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ON MAGNETIC CURVES IN THE 3-DIMENSIONAL
HEISENBERG GROUP

CIHAN OZGUR

Abstract. We consider normal magnetic curves in 3-dimensional Heisen-
berg group Hs. We prove that 7y is a normal magnetic curve in Hj if and
only if it is a geodesic obtained as an integral curve of es or a non-
Legendre slant circle or a Legendre helix or a slant helix. We obtain the
parametric equations of normal slant magnetic curves in 3-dimensional
Heisenberg group Hs.

1. Introduction

Let (M, g) be a Riemannian manifold and F a closed 2-form. Then F is called
a magnetic field (see [1], [2] and [8]) if it is associated by the relation

g(®X,Y) = F(X,Y), VX,Y € x(M) (1.1)

to the Lorentz force ® which is defined as a skew symmetric endomorphism field
on M. Let V be the Levi-Civita connection associated to the metric g and
~v: I — M a smooth curve. Then ~ is called a magnetic curve or a trajectory for
the magnetic field F' if it is solution of the Lorentz equation

VoY () = 2+ (1) (1.2)
The Lorentz equation generalizes the equation of geodesics. A curve which satis-
fies the Lorentz equation is called magnetic trajectory. It is well-known that the
magnetic curves have constant speed. When the magnetic curve « is arc length
parametrized, it is called a normal magnetic curve [9].

In [4], magnetic curves in Sasakian 3-manifolds were considered. In [15], the
classification of Killing magnetic curves in S? x R was given. In [16], the authors
prove that a normal magnetic curve on the Sasakian sphere S?**! lies on a totally
geodesic sphere S3.  In [9], magnetic curves in a (2n + 1)-dimensional Sasakian
manifold was studied. In [6], Killing magnetic curves in three-dimensional almost
paracontact manifolds were considered. In [14], magnetic curves on flat para-
Kéhler manifolds were studied. In [18], magnetic curves in 3D semi-Riemannian
manifolds was considered. In [13], magnetic trajectories in an almost contact
metric manifold R2V*! were studied. Magnetic curves in cosymplectic manifolds
were studied in [10]. Periodic magnetic curves in Berger spheres were consid-
ered in [12]. Some closed magnetic curves on a 3-torus were investigated in [17].

2010 Mathematics Subject Classification. 53C25, 53C40, 53A05.
Key words and phrases. Magnetic curve, Legendre curve, slant curve, Heisenberg group.
1



2 CIHAN OZGUR

Moreover, in [19], Legendre curves in 3-dimensional Heisenberg group were inves-
tigated.

Motivated by the above studies, in the present paper, we consider normal
magnetic curves in 3-dimensional Heisenberg group Hs. We prove that v is a
normal magnetic curve in Hj if and only if it is a geodesic obtained as an integral
curve of e3 or a non-Legendre slant circle with curvature k = |g|sina and of
constant contact angle o = arccos(—%q), where —2%] € [-1,1] or a Legendre helix
with & = |g| and 7 = % or a slant helix with x = |g|sina and 7 = % + cosa.
Moreover, we obtain the parametric equations of normal slant magnetic curves
in 3-dimensional Heisenberg group Hs.

2. Preliminaries

Let M2t = (M, ¢,£,m,g) be an almost contact metric manifold and €2 the
fundamental 2-form of M?"*+! defined by

QX,Y) = g(pX,Y). (2.1)

If Q = dn, then M?"*! is called a contact metric manifold [3].
The magnetic field  on M?**! can be defined by

FQ(X7Y) = qQ(X,Y),

where X and Y are vector fields on M?"*1 and ¢ is a real constant. F, is called
the contact magnetic field with strength ¢ [13]. If ¢ = 0 then the magnetic curves
are geodesics of M?"*1. Because of this reason we shall consider ¢ # 0 (see [4]
and [9]).

