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ON MAGNETIC CURVES IN THE 3-DIMENSIONAL

HEISENBERG GROUP

CIHAN ÖZGÜR

Abstract. We consider normal magnetic curves in 3-dimensional Heisen-
berg group H3. We prove that γ is a normal magnetic curve in H3 if and
only if it is a geodesic obtained as an integral curve of e3 or a non-
Legendre slant circle or a Legendre helix or a slant helix. We obtain the
parametric equations of normal slant magnetic curves in 3-dimensional
Heisenberg group H3.

1. Introduction

Let (M, g) be a Riemannian manifold and F a closed 2-form. Then F is called
a magnetic field (see [1], [2] and [8]) if it is associated by the relation

g(ΦX,Y ) = F (X,Y ), ∀X,Y ∈ χ(M) (1.1)

to the Lorentz force Φ which is defined as a skew symmetric endomorphism field
on M . Let ∇ be the Levi-Civita connection associated to the metric g and
γ : I →M a smooth curve. Then γ is called a magnetic curve or a trajectory for
the magnetic field F if it is solution of the Lorentz equation

∇γ′(t)γ′(t) = Φ(γ′(t)). (1.2)

The Lorentz equation generalizes the equation of geodesics. A curve which satis-
fies the Lorentz equation is called magnetic trajectory. It is well-known that the
magnetic curves have constant speed. When the magnetic curve γ is arc length
parametrized, it is called a normal magnetic curve [9].

In [4], magnetic curves in Sasakian 3-manifolds were considered. In [15], the
classification of Killing magnetic curves in S2×R was given. In [16], the authors
prove that a normal magnetic curve on the Sasakian sphere S2n+1 lies on a totally
geodesic sphere S3. In [9], magnetic curves in a (2n+ 1)-dimensional Sasakian
manifold was studied. In [6], Killing magnetic curves in three-dimensional almost
paracontact manifolds were considered. In [14], magnetic curves on flat para-
Kähler manifolds were studied. In [18], magnetic curves in 3D semi-Riemannian
manifolds was considered. In [13], magnetic trajectories in an almost contact
metric manifold R2N+1 were studied. Magnetic curves in cosymplectic manifolds
were studied in [10]. Periodic magnetic curves in Berger spheres were consid-
ered in [12]. Some closed magnetic curves on a 3-torus were investigated in [17].
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Moreover, in [19], Legendre curves in 3-dimensional Heisenberg group were inves-
tigated.

Motivated by the above studies, in the present paper, we consider normal
magnetic curves in 3-dimensional Heisenberg group H3. We prove that γ is a
normal magnetic curve in H3 if and only if it is a geodesic obtained as an integral
curve of e3 or a non-Legendre slant circle with curvature κ = |q| sinα and of
constant contact angle α = arccos(− λ

2q ), where − λ
2q ∈ [−1, 1] or a Legendre helix

with κ = |q| and τ = λ
2 or a slant helix with κ = |q| sinα and τ = λ

2 + cosα.
Moreover, we obtain the parametric equations of normal slant magnetic curves
in 3-dimensional Heisenberg group H3.

2. Preliminaries

Let M2n+1 = (M,ϕ, ξ, η, g) be an almost contact metric manifold and Ω the
fundamental 2-form of M2n+1 defined by

Ω(X,Y ) = g(ϕX, Y ). (2.1)

If Ω = dη, then M2n+1 is called a contact metric manifold [3].
The magnetic field Ω on M2n+1 can be defined by

Fq(X,Y ) = qΩ(X,Y ),

where X and Y are vector fields on M2n+1 and q is a real constant. Fq is called
the contact magnetic field with strength q [13]. If q = 0 then the magnetic curves
are geodesics of M2n+1. Because of this reason we shall consider q 6= 0 (see [4]
and [9]).

From (2.1) and (1.1), the Lorentz force Φ associated to the contact magnetic
field Fq can be written as

Φq = qϕ.

