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Abstract: Recently, it was shown that there is no Boolean function on 15 variables with nonlinearity greater than 16276
in the class of functions that are invariant under the action of GF(2%)* x GF(2°)*. In this study, we consider some
important subsets of this class and perform an efficient enumeration of the 15-variable Patterson-Wiedemann (PW) type
functions with nonlinearity greater than the bent concatenation bound 16256 in the generalized classes of both 3-RSBF's

and 5-RSBFs for which the corresponding search spaces are 2282 and 247-%° | respectively. For the case of 3-RSBFs,
we find that there are 32 functions with nonlinearity > 16256, such that 8 of them correspond to the original PW
constructions, while the remaining 24 functions are new in the sense that they are not affine equivalent to the known
ones. For the other case of 5-RSBFs, our results show that there are 478 functions with nonlinearity exceeding the bent
concatenation bound, among which there is another set of 470 functions that are affine inequivalent to the known PW

constructions.
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1. Introduction

The design of Boolean functions on an odd number of variables n achieving very high nonlinearity, i.e. greater

than the so-called bent concatenation bound 27~1 — 2(n=1)/2

, constitutes one of the most challenging problems
encountered in the area of cryptography, coding theory, and combinatorics. Boolean functions with high
nonlinearity play a crucial role in the design of a secret-key cryptosystem as they are used as building blocks
to provide resistance against linear cryptanalysis [1]. In a standard correlation attack [2], where the outputs
of several linear feedback shift registers (LFSRs) are combined by a nonlinear Boolean function to generate
the keystream, the correlation between the keystream and one of the LFSR outputs (or a linear combination
of the LFSR outputs) is used to obtain the key (i.e. the initial states of the LFSRs). In other words, a
correlation attack can be mounted if there is a high correlation between the combining function and a linear
function, which implies low nonlinearity. Hence, as it is well known (e.g., see [3]), high nonlinearity provides
resistance against correlation and fast correlation attacks [4], as well. In coding theory, the problem is actually
related to the covering radius of the first-order Reed—Muller codes of block length 2™ which corresponds to
the maximum achievable nonlinearity of n-variable Boolean functions. The existence of Boolean functions with
nonlinearity exceeding the bent concatenation bound could be demonstrated for the first time for n = 15 by

Patterson and Wiedemann [5] in 1983 using some combinatorial results together with an exhaustive search.

*Correspondence: skavut@balikesir.edu.tr
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More than two decades later, 9-variable Boolean functions with nonlinearity 241 (=291 — 200=1/2 4 1) were
identified [6] in the rotation-symmetric class and subsequently this result was improved [7] to 242 by defining

the k-rotation-symmetric class.

Let f : GF(2") — GF(2™) be a Patterson-Wiedemann (PW) type function as defined in [8]. Until
recently, PW type functions exceeding the bent concatenation bound were known only for n = 15 =5 x 3.
The next possible candidate was n = 21 = 7 x 3, and such functions could be constructed [9] using a heuristic
search after a long gap of more than three decades. Each function found in [9] is of nonlinearity 221~ —2(21=1)/2

+ 61, and the nonlinearity bound given in [10] shows that the upper bound of nonlinearity in this case could be

as high as 2271 — 221=1)/2 £ 196 for the functions that are invariant under the action of GF(23)* x GF(27)*.

Recall that since PW type functions are idempotents for which f(a) = f(a?) Va € GF(2"), they can be

considered as rotation-symmetric by choosing a normal basis to represent the elements in GF(2™). In [7], the

(generalized) k-rotation symmetric class is defined as the class of functions that satisfy f(«a) = f (onk) Vo €
GF(2"™), where k is a fixed divisor of n. First, motivated by the fact that 9-variable functions with nonlinearity
242 are obtained [7] in the class of 3-rotation-symmetric Boolean functions (3-RSBFs), we consider the PW
type 15-variable functions that are in the k-rotation-symmetric class (which we refer to as PW type 15-variable
k-RSBFs) by relaxing the restriction of being idempotent. For (n, k) = (15, 3), we perform an exhaustive
search for the PW type 3-RSBFs using the system of inequalities obtained by properly modifying Algorithm
Prelnequalities in [8], which reduces the problem of finding the PW type functions to a problem of solving an
integer programming problem with binary variables. In this case, there are 31 inequalities, and the size of the
search space is 2282 (note that in [9], for (n, k) = (21, 1), there are 115 inequalities and the search space

