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NEW FIXED-CIRCLE RESULTS ON S-METRIC SPACES

NIHAL YILMAZ OZGUR, NIHAL TAS, UFUK CELIK

ABSTRACT. In this paper our aim is to study some fixed-circle theorems on S-
metric spaces. For this purpose we give new examples of S-metric spaces and
investigate some relationships between circles on metric and S-metric spaces.
Then we investigate some existence and uniqueness conditions for fixed circles
of self-mappings on S-metric spaces.

1. INTRODUCTION

Recently Sedghi, Shobe and Aliouche introduced the concept of an S-metric
space as a generalization of a metric space as follows:

Definition 1.1. [8] Let X be a nonempty set and S : X x X x X — [0,00) be a
function satisfying the following conditions for all x,y,z,a € X :

(1) S(z,y,2) =0if and only if v = y = z,
(2) S(x,y,2) < S(z,z,a)+ S(y,y,a) + S(z, z,a).
Then S is called an S-metric on X and the pair (X,S) is called an S-metric
space.
For example, let R be the real line. If we consider the following function

S(xuyaz): |.’L'—Z|+|y—2|

for all z,y,z € R, then this function defines an S-metric on R and it is called the
usual S-metric [9].

Sedghi, Shobe and Aliouche investigated some fixed-point results on an S-metric
space in [8]. Then Ozgiir and Tag studied some generalizations of the Banach’s
contraction principle on S-metric spaces in [7]. Also they introduced new fixed-point
theorems for the Rhoades’ contractive condition on S-metric spaces in [3]. After,
it was generalized these fixed-point theorems for generalized Rhoades’ contractive
conditions in [4].

More recently, the notion of a fixed circle have been defined on metric and S-
metric spaces in [5] and [6], respectively. It is important to investigate some fixed-
circle theorems on various metric spaces to obtain new generalizations of known
fixed-point results. Some interesting fixed-circle theorems were studied on metric
spaces and S-metric spaces by Ozgiir and Tag (see [5] and [6] for more details).
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They studied some existence and uniqueness conditions for the fixed circles of self-
mappings.

Our aim in this paper is to obtain new fixed-circle theorems for self-mappings on
S-metric spaces. In Section 2 we recall some basic facts and give new examples of
S-metric spaces. We draw some circles on these new S-metric spaces [10]. Also we
investigate some relationships between circles on various metric spaces. In Section 3
we study some existence and uniqueness theorems for fixed circles. Some illustrative
examples of self-mappings with a fixed circle are also given.

2. COMPARISONS OF CIRCLES ON METRIC AND S-METRIC SPACES

In this section we give new examples of S-metric spaces to determine some
comparisons of circles on metric and S-metric spaces.
We recall the notion of a circle on an S-metric space.

Definition 2.1. [6] Let (X,S) be an S-metric space and xy € X, r € (0,00). We
define the circle centered at xo with radius r as

CS  ={reX:S(xxmz) =1}

xo,T

Now we recall the following basic lemmas.
Lemma 2.2. [8] Let (X, S) be an S-metric space. Then we get
S(x,xz,y) = S(y,y, ).

Lemma 2.2 can be considered as the symmetry condition on an S-metric space.
In the following lemma, we see the relationships between a metric and an S-metric.

Lemma 2.3. [2] Let (X,d) be a metric space. Then the following properties are
satisfied:

(1) Sa(x,y,z) =d(x,2) +d(y, z) for all x,y,z € X is an S-metric on X.

(2) 2 = x in (X,d) if and only if x,, — x in (X, Sq).

(3) {xn} is Cauchy in (X,d) if and only if {x,} is Cauchy in (X, Sq).

(4) (X,d) is complete if and only if (X, Sq) is complete.

The metric Sy was called as the S-metric generated by d [4].
Now we give new examples of S-metric spaces and draw some circles.

Example 2.4. Let X =R™" and the function Sy : X x X x X — [0,00) be defined
by
Si(z,y,z) = |2 —y?| + 2% +y* — 22°
for all x,y,z € RT. Then Sy is an S-metric on RT which is not generated by any
metric and the pair (RT,Sy) is an S-metric space.
Conversely, assume that there exists a metric d such that

Sl(xa Y, Z) = d({E, Z) + d(ya Z);
for all z,y,z € RT. Then we obtain
Si(x,x,2) = 2d(z, z) and so d(z,z) = ’xQ - zz‘

)

and
S1(y,y,2) = 2d(y, z) and so d(y, z) = |y* — 2°|,
for all z,y,z € RT. So we get

‘x2 —y2‘ + ‘x2 + 52 —222| = |x2 —z2| + ‘yQ —22| ,
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which is a contradiction. Hence Sy is not generated by any metric.