So the Lorentz equation (1.2) can be written as

∇γ′(t)γ′(t) = qϕ(γ′(t)), (2.2)

where γ : I ⊆ R→M2n+1 is a smooth curve parametrized by arc length (see [9]
and [13]).

The Heisenberg group H3 can be viewed as R3 provided with Riemannian
metric

gH3 = dx2 + dy2 + η ⊗ η,
where (x, y, z) are standard coordinates in R3 and

η = dz +
λ

2
(ydx− xdy) ,

where λ is a non-zero real number. If λ = 1, then the Heisenberg group H3

is frequently referred as the model space Nil3 of the Nil geometry in the sense
of Thurston [20]. The Heisenberg group is a multiplicative group, and this is
essential for the construction of a left-invariant orthonormal basis. The readers
would acknowledge to know the expression of the product. Since λ 6= 0, the
1-form η satisfies dη ∧ η = −λdx∧ dy ∧ dz. Hence η is a contact form. In [11], J.
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Inoguchi obtained the Levi-Civita connection ∇ of the metric g with respect to
the left-invariant orthonormal basis

e1 =
∂

∂x
− λy

2

∂

∂z
, e2 =

∂

∂y
+
λx

2

∂

∂z
, e3 =

∂

∂z
. (2.3)

He obtained

∇e1e1 = 0, ∇e1e2 = λ
2 e3, ∇e1e3 = −λ

2 e2,

∇e2e1 = −λ
2 e3, ∇e2e2 = 0, ∇e2e3 = λ

2 e1,

∇e3e1 = −λ
2 e2, ∇e3e2 = λ

2 e1, ∇e3e3 = 0.

(2.4)

We also have the Heisenberg brackets

[e1, e2] = λe3, [e2, e3] = [e3, e1] = 0.

Let ϕ be the (1, 1)-tensor field defined by ϕ(e1) = e2, ϕ(e2) = −e1 and ϕ(e3) =
0. Then using the linearity of ϕ and g we have

η(e3) = 1, ϕ2(X) = −X + η(X)e3, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

We also have

dη(X,Y ) =
λ

2
g(X,ϕY )

for any X,Y ∈ χ(M). Then for ξ = e3, (ϕ, ξ, η, g) defines an almost contact
metric structure on H3. If λ = 2, then (ϕ, ξ, η, g) is a contact metric structure
and the Heisenberg group H3 is a Sasakian space form of constant holomorphic
sectional curvature −3 (see [11]). For arbitrary λ 6= 0, we do not work in contact
Riemannian geometry. However, the fundamental 2-form is closed and hence it
defines a magnetic field.

Let γ : I → H3 be a Frenet curve parametrized by arc length s. The contact
angle α(s) is a function defined by cosα(s) = g(T (s), ξ). The curve γ is said to
be slant if its contact angle α(s) is a constant [7]. Slant curves of contact angle
π
2 are traditionally called Legendre curves [3].

For (H3, ϕ, ξ, η, g), the Lorentz equation (1.2) can be written as

∇γ′(t)γ′(t) = qϕ(γ′(t)), (2.5)

(see [9]).

3. Magnetic Curves in 3-dimensional Heisenberg Group H3

Let γ : I → H3 be a curve parametrized by arc length. We say that γ is a
Frenet curve if one of the following three cases holds:

i) γ is of osculating order 1. In this case, ∇γ′γ′ = 0, which means that γ is a
geodesic.

ii) γ is of osculating order 2. In this case, there exist two orthonormal vector
fields T = γ′, N and a positive function κ (curvature) along γ such that ∇TT =
κN , ∇TN = −κT .

iii) γ is of osculating order 3. In this case, there exist three orthonormal vector
fields T = γ′, N,B and a positive function κ (curvature) and τ (torsion) along
γ such that

∇TT = κN,

∇TN = −κT + τB,
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∇TB = −τN,
where κ = ‖∇TT‖. A circle is a Frenet curve of osculating order 2 such that κ is
a non-zero positive constant; a helix is a Frenet curve of osculating order 3 such
that κ and τ are non-zero constants (see [19]).

