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Abstract: Recently, it was shown that there is no Boolean function on 15 variables with nonlinearity greater than 16276

in the class of functions that are invariant under the action of GF(23)∗ × GF (25)∗ . In this study, we consider some

important subsets of this class and perform an efficient enumeration of the 15-variable Patterson–Wiedemann (PW) type

functions with nonlinearity greater than the bent concatenation bound 16256 in the generalized classes of both 3-RSBFs

and 5-RSBFs for which the corresponding search spaces are 228.2 and 247.85 , respectively. For the case of 3-RSBFs,

we find that there are 32 functions with nonlinearity > 16256, such that 8 of them correspond to the original PW

constructions, while the remaining 24 functions are new in the sense that they are not affine equivalent to the known

ones. For the other case of 5-RSBFs, our results show that there are 478 functions with nonlinearity exceeding the bent

concatenation bound, among which there is another set of 470 functions that are affine inequivalent to the known PW

constructions.
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1. Introduction

The design of Boolean functions on an odd number of variables n achieving very high nonlinearity, i.e. greater

than the so-called bent concatenation bound 2n−1 − 2(n−1)/2 , constitutes one of the most challenging problems

encountered in the area of cryptography, coding theory, and combinatorics. Boolean functions with high

nonlinearity play a crucial role in the design of a secret-key cryptosystem as they are used as building blocks

to provide resistance against linear cryptanalysis [1]. In a standard correlation attack [2], where the outputs

of several linear feedback shift registers (LFSRs) are combined by a nonlinear Boolean function to generate

the keystream, the correlation between the keystream and one of the LFSR outputs (or a linear combination

of the LFSR outputs) is used to obtain the key (i.e. the initial states of the LFSRs). In other words, a

correlation attack can be mounted if there is a high correlation between the combining function and a linear

function, which implies low nonlinearity. Hence, as it is well known (e.g., see [3]), high nonlinearity provides

resistance against correlation and fast correlation attacks [4], as well. In coding theory, the problem is actually

related to the covering radius of the first-order Reed–Muller codes of block length 2n , which corresponds to

the maximum achievable nonlinearity of n -variable Boolean functions. The existence of Boolean functions with

nonlinearity exceeding the bent concatenation bound could be demonstrated for the first time for n = 15 by

Patterson and Wiedemann [5] in 1983 using some combinatorial results together with an exhaustive search.
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More than two decades later, 9-variable Boolean functions with nonlinearity 241 (=29−1 − 2(9−1)/2 + 1) were

identified [6] in the rotation-symmetric class and subsequently this result was improved [7] to 242 by defining

the k -rotation-symmetric class.

Let f : GF (2n) → GF (2n) be a Patterson–Wiedemann (PW) type function as defined in [8]. Until

recently, PW type functions exceeding the bent concatenation bound were known only for n = 15 = 5 × 3.

The next possible candidate was n = 21 = 7 × 3, and such functions could be constructed [9] using a heuristic

search after a long gap of more than three decades. Each function found in [9] is of nonlinearity 221−1−2(21−1)/2

+ 61, and the nonlinearity bound given in [10] shows that the upper bound of nonlinearity in this case could be

as high as 221−1 − 2(21−1)/2 + 196 for the functions that are invariant under the action of GF(23)∗ ×GF (27)∗ .

Recall that since PW type functions are idempotents for which f(α) = f(α2) ∀α ∈ GF (2n), they can be

considered as rotation-symmetric by choosing a normal basis to represent the elements in GF(2n). In [7], the

(generalized) k -rotation symmetric class is defined as the class of functions that satisfy f(α) = f(α2k) ∀α ∈
GF (2n), where k is a fixed divisor of n . First, motivated by the fact that 9-variable functions with nonlinearity

242 are obtained [7] in the class of 3-rotation-symmetric Boolean functions (3-RSBFs), we consider the PW

type 15-variable functions that are in the k -rotation-symmetric class (which we refer to as PW type 15-variable

k -RSBFs) by relaxing the restriction of being idempotent. For (n , k) = (15, 3), we perform an exhaustive

search for the PW type 3-RSBFs using the system of inequalities obtained by properly modifying Algorithm