is 2109-27) By fixing f(0) = 0, we find that there are 32 Boolean functions with nonlinearity greater than

the bent concatenation bound 16256 (=21°—1 — 2(15-1)/2) " Specifically, 8 of them correspond to the PW type
15-variable 1-RSBFs (called the PW constructions) that were given in [5], while the remaining 24 functions
have different absolute indicators from those of the PW constructions and hence are not affine equivalent to
any of them. One half of these 24 functions have nonlinearity 16268, and the other half have nonlinearity
16269 (as in the case of the PW constructions, one half is obtained from the other half by complementing the
truth tables, except their first bits). Note that one can use these functions to obtain balanced functions with
nonlinearity greater than the bent concatenation bound by suitably modifying their truth tables as in [11-13].

For (n, k) = (15, 5), there are 51 inequalities, and the search space is of size 24875

, which is huge compared
to the previous case. Here, we performed an efficient enumeration algorithm on a computer with an Intel Xeon
CPU ET7-4890 v2 @ 2.80 GHz processor, which takes 2 weeks by exploiting all of the cores. Asin (n, k) = (15,
3), we fixed f(0) = 0 to remove the functions that are complements of each other and found that there are
478 functions with nonlinearity > 16256. Among these, 470 of them are affine inequivalent to the known PW
functions. Our results confirm the nonlinearity bound in [10] for the 15-variable functions that are invariant
under the action of GF(23)* x GF(2%)*. In the Appendix, we present the aforementioned PW type functions
in the classes of 3-RSBFs and 5-RSBF's in Tables Al and A2, respectively. These were unknown before. The
MATLAB code that we use to perform Algorithm Preparelnequalities [8] for both 3-RSBFs and 5-RSBFs can

be found at https://drive.google.com/open?id=0B1s_TxsFtjSPSmloZzhwaVoxa2M.

In the following section, after giving a brief background of PW type functions, we present our results in
Section 3 and conclude the paper in Section 4.
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2. Preliminaries
Let f: GF(2™) — GF(2") be a Boolean function. We can call f balanced if the Hamming weight of its truth
table is equal to 2771,

For any w € GF(2"), the Walsh-Hadamard transform W (w) of f is defined as:

Wi(w) = Z (—1)Trwarts(e)
aeGF(2™)

from which the nonlinearity NL ; can be expressed as follows:
NLy=2""" — (1/2)maxecrem|Wr(w)].

For an odd number of variables n > 9, the maximum nonlinearity is not known. The best achieved nonlinearity
is known as 271 — 2(n=1)/2 4 90 x 2(n=15)/2 for > 15 [5] and 2771 — 2(n=1)/2 4 9 % 2(n=9)/2 for n =9, 11,
and 13 [7].

The autocorrelation function of f is given by:

r(B) = Z (_1)f(a)+f(a+ﬁ),

aeGF(2™)

where 8 € GF(2™). The autocorrelation value with maximum magnitude, except the origin, is also known as

the absolute indicator [14] and denoted as:

(Bl

Af = maxBEgF(Qn)*

It was conjectured in [14] that for any balanced function f with an odd number of variables n, Ay > 2(n+1)/2
which has been disproved by modifying the PW type functions [8,12].

As pointed out in [8], PW construction [5] can be viewed as an interleaved sequence [15] that is defined

as follows:

Definition 1 Let m = dr, where d, r > 1 are integers. The (d, r)-interleaved sequence Ag,, corresponding
to the binary sequence A = {ag, a1, az, ..., Gm-1} , is defined as the matriz whose (i, j)th entry is equal

to a;qy;, where i = 0,1, ..., r— landj =0,1, ..., d— 1.