Theorem 3.1. Let (H3, ϕ, ξ, η, g) be the Heisenberg group and consider the con-
tact magnetic field Fq for q 6= 0 on H3. Then γ is a normal magnetic curve
associated to Fq in H3 if and only if

i) γ is a geodesic obtained as an integral curve of e3 or
ii) γ is a non-Legendre circle with curvature κ = |q| sinα and of constant

contact angle α = arccos(− λ
2q ), where − λ

2q ∈ [−1, 1] or

iii) γ is a Legendre helix with κ = |q| and τ = λ
2 or

iv) γ is a slant helix with κ = |q| sinα and τ = λ
2 +q cosα, where α is a constant

such that α ∈ (0, π).

Proof. If the magnetic curve γ is a geodesic, then ϕT = 0, which means that T
is collinear to e3. Then being unitary we must have T = ∓e3. So γ is a geodesic
obtained as an integral curve of ξ.

Since γ is parametrized by arc-length, we can write

T = sinα cosβe1 + sinα sinβe2 + cosαe3, (3.1)

where α = α(s) and β = β(s). Using (2.4) we have

∇TT =
(
α′ cosα cosβ − sinα sinβ

(
β′ − λ cosα

))
e1

+
(
α′ cosα sinβ + sinα cosβ

(
β′ − λ cosα

))
e2

−α′ sinαe3. (3.2)

On the other hand, by the use of (3.1), it follows that

ϕT = − sinα sinβe1 + sinα cosβe2. (3.3)

Since γ is a magnetic curve

∇TT = qϕ(T ),

which gives us

α′ cosα cosβ − sinα sinβ
(
β′ − λ cosα

)
= −q sinα sinβ, (3.4)

α′ cosα sinβ + sinα cosβ
(
β′ − λ cosα

)
= q sinα cosβ, (3.5)

α′ sinα = 0. (3.6)

From (3.6), we find α′ = 0 or sinα = 0. If sinα =0, then ϕT = 0. So by the
discussion of the beginning of the proof, it follows that γ is a geodesic obtained
as an integral curve of e3. If α′ = 0, then α is a constant, this means that γ is a
slant curve. So we can assume that sinα > 0, which means that α ∈ (0, π).

Since α is a constant, from (3.4) or (3.5), we obtain β′ − λ cosα = q. Hence

β(s) = (λ cosα+ q) s+ c, (3.7)

where c is an arbitrary real number.
Substituting α′ = 0 and β′ − λ cosα = q into (3.2), we find

∇TT = −q sinα sinβe1 + q sinα cosβe2. (3.8)
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Now let {T,N,B} denote the Frenet frame of γ. Since ∇TT = κN , from (3.8)
we obtain

κ = |q| sinα = constant. (3.9)

By (3.8) and (3.9), it follows that

N = sgn(q) (− sinβe1 + cosβe2) . (3.10)

Then by the use of (3.10), (2.4) and β′ − λ cosα = q, we find

∇TN = sgn(q)

(
− cosβ

(
λ

2
cosα+ q

)
e1

− sinβ

(
λ

2
cosα+ q

)
e2 +

λ

2
sinαe3

)
.

Now we define the cross product × by e1 × e2 = e3 and we compute B = T ×N .
Then we obtain

B = sgn(q) (− cosα cosβe1 − cosα sinβe2 + sinαe3) . (3.11)

Since ∇TN = −κT + τB, we find

λ

2
sgn(q) = − |q| cosα+ sgn(q)τ. (3.12)

If γ is Legendre then from (3.12), it is a Legendre helix with κ = |q| and τ = λ
2 .

If γ is non-Legendre then from (3.12), it is a slant helix with κ = |q| sinα and
τ = λ

2 + q cosα.

If the osculating order is 2, then from (3.12), cosα = − λ
2q . So γ is a circle with

κ = |q| sinα and of constant contact angle α = arccos(− λ
2q ), where − λ

2q ∈ [−1, 1] .

