40

Table 4. The classification of the S-boxes in Set-1 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619,≤ 5.778 3456×10
24 4 4 ≥ 5.417,≤ 5.889 20560896×10
32 3 4 ≥ 5.556,≤ 5.849 91008×10
32 4 4 ≥ 5.349,≤ 5.905 290878848×10
32 4 5 ≥ 5.667,≤ 5.813 3456×10
40 4 4 ≥ 5.429,≤ 5.905 43205760×10
48 4 4 ≥ 5.480,≤ 5.889 1359360×10
64 2 2 ≥ 5.714,≤ 5.714 1152×10
64 2 3 ≥ 5.381,≤ 5.873 271872×10
64 2 4 ≥ 5.341,≤ 5.905 80786304×10
64 3 3 ≥ 5.500,≤ 5.905 118656×10
64 3 4 ≥ 5.361,≤ 5.905 350350848×10
64 3 5 ≥ 5.655,≤ 5.817 4608×10
64 4 4 ≥ 5.607,≤ 5.770 3456×10



Table 5. The classification of the S-boxes in Set-2 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 3 4 ≥ 5.619,≤ 5.786 5760×10
24 4 4 ≥ 5.413,≤ 5.889 19401984×10
32 3 4 ≥ 5.548,≤ 5.849 71424×10
32 4 4 ≥ 5.349,≤ 5.905 280242432×10
32 4 5 ≥ 5.607,≤ 5.813 5760×10
40 4 4 ≥ 5.421,≤ 5.905 41551488×10
48 4 4 ≥ 5.480,≤ 5.889 1299456×10
64 2 2 ≥ 5.714,≤ 5.714 2304×10
64 2 3 ≥ 5.381,≤ 5.873 313344×10
64 2 4 ≥ 5.270,≤ 5.905 81669888×10
64 3 3 ≥ 5.500,≤ 5.905 110592×10
64 3 4 ≥ 5.361,≤ 5.905 333317376×10
64 3 5 ≥ 5.655,≤ 5.817 5760×10
64 4 4 ≥ 5.607,≤ 5.770 5760×10

Table 6. The classification of the S-boxes in Set-3 with nonlinearity 24 and differential
uniformity 4.

AI dmin dmax TO Number of S-boxes

24 4 4 ≥ 5.468,≤ 5.873 979200×10
32 3 4 ≥ 5.599,≤ 5.746 2304×10
32 4 4 ≥ 5.417,≤ 5.873 21233664×10
40 4 4 ≥ 5.460,≤ 5.865 4423680×10
48 4 4 ≥ 5.516,≤ 5.837 237312×10
64 2 2 ≥ 5.714,≤ 5.714 576×10
64 2 3 ≥ 5.500,≤ 5.794 39744×10
64 2 4 ≥ 5.270,≤ 5.873 4874688×10
64 3 3 ≥ 5.540,≤ 5.778 51840×10
64 3 4 ≥ 5.341,≤ 5.873 25455168×10
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