PreInequalities in [8], which reduces the problem of finding the PW type functions to a problem of solving an

integer programming problem with binary variables. In this case, there are 31 inequalities, and the size of the

search space is 228.2 (note that in [9], for (n , k) = (21, 1), there are 115 inequalities and the search space

is 2109.27). By fixing f(0) = 0, we find that there are 32 Boolean functions with nonlinearity greater than

the bent concatenation bound 16256 (=215−1 − 2(15−1)/2). Specifically, 8 of them correspond to the PW type

15-variable 1-RSBFs (called the PW constructions) that were given in [5], while the remaining 24 functions

have different absolute indicators from those of the PW constructions and hence are not affine equivalent to

any of them. One half of these 24 functions have nonlinearity 16268, and the other half have nonlinearity

16269 (as in the case of the PW constructions, one half is obtained from the other half by complementing the

truth tables, except their first bits). Note that one can use these functions to obtain balanced functions with

nonlinearity greater than the bent concatenation bound by suitably modifying their truth tables as in [11–13].

For (n , k) = (15, 5), there are 51 inequalities, and the search space is of size 248.75 , which is huge compared

to the previous case. Here, we performed an efficient enumeration algorithm on a computer with an Intel Xeon

CPU E7-4890 v2 @ 2.80 GHz processor, which takes 2 weeks by exploiting all of the cores. As in (n , k) = (15,

3), we fixed f(0) = 0 to remove the functions that are complements of each other and found that there are

478 functions with nonlinearity > 16256. Among these, 470 of them are affine inequivalent to the known PW

functions. Our results confirm the nonlinearity bound in [10] for the 15-variable functions that are invariant

under the action of GF(23)∗ × GF (25)∗ . In the Appendix, we present the aforementioned PW type functions

in the classes of 3-RSBFs and 5-RSBFs in Tables A1 and A2, respectively. These were unknown before. The

MATLAB code that we use to perform Algorithm PrepareInequalities [8] for both 3-RSBFs and 5-RSBFs can

be found at https://drive.google.com/open?id=0B1s TxsFtjSPSm1oZzhwaVoxa2M.

In the following section, after giving a brief background of PW type functions, we present our results in

Section 3 and conclude the paper in Section 4.
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2. Preliminaries

Let f : GF(2n) → GF (2n) be a Boolean function. We can call f balanced if the Hamming weight of its truth

table is equal to 2n−1 .

For any ω ∈ GF (2n), the Walsh–Hadamard transform Wf (ω) of f is defined as:

Wf (ω) =
∑

αϵGF (2n)

(−1)
Tr(ωα)+f(α)

,

from which the nonlinearity NLf can be expressed as follows:

NLf = 2n−1 − (1/2)maxω∈GF (2n)|Wf (ω)|.

For an odd number of variables n ≥ 9, the maximum nonlinearity is not known. The best achieved nonlinearity

is known as 2n−1 − 2(n−1)/2 + 20× 2(n−15)/2 for n ≥ 15 [5] and 2n−1 − 2(n−1)/2 + 2× 2(n−9)/2 for n = 9, 11,

and 13 [7].

The autocorrelation function of f is given by:

rf (β) =
∑

αϵGF (2n)

(−1)
f(α)+f(α+β)

,

where β ∈ GF (2n). The autocorrelation value with maximum magnitude, except the origin, is also known as

the absolute indicator [14] and denoted as:

∆f = maxβ∈GF (2n)∗ |rf (β)|.

It was conjectured in [14] that for any balanced function f with an odd number of variables n,∆f ≥ 2(n+1)/2 ,

which has been disproved by modifying the PW type functions [8,12].