In the following example we extend the S-metric S7 defined in Example 2.4 to
the three dimensional case.

FIGURE 1. The circle 05112 on (X*,S7).

Example 2.5. Let us consider the set X* = Rt x RT x RT and the function
ST X*x X*x X* —[0,00) be defined as

3

i=1
for all x = (x1,22,23), y = (Y1, Y2,y3) and z = (21, 22, 23) on X*. Then S} is an
S-metric on X* and the pair (X*,55) is an S-metric space.
If we choose kg = 0 = (0,0,0) and r = 12, then we get

Cyly = {zeX*:Si(w,2,0) =12}
{z € X*: 27+ 23 + 23 =6},

as shown in Figure 1.
If we choose xg = (2,1,1) and r = 12, then we get
055,12 = {zeX":5(x,z,20) =12}
= {IEX*:|$%—4|—|—|$%—1|+‘I§—1‘:6},

as shown in Figure 2. Notice that the shape of the circles can be changed according
to the center.

Example 2.6. Let X =R™ and the function Sa: X x X x X — [0,00) be defined
by

X i
Sa(,y, 2) = 1H§'+‘1nz—g

7
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FIGURE 2. The circle C°1 12 on (X*,S7).

o,

for all x,y,z € RT. Then Sy is an S-metric on RY which is not generated by any
metric and the pair (RY,Ss) is an S-metric space.
Conversely, suppose that there exists a metric d such that

S2(x7 Y, Z) = d(i[,', Z) + d(yu Z);
for all z,y,z € RT. Then we obtain
Sa(x,x,2) = 2d(z, z) and so d(x, z) = ’ln E’
z

and
Sa(y, y,2) = 2d(y, ) and s0 d(y,2) = |In 2|

for all x,y,z € RY. So we get

7

lnf‘—k‘ln%‘ = ‘lnf‘—k‘lng
y z z z

which is a contradiction. Hence Sa is not generated by any metric.
Now we consider X* = RTx RT x R" and the function S5 : X* x X* x X* —
[0,00) be defined by

for all x = (x1,22,23), ¥y = (y1,Y2,y3) and z = (21,22, 23) in X*. Then S is an
S-metric on X* and the pair (X*,53) is an S-metric space.
If we choose xy = (1,1,1) and r = 1, then we get

TilYi
+ ‘ln P

4

Si(z,y,2) = 23: Oln i

i=1 Yi

Cffyl = {zeX": S (x,z,29) =1}
— {xEX*:}lnx%}+|lnx§}+|lnx§|:1},

as shown in Figure 3.
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FIGURE 3. The circle Cff ;on (X*,55).

Using Lemma 2.3, we obtain the following proposition for the comparison of the
circles on a metric space and the corresponding S-metric space generated by the
metric.

Proposition 2.7. Let (X,S) be an S-metric space such that S is generated by a
metric d. Then any circle CISO_’T on the S-metric space is the circle Cy, & on the
metric space (X, d).

Proof. By Definition 2.1 and Lemma 2.2 we have
S(x,x,x0) = d(x,x0) + d(x, x0) = 2d(x, 20) = 27.
Then the proof follows easily. O

Corollary 2.8. The circle Cy, . on a metric space (X,d) is the circle C3

xo,2r on
the S-metric space which is generated by d.

We give an example to show that a circle Cy,, in a metric space can be a
circle with the same center and same radius in an S-metric space which can not be
generated by d.

Example 2.9. Let X = R, (X, S) be the usual S-metric space and the function
d: X x X —[0,00) be defined by

d(z,y) = 2|x -y,

for all x,y € X. Then (X,d) is a metric space and the usual S-metric is not
generated by d. Conversely, assume that S is generated by d such that

S(x,y,2) = d(x, 2) +d(y, 2),
for all x,y,z € X. Then we obtain

|z =zl + |y — 2] = 2]w — 2[+ 2]y — 2|,
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which is a contradiction. Therefore the usual S-metric is not generated by d. If we
consider the unit circles on the metric space (X,d) and the usual S-metric space,
respectively, then we get

11
Cor={reX:dz0)=1}={—= =
' 272
and
11
Cgl ={zxeX:S(x,x0) =1} = {_575} '
Consequently, we have Cy 1 = COSJ,

Let (X, S) be any S-metric space. In [1], it was shown that every S-metric on
X defines a metric dg on X as follows:

dS(Iay) :S(xvxvy)+8(yay7x)v (21)

for all 2,y € X. However Ozgiir and Tag showed that the function dg (z,y) defined
n (2.1) does not always define a metric because of the reason that the triangle
inequality does not satisfied for all elements of X everywhen [4].