From (2.1) and (1.1), the Lorentz force ® associated to the contact magnetic
field F, can be written as

O, = qp.
So the Lorentz equation (1.2) can be written as
v'y’(t)’)/(t) = qu(’y/(t))v (22)
where v : I C R — M*" ! is a smooth curve parametrized by arc length (see [9]

and [13]).
The Heisenberg group Hs can be viewed as R3 provided with Riemannian
metric

g, = dz? +dy? +n e,

where (z,, z) are standard coordinates in R? and

A
n:dz+§(ydx—wdy),

where A is a non-zero real number. If A = 1, then the Heisenberg group Hj
is frequently referred as the model space Nils of the Nil geometry in the sense
of Thurston [20]. The Heisenberg group is a multiplicative group, and this is
essential for the construction of a left-invariant orthonormal basis. The readers
would acknowledge to know the expression of the product. Since A # 0, the
1-form 7 satisfies dn An = —Adx A dy A dz. Hence 7 is a contact form. In [11], J.
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Inoguchi obtained the Levi-Civita connection V of the metric g with respect to
the left-invariant orthonormal basis

0 Ay o 0 A0 0
_ Y MY -~ 4 =7 = 2.3
DT o 202 oy + 2929 a2 (2:3)
He obtained
Velel =Y, VeleQ = %637 vele?) = _%627
Ve,€1 = —%63, Ve, €2 :AO, Ve,€3 = %el, (2.4)
v€361 = —5627 v6362 = 5617 v€363 =0.
We also have the Heisenberg brackets
[e1, 2] = Aes, [ea,e3] = [es,e1] =0

Let ¢ be the (1, 1)-tensor field defined by ¢(e1) = ea, p(e2) = —e; and ¢(e3) =
0. Then using the linearity of ¢ and g we have

nes) =1, ¢*(X)=-X+n(X)es, g(eX,pY)=g(X,Y)—nX)nY).
We also have \
dn(Xv Y) = Eg(Xﬂ ‘»OY)

for any X,Y € x(M). Then for £ = es3, (v,&,n,9) defines an almost contact
metric structure on Hs. If A = 2, then (p,&,7n,g) is a contact metric structure
and the Heisenberg group Hj is a Sasakian space form of constant holomorphic
sectional curvature —3 (see [11]). For arbitrary A # 0, we do not work in contact
Riemannian geometry. However, the fundamental 2-form is closed and hence it
defines a magnetic field.

Let v : I — H3 be a Frenet curve parametrized by arc length s. The contact
angle «a(s) is a function defined by cosa(s) = ¢g(T'(s),£). The curve ~ is said to
be slant if its contact angle «(s) is a constant [7]. Slant curves of contact angle
% are traditionally called Legendre curves [3].

For (Hs,,&,1,g), the Lorentz equation (1.2) can be written as

VoY () = qp(+/ (1)), (2.5)
(see [9]).

3. Magnetic Curves in 3-dimensional Heisenberg Group H;

Let v : I — Hj3 be a curve parametrized by arc length. We say that v is a
Frenet curve if one of the following three cases holds:

i) v is of osculating order 1. In this case, V7' = 0, which means that ~ is a
geodesic.

ii) 7 is of osculating order 2. In this case, there exist two orthonormal vector
fields T' =4/, N and a positive function x (curvature) along 7 such that VT =
kN, VTN = —gT.

iii) ~y is of osculating order 3. In this case, there exist three orthonormal vector
fields T =/, N, B and a positive function x (curvature) and 7 (torsion) along
~ such that

V1T = kN,

VrN = —kT + 7B,
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VrB =—7N,

where k = ||[V7T||. A circle is a Frenet curve of osculating order 2 such that « is
a non-zero positive constant; a heliz is a Frenet curve of osculating order 3 such
that x and 7 are non-zero constants (see [19]).

Theorem 3.1. Let (Hs,p,&,n,9g) be the Heisenberg group and consider the con-
tact magnetic field Fy for ¢ # 0 on H3z. Then vy is a normal magnetic curve
associated to Fy in Hz if and only if

i) v is a geodesic obtained as an integral curve of es or

ii) v is a non-Legendre circle with curvature k = |q|sina and of constant
contact angle o = arccos(—%q), where —2—2 € [-1,1] or

ii1) 7y is a Legendre helix with k = |q| and T = % or
i) v is a slant heliz with k = |q|sina and T = 3 +q cos o, where a is a constant
such that o € (0, 7).