Let & be a primitive element in GF(2™). Assuming that m = 2" — 1, an interleaved sequence A, , can
be associated with the ordered sequence { f(1), f(&), f(€2),...,f (£2"72)} such that a; qq; = f(£°*7). This
interleaved sequence is called the (d, r)-interleaved sequence, corresponding to f with respect to £&. The PW

type functions are described as follows [8,16]:

Definition 2 Let n = tq, where t, ¢ > 2 are prime numbers such that t > q. Let the product ® =
GFE(2") x GF(29) be the cyclic group of cardinality r = (2t —1)(29 — 1) in GF(2"). Let {p2) be the group of
Frobenius automorphisms, where oo : GF(2") — GF(2") is defined by o — o?. The function f is called PW

type if it is invariant under the action of R and (p2) .
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Since the corresponding function f is invariant under the action of R, the (d, r)-interleaved sequence
of a PW type function consists of either all 0 or all 1 columns by Definition 2. In addition, because of the
invariance under the action of (ps), the ith column has the same value as the jth column if ¢ = j2° mod d

for some integer s > 0. This equivalence relation, shown by pg, is given as follows:
ipgj & there exists an integer s > 0 such that ¢ = j2°mod d.

Note that the PW type functions are idempotents, i.e. f (a) = f(a?) Ya € GF(2"), and thus they can be
considered [17,18] as rotation-symmetric by choosing a normal basis. The k-rotation symmetric class, which
is equivalent to the rotation-symmetric class for & = 1, was defined in [7] as the class of functions that satisfy
fla) = f(a2k) Va € GF(2™), where k is a fixed divisor of n. Here, by imposing the condition of being

k-rotation-symmetric on the PW type functions, we relax the restriction of the invariance under the action of
(p2) and define the PW type k-RSBFs in the following:

Definition 3 Let {pqr) be the group of automorphisms, where k is a fized divisor of n and {(por): GF(2") —

GF(2™) is defined by o — a2 . The function f is called a PW type k-RSBF if it is invariant under the action
of R and {(par).

The equivalence relation among the corresponding (d, r)-interleaved sequences, denoted by pg, is then
given by:

ip’;j & there exists an integer s > 0 such that i = j2¥*modd.

Clearly, the PW type k-RSBFs are equivalent to the PW type functions for & = 1.
In the rest of this paper, we assume f (0) = 0 without loss of generality. Furthermore, we realize the

function fas f: {0, 1} ' — {0, 1} using the primitive polynomial x'® +z + 1 for n = 15.

3. PW type 15-variable k-RSBFs

In both of the following cases, we implement Algorithm Preparelnequalities [8] with our MATLAB code available
at the link given in Section 1.

3.1. The case of £ = 3
Using the mentioned code, we find that in a (151, (31)(7))-interleaved sequence there are 31 equivalence classes
with respect to pis;. Among them, 30 are of size 5 and 1 is of size 1. Let us represent the jth equivalence class
by the smallest integer among its elements as in [8]. We then have the following 31 representatives: 0, 1, 2, 3,
4, 5,6, 7,9, 10, 11, 12, 14, 15, 17, 22, 23, 27, 28, 29, 30, 34, 35, 37, 46, 47, 51, 53, 68, 87, and 94. Hence, a
PW type 15-variable 3-RSBF can be represented by a binary vector of length 31, i.e. (f(1), f(&Y), (€2), ...,
FET), f(&™).

Implementing Algorithm Prelnequalities in [8], we obtain the system of 31 inequalities in this case. Then,
by carrying out an exhaustive search, we find that there are 32 solutions of the system such that each solution
corresponds to an aforementioned 31-bit representative truth table (RTT). In Table Al, we give only one half

of these solutions since the other half is obtained by complementing them.
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The first four solutions in Table Al give PW constructions [5] with absolute indicators 160 and 200,
which correspond to PW type 1-RSBFs with respect to Definition 3. All the other RTTs yield functions with

different absolute indicators and hence they are not affine equivalent to the PW constructions.