As pointed out in [8], PW construction [5] can be viewed as an interleaved sequence [15] that is defined

as follows:

Definition 1 Let m = dr, where d , r > 1 are integers. The (d , r)-interleaved sequence Ad,r , corresponding

to the binary sequence A = {a0 , a1 , a2 , . . . , am−1} , is defined as the matrix whose (i , j) th entry is equal

to ai,d+j , where i = 0, 1, . . . , r− 1 and j = 0, 1, . . . , d− 1.

Let ξ be a primitive element in GF(2n). Assuming that m = 2n − 1, an interleaved sequence Ad,r can

be associated with the ordered sequence {f(1), f(ξ), f(ξ2), . . . , f (ξ2n−2)} such that ai,d+j = f(ξid+j). This

interleaved sequence is called the (d , r)-interleaved sequence, corresponding to f with respect to ξ . The PW

type functions are described as follows [8,16]:

Definition 2 Let n = tq, where t , q > 2 are prime numbers such that t > q . Let the product ℜ =

GF(2 t)×GF (2q) be the cyclic group of cardinality r = (2t − 1)(2q − 1) in GF (2n) . Let ⟨φ2⟩ be the group of

Frobenius automorphisms, where φ2 : GF (2n) → GF (2n) is defined by α → α2 . The function f is called PW

type if it is invariant under the action of ℜ and ⟨φ2⟩ .
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Since the corresponding function f is invariant under the action of ℜ , the (d , r)-interleaved sequence

of a PW type function consists of either all 0 or all 1 columns by Definition 2. In addition, because of the

invariance under the action of ⟨φ2⟩ , the ith column has the same value as the j th column if i ≡ j 2s mod d

for some integer s > 0. This equivalence relation, shown by ρd , is given as follows:

iρdj ⇔ there exists an integer s > 0 such that i ≡ j2smod d.

Note that the PW type functions are idempotents, i.e. f (α) = f(α2) ∀α ∈ GF (2n), and thus they can be

considered [17,18] as rotation-symmetric by choosing a normal basis. The k -rotation symmetric class, which

is equivalent to the rotation-symmetric class for k = 1, was defined in [7] as the class of functions that satisfy

f(α) = f(α2k) ∀α ∈ GF(2n), where k is a fixed divisor of n . Here, by imposing the condition of being

k -rotation-symmetric on the PW type functions, we relax the restriction of the invariance under the action of

⟨φ2⟩ and define the PW type k -RSBFs in the following:

Definition 3 Let ⟨φ2k⟩ be the group of automorphisms, where k is a fixed divisor of n and ⟨φ2k⟩ : GF(2n) →

GF (2n) is defined by α → α2k . The function f is called a PW type k -RSBF if it is invariant under the action

of ℜ and ⟨φ2k⟩ .

The equivalence relation among the corresponding (d , r)-interleaved sequences, denoted by ρkd , is then

given by:

iρkdj ⇔ there exists an integer s > 0 such that i ≡ j2ksmodd.

Clearly, the PW type k -RSBFs are equivalent to the PW type functions for k = 1.

In the rest of this paper, we assume f (0) = 0 without loss of generality. Furthermore, we realize the

function f as f : {0, 1} 15 → {0, 1} using the primitive polynomial x15 + x + 1 for n = 15.

3. PW type 15-variable k-RSBFs

In both of the following cases, we implement Algorithm PrepareInequalities [8] with our MATLAB code available

at the link given in Section 1.

3.1. The case of k = 3

Using the mentioned code, we find that in a (151, (31)(7))-interleaved sequence there are 31 equivalence classes

with respect to ρ3151 . Among them, 30 are of size 5 and 1 is of size 1. Let us represent the j th equivalence class

by the smallest integer among its elements as in [8]. We then have the following 31 representatives: 0, 1, 2, 3,

4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 22, 23, 27, 28, 29, 30, 34, 35, 37, 46, 47, 51, 53, 68, 87, and 94. Hence, a

PW type 15-variable 3-RSBF can be represented by a binary vector of length 31, i.e. (f(1), f(ξ1), (ξ2), . . . ,

f(ξ87), f(ξ94)).