Conversely, assume that γ is a slant helix with κ = |q| sinα and τ = λ
2 +q cosα,

where α is the contact angle between γ and e3. Then cosα = g(T, e3). Hence T
is of the form (3.1). Taking the covariant derivative of (3.1) with respect to T ,
since α is a constant, we have

∇TT =
(
β′ − λ cosα

)
[− sinα sinβe1 + sinα cosβe2] = κN

So we find g(e3, N) = 0. Hence e3 can be written as

e3 = cosαT + µB, (3.13)

where µ = ∓ sinα is a real constant since ‖e3‖ = 1. By (3.13), by a covariant
differentiation, we have

λ

2
ϕT = (τµ− κ cosα)N, (3.14)

which gives us

λ2

4
g(ϕT, ϕT ) =

λ2

4
sin2 α = (τµ− κ cosα)2. (3.15)

Since κ = |q| sinα and τ = λ
2 + q cosα, from the equation (3.15), we find µ =

sgn(q) sinα. Then the equality (3.14) turns into

ϕT = sgn(q) sinαN.

Using Frenet formulas

∇TT = κN = |q| sinαN = qϕT.
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Then the Lorentz equation (2.5) is satisfied. Hence γ is a magnetic curve.
If γ is a Legendre helix with κ = |q| and τ = λ

2 , then taking α = π
2 in the

above case, we have

ϕT = sgn(q)N

and

∇TT = κN = |q|N = qϕT,

which means that γ is a magnetic curve.
If γ is a non-Legendre circle with curvature κ = |q| sinα and of constant

contact angle α = arccos(− λ
2q ), then taking τ = 0 and cosα = − λ

2q we have

again ∇TT = qϕT . This implies that γ is a magnetic curve.
Then we get the result as required. �

4. Explicit Formulas for Magnetic Curves in 3-dimensional
Heisenberg Group H3

In [5], R. Caddeo, C. Oniciuc and P. Piu obtained the parametric equations of
all non-geodesic biharmonic curves in Heisenberg group Nil3. Using the similar
method of [5], we can state a result analogous to [Theorem 3.5, [9]]:

Theorem 4.1. The normal slant magnetic curves on H3, described by (2.2) have
the parametric equations

a)

x(s) =
1

υ
sinα sin(υs+ c) + d1,

y(s) = −1

υ
sinα cos(υs+ c) + d2,

z(s) =

(
cosα+

λ

2υ
sin2 α

)
s− λ

2υ
d1 sinα cos(υs+ c)

− λ

2υ
d2 sinα sin(υs+ c) + d3,

where υ = λ cosα + q 6= 0 and c, d1, d2, d3 are real numbers and α denotes the
contact angle which is a constant such that α ∈ (0, π) or

b)

x(s) = (sinα cos c) s+ d4,

y(s) = (sinα sin c) s+ d5

and

z(s) =

(
− q
λ

+
λ

2
sinα (d4 sin c− d5 cos c)

)
s+ d6,

where c, d4, d5 and d6 are real numbers and α denotes the contact angle which is
a constant such that α = arccos(− q

λ), where − q
λ ∈ [−1, 1].

Proof. Let γ(s) = (x(s), y(s), z(s)). Then using the equations (2.3), the equation
(3.1) can be written as

T = sinα cosβ(s)

(
∂

∂x
− λy

2

∂

∂z

)
+ sinα sinβ(s)

(
∂

∂y
+
λx

2

∂

∂z

)
+ cosα

∂

∂z
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= (sinα cosβ(s))
∂

∂x
+ (sinα sinβ(s))

∂

∂y

+

(
λ

2
x(s) sinα sinβ(s)− λ

2
y(s) sinα cosβ(s) + cosα

)
∂

∂z
, (4.1)

where β(s) = (λ cosα+ q) s+c. To find the explicit equations, we should integrate

the system dγ
ds = T . Then using (4.1), we have

dx

ds
= sinα cos (υs+ c) , (4.2)

dy

ds
= sinα sin (υs+ c) (4.3)

and

dz

ds
=

(
cosα+

λ

2
x(s) sinα sin(υs+ c)− λ

2
y(s) sinα cos(υs+ c)