3.2. The case of k = 5

Here, using the equivalence relation pjs;, it is found that there are 51 representatives: 0, 1, 2, 3, 4, 5, 6, 7, 8,
10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 28, 30, 31, 33, 35, 37, 39, 42, 44, 46, 47, 51, 55, 56, 60, 61,
65, 66, 69, 70, 74, 75, 78, 79, 83, 84, 88, and 93. Among their equivalence classes, 50 are of size 3 and 1 is of
size 1. We carried out an efficient exhaustive search algorithm to obtain all the solutions of the corresponding
system of 51 inequalities that yields 478 PW type 5-RSBF's with nonlinearity exceeding the bent concatenation
bound 16256. As in the case k = 3, half of the solutions are obtained from the other half by complementing
them, and so we present only one half in Table A2, in which the first four RTTs (with A; = 160 and 200) are
the known PW constructions in [5]. The RTTs given in Table A2 are represented in hexadecimal form, e.g., the
first RTT “7DCED1A915115” should be read as (f(1), f(&Y), f(&2), ..., f(€%8), f(¢"%) =(1,1,1,1,1,0, 1,
1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1, 1,0, 1, 0, 1, 0, 0, 1, 0, 0,0, 1,0, 1,0, 1, 0, 0, 0, 1, 0, 0, O, 1, O, 1, O, 1).

4. Conclusion

We have defined the PW type n-variable k-RSBFs and performed efficient exhaustive searches for the PW
type 15-variable functions in the classes of 3-RSBF's and 5-RSBFs. The search successfully finds 24 PW type
3-RSBFs and 470 PW type 5-RSBF's, which, while having nonlinearity greater than the bent concatenation
bound, are not affine equivalent to the known PW constructions in [5]. These functions were not known before,
and they can be used to obtain balanced functions with nonlinearity exceeding the bent concatenation bound
by modifying their truth tables as in [11-13]. Moreover, our results confirm the nonlinearity bound in [10] for

the 15-variable functions that are invariant under the action of GF(23)*x GF(2°)*.
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Appendix
RTTs of the PW type 15-variable 3-RSBF's and 5-RSBFs.

Table Al. The 16 RTTs of the PW type 3-RSBFs with NLy > 16256 (the first two functions have NL; = 16276 and
the rest have NL; = 16268).

# | (f(), F(E), f(€%), .-, F(E%D), (&%) A
1 | (1,1,1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,1,1,0,0) | 160
2 | (1,1,1,0,1,0,0,1,0,0,1,0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0) | 160
3 |(1,0,0,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,0,1,1) | 200
4 |(1,0,0,0,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,0,0,1,1,1,0,0,0,1,1) | 200
5 |(1,0,1,0,0,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,1,1,1,0) | 176
6 | (1,1,0,1,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1) | 176
7 | (1,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,1,0,1,1,0,0,1,1,1,0,0,1,0) | 176
8 | (1,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0,0,1,1,0,0,0,1,0,1,1,0,1,0,1,1) | 232
9 |(1,0,0,1,0,0,1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,1,1,0,1,1) | 232
10 | (1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0) | 232
11 | (1,1,1,0,0,0,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,1,1,0) | 280
12 [ (1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,0) | 280
13 [ (1,0,1,1,1,0,0,0,1,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,0,0,1,0) | 280
14 | (1,1,1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1) | 416
15 | (1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,1,1,0,1,0) | 416
16 | (1,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,0,1,0,1,0) | 416

Table A2. The 239 RTTs of the PW type 5-RSBFs with NL ; > 16256 (each row of the table shows three RTTs, except
the last one in which there are two RTTs. The first two functions with Ay = 160 have NLy = 16276, and the rest have
NL ;= 16268).