Implementing Algorithm PreInequalities in [8], we obtain the system of 31 inequalities in this case. Then,

by carrying out an exhaustive search, we find that there are 32 solutions of the system such that each solution

corresponds to an aforementioned 31-bit representative truth table (RTT). In Table A1, we give only one half

of these solutions since the other half is obtained by complementing them.
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The first four solutions in Table A1 give PW constructions [5] with absolute indicators 160 and 200,

which correspond to PW type 1-RSBFs with respect to Definition 3. All the other RTTs yield functions with

different absolute indicators and hence they are not affine equivalent to the PW constructions.

3.2. The case of k = 5

Here, using the equivalence relation ρ5151 , it is found that there are 51 representatives: 0, 1, 2, 3, 4, 5, 6, 7, 8,

10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 28, 30, 31, 33, 35, 37, 39, 42, 44, 46, 47, 51, 55, 56, 60, 61,

65, 66, 69, 70, 74, 75, 78, 79, 83, 84, 88, and 93. Among their equivalence classes, 50 are of size 3 and 1 is of

size 1. We carried out an efficient exhaustive search algorithm to obtain all the solutions of the corresponding

system of 51 inequalities that yields 478 PW type 5-RSBFs with nonlinearity exceeding the bent concatenation

bound 16256. As in the case k = 3, half of the solutions are obtained from the other half by complementing

them, and so we present only one half in Table A2, in which the first four RTTs (with ∆f = 160 and 200) are

the known PW constructions in [5]. The RTTs given in Table A2 are represented in hexadecimal form, e.g., the

first RTT “7DCED1A915115” should be read as (f(1), f(ξ1), f(ξ2), . . . , f(ξ88), f(ξ93)) = (1, 1, 1, 1, 1, 0, 1,

1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1).

4. Conclusion

We have defined the PW type n -variable k -RSBFs and performed efficient exhaustive searches for the PW

type 15-variable functions in the classes of 3-RSBFs and 5-RSBFs. The search successfully finds 24 PW type

3-RSBFs and 470 PW type 5-RSBFs, which, while having nonlinearity greater than the bent concatenation

bound, are not affine equivalent to the known PW constructions in [5]. These functions were not known before,

and they can be used to obtain balanced functions with nonlinearity exceeding the bent concatenation bound

by modifying their truth tables as in [11–13]. Moreover, our results confirm the nonlinearity bound in [10] for

the 15-variable functions that are invariant under the action of GF(23)∗×GF(25)∗ .
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Appendix

RTTs of the PW type 15-variable 3-RSBFs and 5-RSBFs.

Table A1. The 16 RTTs of the PW type 3-RSBFs with NLf > 16256 (the first two functions have NLf = 16276 and

the rest have NLf = 16268).

# (f(1), f(ξ1), f(ξ2), . . . , f(ξ87), f(ξ94)) ∆f

1 (1,1,1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,1,1,0,0) 160
2 (1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0) 160
3 (1,0,0,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,0,1,1) 200
4 (1,0,0,0,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,0,0,1,1,1,0,0,0,1,1) 200
5 (1,0,1,0,0,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,1,1,1,0) 176
6 (1,1,0,1,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1) 176
7 (1,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,1,0,1,1,0,0,1,1,1,0,0,1,0) 176
8 (1,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0,0,1,1,0,0,0,1,0,1,1,0,1,0,1,1) 232
9 (1,0,0,1,0,0,1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,1,1,0,1,1) 232
10 (1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0) 232
11 (1,1,1,0,0,0,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,1,1,0) 280
12 (1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,0) 280
13 (1,0,1,1,1,0,0,0,1,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,0,0,1,0) 280
14 (1,1,1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1) 416
15 (1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,1,1,0,1,0) 416
16 (1,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,0,1,0,1,0) 416

Table A2. The 239 RTTs of the PW type 5-RSBFs with NLf > 16256 (each row of the table shows three RTTs, except

the last one in which there are two RTTs. The first two functions with ∆f = 160 have NLf = 16276, and the rest have

NLf = 16268).