If the S-metric is generated by a metric d on X then it can be easily seen that
the function dg is explicitly a metric on X, especially we have

ds(xv y) = 4d($7 y)
But, if we consider an S-metric which is not generated by any metric then dg can

be or can not be a metric on X. This metric dg is called as the metric generated
by S in the case dg is a metric.

Example 2.10. Let X = {a,b,c} and the function S : X x X x X — [0,00) be
defined as:

7 ; x=y=a,z=borx=y=bz=a

g . TTYy=az=corz=y=cz=aor
S(z,y,2) = ' r=y=bz=corx=y=c,z=2»> ,

0 ; z=y==z2

1 ; otherwise

for all z,y,z € X. Then the function S is an S-metric which is not generated by
any metric and the pair (X,S) is an S-metric space. But the function ds defined
in (2.1) is not a metric on X. Indeed, for x =a, y =0, z = ¢ we get

ds(a,b) =14 £ ds(a,c) + ds(c,b) = 12.
We give the following proposition for a circle.

Proposition 2.11. Let (X,ds) be a metric space such that dg is generated by an
S-metric S. Then any circle Cy, » on the metric space (X,dg) is the circle Cfoyg

on the S-metric space (X, S).
Proof. By the Definition 2.1, the equality (2.1) and Lemma 2.2 we have
ds(z,z0) = S(z, 2, 20) + S(x0, 20, 2) = 25 (2, 2, 20)

and .
S(z,z,20) = 7

Then the proof follows easily. O
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Corollary 2.12. The circle C3 . on an S-metric space (X, S) is the circle Cy, or
on the metric space (X,ds) where dg is generated by S.

3. SOME EXISTENCE AND UNIQUENESS CONDITIONS FOR FIXED CIRCLES ON
S-METRIC SPACES

In this section we recall the notion of a fixed circle on an S-metric space and
present some fixed-circle theorems.

Definition 3.1. [6] Let (X,S) be an S-metric space, Cy, . be a circle on X and

T:X — X be a self-mapping. If Tx = x for all x € Cf[w then we call the circle
CS . as the fized circle of T.

Zo,T

We give the following existence theorem for fixed circles on an S-metric space.

Theorem 3.2. Let (X,S) be an S-metric space and Cfoﬂ“ be any circle on X. Let
us define the mapping

p: X = [0,00), p(x) = S(z,z,x0), (3.1)

for all x € X. If there exists a self-mapping T : X — X satisfying
(SC1) S(z,z,Tz) < p(x) — o(Tx)

and
(SC2) S(Tx,Tx,x9) >,

for all x € C2 ., then C% . is a fived circle of T.

xo,T’ xo,T

Proof. Let x € Cfo,r' Using the condition (SC1) we obtain

S Tr) < ¢(a)— pl(Tz) (3.2)
= S(x,x,x0) = S(Tx, Tz, x0)
= r— STz, Tz, xp).

FIGURE 4. The geometric description of the condition (SC1).

Because of the condition (SC2), the point Tz should be lie on or exterior of
the circle C .. If S(Tx,Tx, ) > r then using the inequality (3.2) we have a
contradiction. Therefore it should be S(Tx,Tz,x9) = r. In this case, using the

inequality (3.2) we get
S($,$,T§L’) S r— S(T.’L',T,T,,To) =r—r=20
and so Tz = .

Hence we obtain Tz = x for all x € C°

To,T"
: s
fixes the circle C ..

Consequently, the self-mapping T
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FIGURE 5. The geometric description of the condition (SC2).

FIGURE 6. The geometric description of the condition (SC1) N (SC2).

O

Remark. Notice that the condition (SC1) guarantees that Tx is not in the exterior
of the circle C’fﬂm for each x € 050,7«- Similarly, the condition (SC2) guarantees
that Tz is not in the interior of the circle C’fmd for each x € Cfoyr. Consequently,
Tz € C3 . for each x € C3 . and so we have T(CZ ) C C2 . (see Figures 4, 5

0,7 0,7 0,7
and 0).

Now we give an example of a self-mapping which has a fixed circle on an S-metric
space.