Proof. If the magnetic curve « is a geodesic, then T = 0, which means that T
is collinear to e3. Then being unitary we must have T' = Fes. So + is a geodesic
obtained as an integral curve of €.

Since «y is parametrized by arc-length, we can write

T = sin acos Bej + sin «rsin Beq + cos aes, (3.1)
where a = «(s) and 8 = 3(s). Using (2.4) we have
VT = (o/ cos acos B — sinacsin 8 (6’ — Acos a)) e1
+ (a' cos asin 3 + sin a. cos 8 (ﬁ' — Acosoz)) €
—a sin aes. (3.2)
On the other hand, by the use of (3.1), it follows that

©T = —sin asin Be; + sin a cos fes. (3.3)
Since v is a magnetic curve
VT = qp(T),
which gives us
o/ cos accos B — sin asin 3 (5’ — Acos a) = —¢sinasin S, (3.4)
o' cos asin B + sin a cos 3 (B' — A\ cos a) = gsinacos f3, (3.5)
o sina = 0. (3.6)

From (3.6), we find o/ = 0 or sinaw = 0. If sina =0, then T = 0. So by the
discussion of the beginning of the proof, it follows that v is a geodesic obtained
as an integral curve of e3. If @/ = 0, then « is a constant, this means that ~ is a
slant curve. So we can assume that sina > 0, which means that « € (0, 7).
Since « is a constant, from (3.4) or (3.5), we obtain 3’ — A cosa = ¢. Hence

B(s) = (Acosa+q)s+c, (3.7)

where c¢ is an arbitrary real number.
Substituting o’ =0 and 8’ — Acosa = ¢ into (3.2), we find

V1T = —qgsinasin fe; + ¢sin « cos fes. (3.8)
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Now let {T, N, B} denote the Frenet frame of 7. Since V7T = kN, from (3.8)
we obtain

Kk = |q| sin @ = constant. (3.9)
By (3.8) and (3.9), it follows that
N = sgn(q) (—sin ey + cos fea) . (3.10)

Then by the use of (3.10), (2.4) and 3’ — Acosa = ¢, we find

V1N = sgn(q) (— cos f3 <;\ cosa + q) e1

. A A
—sin §cosa+q e2 + Esmaeg .

Now we define the cross product x by e; X es = ez and we compute B =T x N.
Then we obtain

B = sgn(q) (— cos accos fe; — cos asin ey + sin aes) . (3.11)
Since VN = —kT + 7B, we find
A
§sgn(q) = —|q|cos o + sgn(q)T. (3.12)

If v is Legendre then from (3.12), it is a Legendre helix with x = |¢| and 7 =
If v is non-Legendre then from (3.12), it is a slant helix with x = |¢|sina and
T = % + g cosa.

A
5

If the osculating order is 2, then from (3.12), cosa = _2%. So v is a circle with

Kk = |q| sin o and of constant contact angle o = arccos(—Q—);]), where —2% €[-1,1].

Conversely, assume that v is a slant helix with k = |¢|sina and T = %—i—q cos o,
where « is the contact angle between v and e3. Then cosa = ¢g(7T',e3). Hence T
is of the form (3.1). Taking the covariant derivative of (3.1) with respect to T,
since « is a constant, we have

VT = (ﬁ' — A\ cos a) [— sin arsin Beg + sin a cos feg] = kKN

So we find g(es, N) = 0. Hence e3 can be written as

ez = cosal + ubB, (3.13)
where 1 = Fsina is a real constant since |leg|| = 1. By (3.13), by a covariant
differentiation, we have

A
EapT = (Tp — Kcosa)N, (3.14)
which gives us
z2 S )
Zg(goT, oT) = 7 sina= (T — Kcosa)”. (3.15)

Since k = |g|sina and T = % + gcosa, from the equation (3.15), we find p =
sgn(q)sin . Then the equality (3.14) turns into

©T = sgn(q) sinaN.
Using Frenet formulas

V7T = kN = |q|sinaN = qpT.
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Then the Lorentz equation (2.5) is satisfied. Hence «y is a magnetic curve.
If v is a Legendre helix with x = |¢| and 7 = %, then taking o = 5 in the
above case, we have
oT = sgn(q)N
and
VT = kN = |q| N = q¢T,

which means that v is a magnetic curve.