# RTTs ∆f RTTs ∆f RTTs ∆f

1 7DCED1A915115 160 427D3154DEB19 248 436D65603E63E 280
2 74D3DAE18681E 160 7074353C975A5 248 5D3617151B88F 280
3 4B2C251E797E1 200 67B3DC6F040CA 248 534CED5B8D438 280
4 42312E56EAEEA 200 5E00FD0B59D93 248 5B212EA501FF6 280
5 70E721D645CF4 208 73E15EB02D50D 248 56B29CB0AF847 288
6 50C2D31FC78E5 208 6CB8F0E0E54D9 248 472D0EE837AE8 288
7 419FCD18656DA 208 4D5862121CFFE 248 417A24683FAEE 288
8 73A7552E2D960 208 5A35D74ABF401 248 6E12C0B918DFE 288
9 5B9260949975F 208 52A5F7DE09192 248 5363CFB45C914 288
10 42949D8F6F153 208 4B43D20E5DCB9 248 4CC025B617BAF 288
11 57BBC4AA3244E 208 5A3986258CDF9 248 45AB4EBE35483 288
12 695CEB638843B 208 69B6316F42AE8 248 7873D902F3135 288
13 6C33D35323D2C 208 6D7D389204DE5 248 547DF28901DB3 288
14 646D7069C28FB 208 7D875722D1A62 248 5F3AA3BF52048 288
15 64627A99F4E1A 224 6E835E102FB27 256 495DCC6AAC34D 288
16 641552FC0DCED 224 537242EDF1E18 256 7F3E5B41C0B22 288
17 500BC2B752BCF 224 58ECCA50F764A 256 7B9D9F2AA2026 288
18 574A6BA87098F 224 50D1A6A78475F 256 653A4D721D639 288
19 6983275A9ABAC 224 4C0050BFFBD93 256 4F7D9A99064C5 288
20 662CCAFF11741 224 6E8C3D106B1E7 256 706B3AF1CA1B4 296
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Table A2. Continued.