Example 3.3. Let (X, S) be an S-metric space, C’fmd be a circle on X and o be a
constant such that

S(a, o, ) # 7.
If we define the self-mapping T : X — X as
oz s xe Cfo -
T = { a ;  otherwise

for all x € X, then it can be easily checked that the conditions (SC1) and (SC2)
are satisfied. Consequently, C’CESUJ is the fized circle of T.

We give another example of a self-mapping which has a fixed circle as follows:
Example 3.4. Let X =R and the function S : X x X x X — [0,00) be defined by

S(x,y,z):a|x—z|—|—ﬂ|x—|—z—2y|,
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forall x,y,z € R and o, B > 0 with « < 3. Then S is an S-metric on R which is
not generated by any metric and the pair (R, S) is an S-metric space.
Let us consider the circle Cfo)a_w and define the self-mapping T : R — R as

. S
Tx _ X 5 T € OlO,a-ﬁ-ﬂ
12 ;  otherwise

)

for all x € R. Then the self-mapping T satisfies the conditions (SC1) and (SC2).
Hence Clso,a-i-ﬁ is a fived circle of T'.

Example 3.5. Let (X, d) be a metric space and (X, S) be an S-metric space. Let
us consider a circle C3 . satisfying

T0,r
d(x,z0) # S(x,z,x0)
and define the self-mapping T : X — X as
Te=x—S(x,x,z0) + 1,
for all x € X. Then the self-mapping T satisfies the conditions (SC1) and (SC2).

Therefore CISO)T is a fized circle of T'. ButT does not fix a circle Cy, , on the metric
space (X, d).

Now, in the following example, we give an example of a self-mapping which
satisfies the condition (SC1) and does not satisfy the condition (SC2).

Example 3.6. Let X = Rt and the function S : X x X x X — [0,00) be defined in
Example 2.6. Let us consider a circle Cfom and define the self-mapping T : X — X
as
. s
T — o ; T E Cz(?m
B ;  otherwise
for allx € X where S(B, B,x0) < r. Then the self-mapping T satisfies the condition
(SC1) but does not satisfy the condition (SC2). Clearly T does not fix the circle
s

ZTo,T"

In the following examples, we give some examples of self-mappings which satisfy
the condition (SC2) and do not satisfy the condition (SC1).

Example 3.7. Let (X, S) be any S-metric space and CISOJ be any circle on X. Let

k be chosen such that S(k, k,x9) = m > r and consider the self-mapping T : X — X
defined by

Tr =k,
for all x € X. Then the self-mapping T satisfies the condition (SC2) but does not
satisfy the condition (SC1). Clearly T does not fix the circle C5

To,r”
Example 3.8. Let X =R and the function S: X x X x X — [0,00) be defined by
S(wvyaz):0‘|33_Z|+ﬂ|33+2_2y|;
for all z,y,z € R and some «, B € R with o+ 3 > 0. Then S is an S-metric on R

which is not generated by any metric and the pair (R, S) is an S-metric space.
Let us consider a circle Czso and define the self-mapping T : R — R as

,T

. s
Tow — ki ; x€ CIQJ‘
ko 5  otherwise

)
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for all x € R, where S(k1,k1,2x0) = 2r and ko is a constant such that ko # k1. Then
the self-mapping T satisfies the condition (SC2) but does not satisfy the condition
(SC1). Clearly T does not fix the circle C%

xo,T "

Remark. Let (X,S) be an S-metric space and Cfoyr, thp be two circles on X.

There exists at least one self-mapping T : X — X which fizes both of the circles
CS . and thp. Indeed, let us define the mappings p1,p2 : X — [0,00) as

zo,r
p1(x) = S(x, z, x0)

and
pa(z) = S(z,2,21),

for all x € X. Let us consider the self-mapping T : X — X defined as

T;v:{ T IEC’fD’TUCS

xT1,p
k otherwise

for all x € X, where k is a constant satisfying S(k,k,xo) # r and S(k,k,x1) # p.
It can be easily verified that the self-mapping T satisfies the conditions (SC1) and
(SC2) in Theorem 3.2 for the circles Cfo)r and thp with the mappings p1 and
pa, respectively. Clearly T fizes both of the circles CISO)T and thp. The number of

fized circles can be extended to any positive integer n using the same arguments.

In the following theorem, we give a uniqueness condition for the fixed circles in
Theorem 3.2 using Rhoades’ contractive condition on an S-metric space.
We recall the definition of Rhoades’ contractive condition.