)
, (4.4)

where υ = λ cosα+ q.
Assume that υ 6= 0. So the integration of the equations (4.2) and (4.3) gives

us

x(s) =
1

υ
sinα sin (υs+ c) + d1 (4.5)

and

y(s) = −1

υ
sinα cos (υs+ c) + d2, (4.6)

where d1 and d2 are real constants. Then substituting the equations (4.5) and
(4.6) in (4.4) we get

dz

ds
= cosα+

λ

2υ
sin2 α+

λ

2
d1 sinα sin(υs+ c)− λ

2
d2 sinα sin(υs+ c).

Hence the solution of the last differential equation gives us

z(s) =

(
cosα+

λ

2υ
sin2 α

)
s− λ

2υ
d1 sinα cos(υs+ c)

− λ

2υ
d2 sinα sin(υs+ c) + d3,

where d3 is a real constant.
Now assume that υ = λ cosα + q = 0. Then α = arccos(− q

λ), where − q
λ ∈

[−1, 1]. So from (4.2), (4.3) and (4.4), we have

dx

ds
= sinα cos c, (4.7)

dy

ds
= sinα sin c (4.8)

and
dz

ds
=

(
− q
λ

+
λ

2
x(s) sinα sin c− λ

2
y(s) sinα cos c

)
. (4.9)

Similar to the solution of the previous case, we find

x(s) = (sinα cos c) s+ d4,

y(s) = (sinα sin c) s+ d5
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and

z(s) =

(
− q
λ

+
λ

2
sinα (d4 sin c− d5 cos c)

)
s+ d6,

where d4, d5 and d6 are real constants. This completes the proof of the theorem.
�

Remark 4.1. For λ = 1, the Heisenberg group H3 is frequently referred as the
model space Nil3. Hence Theorem 3.1 and Theorem 4.1 can be restated taking
λ = 1 for the Nil space Nil3.

Acknowledgements

The author would like to thank the referees for their valuable comments, which
helped to improve the manuscript.

References

[1] T. Adachi, Curvature bound and trajectories for magnetic fields on a Hadamard
surface, Tsukuba J. Math. 20 (1996), 225–230.

[2] M. Barros, A. Romero, J. L. Cabrerizo and M. Fernández, The Gauss-Landau-Hall
problem on Riemannian surfaces, J. Math. Phys. 46 (2005), no. 11, 112905, 15 pp.

[3] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edi-
tion. Progress in Mathematics, 203. Birkhäuser Boston, Inc., Boston, MA, 2010.
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[10] S. L. Druţă-Romaniuc, J. Inoguchi, M. I. Munteanu and A. I. Nistor, Magnetic
curves in cosymplectic manifolds, Rep. Math. Phys. 78 (2016), 33–48.

[11] J. Inoguchi, Minimal surfaces in the 3-dimensional Heisenberg group, Differ. Geom.
Dyn. Syst. 10 (2008), 163–169.

[12] J. Inoguchi and M. I. Munteanu, Periodic magnetic curves in Berger spheres, Tohoku
Math. J. 69 (2017), 113–128.

[13] M. Jleli, M. I. Munteanu and A. I. Nistor, Magnetic trajectories in an almost contact
metric manifold R2N+1, Results Math. 67 (2015), 125–134.

[14] M. Jleli and M. I. Munteanu, Magnetic curves on flat para-Kähler manifolds, Turkish
J. Math. 39 (2015), 963–969.

[15] M. I. Munteanu and A. I. Nistor, The classification of Killing magnetic curves in
S2 × R, J. Geom. Phys. 62 (2012), 170–182.

[16] M. I. Munteanu and A. I. Nistor, A note on magnetic curves on S2n+1, C. R. Math.
Acad. Sci. Paris 352 (2014), 447–449.



ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP 9

[17] M. I. Munteanu and A. I. Nistor, On some closed magnetic curves on a 3-torus,
Math. Phys. Anal. Geom. 20 (2017), no. 2, Art. 8, 13 pp.
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