If v is a non-Legendre circle with curvature k = |g|sina and of constant
contact angle a = arccos(—%q), then taking 7 = 0 and cosa = —ﬁ we have
again V7T = qeT. This implies that v is a magnetic curve.

Then we get the result as required. O

4. Explicit Formulas for Magnetic Curves in 3-dimensional
Heisenberg Group Hj

In [5], R. Caddeo, C. Oniciuc and P. Piu obtained the parametric equations of
all non-geodesic biharmonic curves in Heisenberg group Nils. Using the similar
method of [5], we can state a result analogous to [Theorem 3.5, [9]]:

Theorem 4.1. The normal slant magnetic curves on Hs, described by (2.2) have
the parametric equations
a)

1
x(s) = —sinasin(vs + ¢) + dy,
v

1
y(s) = ——sinacos(vs + ¢) + da,

v
() 5o’ a) s = 2 tdy sinacos(vs + o)
zZ(S = COS «x —Ssm o |S— — S111 & COS(VS C
2v 20

A
——dysinasin(vs + ¢) + ds,
2v

where v = Acosa + q # 0 and c,dy,de,ds are real numbers and o denotes the
contact angle which is a constant such that o € (0,7) or

b)
x(s) = (sinacosc) s + dy,
y(s) = (sinasinc) s + ds

and

A
z(s) = (—i + 3 sina (dy sinc — ds cosc)) s+ dg,

where ¢, dy, ds and dg are real numbers and « denotes the contact angle which is
a constant such that a = arccos(—1), where —% € [—1,1].

Proof. Let v(s) = (z(s),y(s), z(s)). Then using the equations (2.3), the equation
(3.1) can be written as

0 Ax O

T = sin«cos 3(s) < - i) + sin asin B(s) (8y + 28z) + cosa—
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= (sinacos B(s)) % + (sinasin B(s)) aay
A . . A : 0
+ §x(s) sin asin B(s) — §y(s) sin acos 5(s) + cos a 9 (4.1)
z
where 3(s) = (Acos a + q) s+c. To find the explicit equations, we should integrate
the system Z—Z = T. Then using (4.1), we have
d
£ = sinacos (vs + ¢), (4.2)
dy _ sin asin (vs + ¢) (4.3)
s
and
dz A L A .
75 = \cosa + 535(3) sinasin(vs + ¢) — §y(s) sin acos(vs +¢) |, (4.4)

where v = Acosa + q.

Assume that v # 0. So the integration of the equations (4.2) and (4.3) gives
us

1
x(s) = —sinasin (vs + ¢) + d; (4.5)

v

and )
y(s) = - sin acos (vs + ¢) + da, (4.6)

where d; and dy are real constants. Then substituting the equations (4.5) and
(4.6) in (4.4) we get

A A A
d—z =cosa + % sin? o + 5(11 sinasin(vs + ¢) — §d2 sinasin(vs + ¢).
Hence the solution of the last differential equation gives us
A A
2(s) = <cos a+ %0 sin? a> s — %dl sin a cos(vs + ¢)
A .
—2—d2 sin asin(vs + ¢) + ds,
v

where d3 is a real constant.

Now assume that v = Acosa + ¢ = 0. Then a = arccos(—{), where —{ €
[—1,1]. So from (4.2), (4.3) and (4.4), we have
Z—g; = sinacosc, (4.7)
d
d—g; = sinasinc (4.8)
and
ZZ = <—§ + %x(s) sinasinc — %y(s) sin « cos C) . (4.9)

Similar to the solution of the previous case, we find
x(s) = (sinacosc) s + dy,

y(s) = (sinasinc) s + ds
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2(s) = <i + %sina(d4 sinc — ds cosc)> s+ dg,

where dy4, ds and dg are real constants. This completes the proof of the theorem.

g

Remark 4.1. For A\ = 1, the Heisenberg group Hj is frequently referred as the
model space Nil3. Hence Theorem 3.1 and Theorem 4.1 can be restated taking
A =1 for the Nil space Nils.
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