Definition 3.9. [3] Let (X,S) be an S-metric space and T be a self-mapping of
X. Then

(525)  S(Tz,Tz,Ty) < max{S(z,z,y),S Tz, Tz, x),
S(Ty, Ty,y), STy, Ty, x),
STz, Tx,y)},

for each z,y € X, v #y.
Theorem 3.10. Let (X,S) be an S-metric space and C%5 . be any circle on X.

xo,T
Let T : X — X be a self-mapping satisfying the conditions (SC1) and (SC2) given
in Theorem 3.2. If the contractive condition (S25) is satisfied for all x € C3

xo,T’
Y€ X\C’CESO)T by T, then C5 . is the unique fized circle of T.

xo,T

Proof. Suppose that there exist two fixed circles C’fwr and th , of the self-mapping

T, that is, T satisfies the conditions (SC1) and (SC2) for each circles C2 = and

Zo,T
cs Let + € C5 and y € thp be arbitrary points with x # y. Using the

w1, zo,r
contractive condition (525) we find

S(z,z,y) = STz, Tz, Ty) < max{S(x,z,y),S(Tx,Tx,x),S(Ty,Ty,y),
S(Ty,Ty,x),S(Tx,Tx,y)}
= S(z,2,9),

which is a contradiction. Therefore it should be z = y. Consequently, Cfom is the

unique fixed circle of T 1



20 N. YILMAZ OZGUR, N. TAS, U. CELIK

Notice that the contractive condition in Theorem 3.10 is not to be unique. For
example, if we consider the Banach’s contractive condition given in [8]

S(Tx, Tz, Ty) < aS(z,r,y),

for some 0 < a <1 and all z,y € X in Theorem 3.10 then the fixed circle CISOVT is
unique.
Now we give another existence theorem.

Theorem 3.11. Let (X,S) be an S-metric space and Cfo)r be any circle on X.
Let the mapping ¢ be defined as (3.1). If there exists a self-mapping T : X — X
satisfying

(SC1)* S(z,z,Tx) < o(x) + o(Tx) — 2r
and

(SC2)* S(Tx,Tx,x0) <,
for each x € C5 ., then C2 is a fized circle of T.

xo,T’ xo,T

Proof. Let z € C2 . be any arbitrary point. Using the condition (SC'1)* we obtain

S(x,z,Tx) < @)+ pTz)—2r (3.3)
S(z,z,x0) + S(Tx, Tx,x0) — 2r
S(Tx, Tx,x0) — .

IN

FIGURE 7. The geometric description of the condition (SC1)*.

Because of the condition (SC2)* the point Tz should be lie on or interior of the
circle Cfow If S(Tx,Tx,x0) < r then we have a contradiction using the inequality
(3.3).

FIGURE 8. The geometric description of the condition (SC2)*.
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Therefore it should be S(Tx, Tx,xo) = r. If S(Tx,Tx,x9) = r then using the
inequality (3.3) we get

S(x,z,Tx) < S(Tx,Tx,x0) —r=r—r=0

and so we find Tx = ¢ Consequently, C’ISO)T is a fixed circle of T'.

FIGURE 9. The geometric description of the condition (SC1)* N (SC2)*.

O

Remark. Notice that the condition (SC1)* guarantees that T'x is not in the interior
of the circle C’CESU)T for each x € Cfmr. Similarly the condition (SC2)* guarantees
that T'x is not in the exterior of the circle C’CESUJ for each x € C'fo)r. Consequently,
Tz € C3 . for each x € C2 . and so we have T(CS ) C C2 . (see Figures 7, 8

Zo,T ZTo,T ZTo,T ZTo,T

and 9).

Now we give the following example.
Example 3.12. Let X = R and the mapping S : X x X x X — [0,00) be defined
as

S(Iayvz) = |ZE3 _23} + |y3 - Z3| ’

for all z,y,z € X. Then (X,S) is an S-metric space. Let us consider the circle
COSJG and define the self-mapping T : R — R
3z + 42

V2x 43 ’

for all x € R. Then it can be easily checked that the conditions (SC1)* and (SC2)*
are satisfied. Therefore the circle 005716 is a fived circle of T'.

Tx

In the following example, we give an example of a self-mapping which satisfies
the condition (SC1)* and does not satisfy the condition (SC2)*.