21 5AD1F2A4C0E3D 224 66AFA49746358 256 626F202C847FF 296
22 4D3CCB8F99C42 224 5794A18393DEC 256 788CED22E351E 296
23 7EB58B00C3E3C 224 6DE0062BF916D 256 617CED598CD14 296
24 73445BA9413DE 224 5B5E3B10C3387 256 44A885C6475FF 296
25 5D6BAAF2C208B 224 5694F0C3AFC46 256 61066E1C5BE4F 312
26 4D0A0F995EED2 224 43DDCE3629439 256 60B548ED717C5 312
27 5D20239FE78C6 224 6CB223637F5A0 256 5D178E09CE5E8 312
28 6D302D6972B33 224 6FB75450186D5 256 64624F3336A3E 312
29 624D2BF0195AF 224 50EB6B43FA740 256 5173C2EF94E18 312
30 6EC37A9027A0F 224 4AADF76662A11 256 43411F5DFB550 320
31 5A898335754FC 224 68A20B19F5BF4 256 794F750E80DA3 320
32 4F2D40D3ADCAC 224 6BB7C1C5A886A 256 6DACA93E9260D 320
33 416AE55F348B5 224 45DC2D67268BA 256 67590DD0E9956 320
34 405E36E8DC7B1 224 534724DFD4F10 256 4C7DD2AA8D349 320
35 7F80E8E991A63 224 6493DE5E450B6 264 67B9B56A06343 320
36 610DD97CE3332 224 421BD61D7931D 264 5B1B40C66BD2B 320
37 5254B1EFC7458 224 56EC63B2A7A60 264 513C856FD85F0 320
38 5ACD3CACF2431 224 5E82E5D21E4F8 264 45E89D6AB6A2C 320
39 53B281F278D59 224 688F0FF4D8750 264 51C8DFAB9A605 320
40 4C151C784D7EB 232 71A8FB3E00E36 264 62BF9D68F06A0 320
41 78D81FDE40C8B 232 51EA6DFD6A401 264 7E9E7627805A8 320
42 6517A73492E53 232 6A8CE0AA4A7BD 264 72AF38586F305 320
43 5B7CE95131A51 232 6EAD8522F2536 264 67B53C586909E 320
44 53EAB4C864E78 232 686A239D4B17E 264 639F448DE5CC2 320
45 599615D4E74C3 232 509081EBBA5FE 272 4FE530871F645 320
46 62FEE883E2F40 232 4CA19C61EBF15 272 7A8C136593FC2 320
47 5FF106630C4F3 232 41C016293DFEF 272 4ACF9B02CAABC 320
48 7BE6774041A63 232 60B5016FA5EE9 272 6A32511FE672A 320
49 5D3D72C68EE10 232 5B66431BF9E40 272 7B516CE113E2C 320
50 5F0C87EB491AA 240 4FA142C7EBD81 272 60477A5FCD891 336
51 7DB6440D9B827 240 725C8F532693A 272 72D24AE1DA5F0 336
52 6BE1BF87004B9 240 655DB2CA8EC62 272 420DFA967AB19 336
53 786E3A5F43930 240 64C43CE752357 272 73A583EF018CE 336
54 6FE304B26EC31 240 6B74E033A6257 272 71C73C3B1E252 336
55 4D38A5B43076F 240 57771DA3490A6 272 542661CFB3F50 336
56 7C3B73501E1AC 240 72C75A4BCF890 272 7B2B2BF02628E 336
57 6A4FF005C2B3B 240 63405B9E56EAA 272 4D7DFB1294886 336
58 5F5568E32BC11 240 4C16A4F6A3A67 272 5F5A13F55006B 336
59 49DC0694ECD5D 240 502E0FF05C3DE 272 47A6954BC4BC3 336
60 548A93D7E0D35 240 7BC26251C9C3D 272 48B88451F3FC7 392
61 5BC83A0EC3B4D 240 646F7EF044B21 272 6F7D13007F164 392
62 5B523C823BA75 240 4D596B8978C8D 272 61C2744DF3A4E 392
63 4E68FBC1FC064 240 47B87656DD08C 272 5B65E2E8F0439 392
64 7026ADB685A6E 240 6CAB3C9827669 272 5A033D5C1A3BE 392
65 6499BCE4061BF 240 501947BEF0DC9 280 48A5A94F23CDB 392
66 4C0EB4AAE6FC4 240 50027D7C9F3C5 280 6DBC0F6DB0162 392
67 498A9E94CA73D 240 772E68C26A176 280 5B1DDB0AC9613 392
68 776A123E9610F 240 6155B97D35132 280 7FF36D449084A 392
69 6CA19D13169F6 240 4E76B13614E3A 280 5CB9D3359D144 392
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Table A2. Continued.

70 5F7C2BA58304E 240 695C2F30B41AF 280 6ED64489076EE 392
71 407F68237A4F3 240 535BF01871367 280 63B984E9381F9 392
72 5B95E29235DC4 240 6D56787131497 280 47A8C89FF4A29 392
73 5729DC66D680D 240 6C1ED42DE4927 280 614455974DB7A 392
74 52C5B37B0A94E 240 543BF469F5610 280 47FABE586A034 392
75 44B9BCA4163CF 248 7A263DC5CA343 280 5E2A31F1713B8 392
76 52515D793E598 248 453FC01F919EA 280 5B0B39970A9EC 392
77 7BBBA44BCC0A4 248 7E017396D44BA 280 66D4AF6B1D10C 392
78 7A889B4393795 248 54B281E1BA97E 280 4284BFFAA8A65 392
79 6E6B4D121D82F 248 4C957394EF451 280 6AC766185F8F0 392
80 6B4D7E1E45681 248 49D20D7B34ED2 280
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