# | RTTs A; | RTTs A; | RTTs A;
1 | 7DCED1A915115 | 160 | 427D3154DEB19 | 248 | 436D65603E63E | 280
2 | 74D3DAEIS6SIE | 160 | 7074353C975A5 | 248 | 5D3617151BS]F | 280
3 | 4B2C251E797EL | 200 | 67B3DC6F040CA | 248 | 534CED5B8D438 | 280
4 | 42312E56EAEEA | 200 | 5EOOFDOB59D93 | 248 | 5B212EA501FFG | 280
5 | 7T0E721D645CF4 | 208 | 73E15EB02D50D | 248 | 56B29CBOAF847 | 288
6 | 50C2D31FC78E5 | 208 | 6CBRFOEOE54D9 | 248 | 472DOEES37AES | 288
7 | 419FCDI8656DA | 208 | 4D5862121CFFE | 248 | 417A24683FAEE | 288
8 | 73AT552E2D960 | 208 | 5A35D74ABF401 | 248 | 6E12C0B9ISDFE | 288
9 | 5B9260949975F | 208 | 52A5F7TDE09192 | 248 | 5363CFB45C914 | 288
10 | 42949DSFGF153 | 208 | 4B43D20E5DCBY | 248 | 4CC025B617BAF | 288
11 | 57BBCAAA3244E | 208 | 5A3986258CDF9 | 248 | 45ABAEBE35483 | 288
12 | 695CEBG638343B | 208 | 69B6316F42AES | 248 | 7873D902F3135 | 288
13 | 6C33D35323D2C | 208 | 6D7D3389204DE5 | 248 | 547DF28901DB3 | 288
14 | 646D7069C28FB | 208 | 7D875722D1A62 | 248 | 5SF3AA3BF52048 | 288
15 | 64627A99FAETA | 224 | 6ES35E102FB27 | 256 | 495DCCGAAC34D | 288
16 | 641552FCODCED | 224 | 537242EDF1EI8 | 256 | 7F3E5B41C0B22 | 288
17 | 500BC2B752BCF | 224 | 58ECCAB0F764A | 256 | 7BODIF2AA2026 | 288
18 | 574A6BAB7098F | 224 | 50D1AGAT8475F | 256 | 653A4D721D639 | 288
19 | 6983275A9ABAC | 224 | 4C0050BFFBD93 | 256 | 4F7D9A99064C5 | 288
20 | 662CCAFF11741 | 224 | 6ESC3DI06B1E7 | 256 | 706B3AFICAIB4 | 296
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Table A2. Continued.