Example 3.13. Let X =R and (X, S) be the S-metric space defined in Example
3.12. Let us consider the circle Cfl)lg and define the self-mapping T : R — R as

-3 5 x=-2
T{L‘ = 3 3 xr = 2 5
10 ; otherwise

for all x € R. Then the self-mapping T satisfies the condition (SC1)* but does not
satisfy the condition (SC2)*. Clearly T does not fix the circle C§1,18-
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In the following example, we give an example of a self-mapping which satisfies
the condition (SC2)* and does not satisfy the condition (SC1)*.

Example 3.14. Let X = C and the mapping S : X x X x X — [0,00) be defined
as

S(z1,22,23) = |21 — 23| + |21 + 23 — 22|,

for all z1,2z9,23 € C [4]. Then (C,S) is an S-metric space. Let us consider the
circle C’@q’)l and define the self-mapping Ty : C — C

1
le—{ O ; Z:0 )

for all z € C, where Z is the complex conjugate of z. Then it can be easily checked
that the conditions (SC1)* and (SC2)* are satisfied. Therefore the circle C§, is a
fized circle of Th. But if we define the self-mapping T : C — C

1
_ 1z Z7£O
TQZ_{ 0 ; 2=0"

for all z € C. Then the self-mapping T satisfies the condition (SC2)* but does not
satisfy the condition (SC1)*. Clearly Ts does not fix the circle COSJ. Especially, Ty

maps the circle Cf;l onto itself while fizes the points z3 = % and zo = —% only.

Now we determine a uniqueness condition for the fixed circles in Theorem 3.11.
We recall the following definition.

Definition 3.15. [7] Let (X,S) be a complete S-metric space and T be a self-
mapping of X. There exist real numbers a,b satisfying a+3b < 1 with a,b > 0 such
that

STz, Tx, Ty) < aS(z,z,y) + bmax{S(Tx, Tz, z),S(Tz, Tx,y),

S(Ty, Ty,y), STy, Ty,0)}, Y

forall z,y € X.
We give the following theorem.

Theorem 3.16. Let (X, S) be an S-metric space and C= | be any circle on X. Let

xo,T
T:X — X be a self-mapping satisfying the conditions (SC1)* and (SC2)* given
in Theorem 8.11. If the contractive condition (3.4) is satisfied for all x € C3

xo,T’
Y€ X\C’CESO)T by T then Cfo is the unique fized circle of T.

\T

Proof. Assume that there exist two fixed circles Cf[w and Cfl) o of the self-mapping

T, that is, T satisfies the conditions (SC1)* and (SC2)* for each circles C2 . and

€ZTo,T
cs Let z € C5 _and y € CJ  be arbitrary points with 2 # y. Using the

T1,p" Zo,T T1,p
contractive condition (3.4) we obtain

S(z,z,y) = S(Tz,Tz,Ty) < aS(z,2,y) +bmax{S(Tx,Tz,z),S(Tx,Tz,y),
STy, Ty,y), STy, Ty,x)},
= (a+b)S(z,z,y),

which is a contradiction since a + b < 1. Hence it should be z = y. Consequently,
C?3 . is the unique fixed circle of 7. 1

Zo,T
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Notice that the contractive condition in Theorem 3.16 is not to be unique. For

example, in Theorem 3.16, if we consider the contractive condition given in [7]

STz, Tx,Ty) < aS(z,z,y) + bS(Tx, Tz, z) + cS(Ty, Ty, y)
+dmax{S(Tz, Tx,y),S(Ty, Ty, z)},

where the real numbers a, b, ¢, d satisfying max{a + b + ¢ + 3d,2b + d} < 1 with
a,b,c,d > 0, for all z,y € X then the fixed circle CISOVT is unique.

Finally we note that the identity mapping Ix defined as Ix (z) = x for all z € X

satisfies the conditions (SC1) and (SC2) (resp. (SC1)* and (SC2)*) in Theorem
3.2 (resp. Theorem 3.11). If a self-mapping T', which has a fixed circle, satisfies
the conditions (SC1) and (SC2) (resp. (SC1)* and (SC2)*) in Theorem 3.2 (resp.
Theorem 3.11) but does not satisfy the condition (Ig) in the following theorem
given in [6] then the self-mapping T can not be identity map.

Theorem 3.17. [6] Let (X,S) be an S-metric space and C3_ . be any circle on X.

Le

xo,T

t the mapping ¢ be defined as (3.1). If there exists a self-mapping T : X — X
satisfying the condition
— (T
(ts)  S(ema) < 2DZOTT)

for all x € X and some h > 2, then C2 s a fived circle of T and T = Ix.

1
2
3
[4
5
6

[7

8
[9

[10

xo,T
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