21 | 5AD1F2A4C0E3D | 224 | 66AFA49746358 256 | 626F202C847FF 296
22 | 4AD3CCB8F99C42 | 224 | 5794A18393DEC 256 | 7T88CED22E351E 296
23 | TEB58B0O0C3E3C 224 | 6DE0062BF916D 256 | 617CED598CD14 296
24 | 73445BA9413DE 224 | 5B5SE3B10C3387 256 | 44A885C6475FF 296
25 | 5D6BAAF2C208B | 224 | 5694F0C3AFC46 256 | 61066E1C5BE4F 312
26 | ADOAOF995EED2 | 224 | 43DDCE3629439 256 | 60B548ED717CH 312
27 | 5D20239FE78C6 224 | 6CB223637F5A0 256 | 5D178E09CESES 312
28 | 6D302D6972B33 224 | 6FB75450186D5 256 | 64624F3336A3E 312
29 | 624D2BF0195AF 224 | 50EB6B43FA740 256 | 5173C2EF94E18 312
30 | 6EC37A9027AOF 224 | 4AADF76662A11 256 | 43411F5DFB550 320
31 | 5A898335754FC 224 | 68A20B19F5BF4 256 | 794F750E80DA3 320
32 | 4F2D40D3ADCAC | 224 | 6BB7C1C5A886A | 256 | 6DACA93E9260D 320
33 | 416AE55F348B5 224 | 45DC2D67268BA 256 | 67590DD0OE9956 320
34 | 405E36E8DC7B1 224 | 534724DFDA4F10 256 | 4CTDD2AA8D349 | 320
35 | TFS8OESE991A63 224 | 6493DESE450B6 264 | 67BI9B56A06343 320
36 | 610DD97CE3332 224 | 421BD61D7931D 264 | 5B1B40C66BD2B 320
37 | 5254B1EFC7458 224 | 56EC63B2ATA60 264 | 513C856FD85F0 320
38 | SACD3CACF2431 | 224 | 5E82E5D21E4F8 264 | 45E89DGAB6A2C 320
39 | 53B281F278D59 224 | 688FOFF4D8750 264 | 51C8DFAB9A605 320
40 | 4C151C784D7EB 232 | 7T1A8FB3EO0E36 264 | 62BF9D6SFO6A0 320
41 | 78D81FDE40C8B 232 | 51EA6DFD6A401 | 264 | TE9ET7627805A8 320
42 | 6517A73492E53 232 | 6ASCEOAA4A7BD | 264 | 72AF38586F305 320
43 | 5B7TCE95131A51 232 | 6EADS8522F2536 264 | 67B53CH86909E 320
44 | 53EAB4C864E78 232 | 686A239D4B17E 264 | 639F448DE5CC2 320
45 | 599615D4E74C3 232 | 509081EBBASFE 272 | 4FE530871F645 320
46 | 62FEE883E2F40 232 | 4CA19C61EBF15 272 | TA8C136593FC2 320
47 | 5FF106630C4F3 232 | 41C016293DFEF 272 | 4ACF9B02CAABC | 320
48 | TBE6774041A63 232 | 60B5016FA5SEE9 272 | 6A32511FE672A 320
49 | 5D3D72C68EE1L0 232 | 5B66431BFI9E40 272 | TB516CE113E2C 320
50 | BFOC87TEB491AA 240 | 4FA142C7EBDS1 272 | 60477ASFCD891 336
51 | 7TDB6440D9B827 240 | 725C8F532693A 272 | 72D24AE1DASFO 336
52 | 6BE1BF87004B9 240 | 655DB2CASEC62 | 272 | 420DFA967AB19 336
53 | 7T86E3A5F43930 240 | 64C43CET52357 272 | 73A583EF018CE 336
54 | 6FE304B26EC31 240 | 6B7T4E033A6257 272 | 71C73C3B1E252 336
55 | 4D38A5B43076F 240 | 57771DA3490A6 272 | 542661CFB3F50 336
56 | 7TC3B73501E1AC 240 | 72C75A4BCF890 272 | TB2B2BF02628E 336
57 | 6A4FF005C2B3B 240 | 63405B9ESGEAA 272 | 4D7DFB1294886 336
58 | 5F5568E32BC11 240 | 4C16A4F6A3A67 272 | 5F5A13F55006B 336
59 | 49DCO0694ECDSD | 240 | 502EO0FF05C3DE 272 | 47A6954BC4BC3 336
60 | 548A93D7E0D35 240 | 7TBC26251C9C3D 272 | 48B88451F3FC7 392
61 | 5SBCS3AOEC3B4D | 240 | 646F7EF044B21 272 | 6F7D13007F164 392
62 | 5B523C823BAT75 240 | 4D596B8978C8D 272 | 61C2744DF3A4E 392
63 | 4E68FBC1FC064 240 | 47B87656DD08C 272 | 5B65E2E8F0439 392
64 | 7026ADB685A6E 240 | 6CAB3C9827669 272 | 5A033D5C1A3BE | 392
65 | 6499BCE4061BF 240 | 501947BEF0DC9 280 | 48A5A94F23CDB 392
66 | 4COEB4AAEGFC4 | 240 | 50027D7C9F3C5h 280 | 6DBCOF6DB0162 392
67 | 498A9E94CAT73D 240 | 772E68C26A176 280 | 5B1IDDBOACY9613 | 392
68 | 776A123E9610F 240 | 6155B97D35132 280 | TFF36D449084A 392
69 | 6CA19D13169F6 240 | 4E76B13614E3A 280 | 5CB9D3359D144 392
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Table A2. Continued.

70 | 5F7C2BA58304E 240 | 695C2F30B41AF | 280 | 6ED64489076EE | 392
71 | 407F68237A4AF3 240 | 535BF01871367 280 | 63B984E9381F9 392
72 | 5B95E29235DC4 240 | 6D56787131497 280 | 47TA8C89FF4A29 | 392
73 | 5729DC66D680D 240 | 6C1ED42DE4927 | 280 | 614455974DBT7TA 392
74 | 52C5B37B0AY4E 240 | 543BF469F5610 280 | 4TFABE586A034 | 392
75 | 44B9BCA4163CEF | 248 | 7TA263DC5CA343 | 280 | 5E2A31F1713B8 | 392
76 | 52515D793E598 248 | 453FCO1F919EA | 280 | 5BOB39970A9EC | 392
77 | TBBBA44BCCO0A4 | 248 | 7TE017396D44BA | 280 | 66D4AF6B1D10C | 392
78 | TA889B4393795 248 | 54B281E1BA9TE | 280 | 4284BFFAA8A65 | 392
79 | 6E6B4D121D8&2F 248 | 4C957394EF451 280 | 6ACT66185F8F0 392
80 | 6B4DTE1E45681 248 | 49D20D7B34ED2 | 280
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