T.C. BALIKESIR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI ÇİFT METAL İÇEREN FOSFAT VE OKSİT BİLEŞİKLERİNİN SENTEZİ VE KARAKTERİZASYONU

YÜKSEK LİSANS TEZİ

KÜBRA SİLAY

BALIKESİR, HAZİRAN - 2019

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI ÇİFT METAL İÇEREN FOSFAT VE OKSİT BİLEŞİKLERİNİN SENTEZİ VE KARAKTERİZASYONU

YÜKSEK LİSANS TEZİ

KÜBRA SİLAY

Jüri Üyeleri : Prof. Dr. Figen KURTULUŞ (Tez Danışmanı) Prof. Dr. Halil GÜLER Dr. Öğr. Üyesi Sema ÇARIKÇI

BALIKESİR, HAZİRAN - 2019

KABUL VE ONAY SAYFASI

Kübra SİLAY tarafından hazırlanan "BAZI ÇİFT METAL İÇEREN FOSFAT VE OKSİT BİLEŞİKLERİNİN SENTEZİ VE KARAKTERİZASYONU" adlı tez çalışmasının savunma sınavı 11.06.2019 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği ile Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Prof. Dr. Figen KURTULUŞ

Üye Prof. Dr. Halil GÜLER

Üye Dr. Öğr. Üyesi Sema ÇARIKÇI

Jüri üyeleri tarafından kabul edilmiş olan bu tez Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulunca onanmıştır.

Fen Bilimleri Enstitüsü Müdürü

Prof. Dr. Necati ÖZDEMİR

.....

Bu tez çalışması Balıkesir Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından 2017-061 nolu proje ile desteklenmiştir.

ÖZET

BAZI ÇİFT METAL İÇEREN FOSFAT VE OKSİT BİLEŞİKLERİNİN SENTEZİ VE KARAKTERİZASYONU YÜKSEK LİSANS TEZİ KÜBRA SİLAY BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI (TEZ DANIŞMANI: PROF. DR. FİGEN KURTULUŞ)

BALIKESİR, HAZİRAN - 2019

Bu tez çalışmasında, mikrodalga enerji yöntemi, mikrodalga destekli yüksek sıcaklık sentez yöntemi ile yüksek sıcaklık katı hal sentez yöntemi kullanılarak bazı çift metal içeren fosfat ve oksit bileşikleri, literatürden farklı olarak sentezlenmiştir. Sentezlenen ürünler, öncelikli olarak X-ışınları toz kırınımı (X-ray powder diffraction, XRD) ile karakterize edilmiş olup Fourier Geçişli Kızılötesi Spektroskopisi (Fourier Transform Infrared, FT-IR) ile bu karakterizasyon çalışması desteklenmiştir.

KPb₄(PO₄)₃ (ICDD:29-1012) çift metal içeren fosfat bileşiği literatürden farklı olarak ilk defa mikrodalga enerji yöntemi kullanılarak sentezlenmiştir.

Na₂VP₂O₈ (ICDD:89-0067), Na₂ZnP₂O₇ (ICDD:87-0499), NaTi₂(PO₄)₃ (ICDD:84-2008) ve Na_{1,261}Ti_{1,896}Al_{0,302}(PO₄)₃ (ICSD:015-4071) olmak üzere çift metal içeren fosfat bileşikleri ilk defa mikrodalga destekli yüksek sıcaklık sentez yöntemi kullanılarak sentezlenmiştir. Sentezlenen ürünler, X-ışınları toz kırınımı yöntemi ile karakterize edilmiş olup yapısal oluşumlar, FT-IR spektroskopisi ile desteklenmiştir.

 $La_{0,96}MnO_{3,67} \quad (ICSD:016-3474), SrFeO_{2,5939} \quad (ICSD:015-4940), LaCoO_3 \\ (ICDD:75-0279), Ca_{0,2}Sr_{0,8}FeO_3 \quad (ICSD:009-2334), Ca_{0,9}Sr_{0,1}FeO_3 \quad (ICSD:009-2331), \\ La_{0,5}Sr_{0,5}FeO_3 \quad (ICDD:82-1962), LaFeO_3 \quad (ICDD:75-0541), NiFe_2O_4 \quad (ICSD:024-6894) \\ ve SrFeO_{3-x} \quad (ICDD:34-0638) \quad formüllerindeki \quad cift metal \quad iceren \quad oksit \quad bileşikleri, \\ mikrodalga \quad destekli \quad yüksek \quad sıcaklık \quad sentez \quad yöntemi \quad kullanılarak \quad sentezlenmiştir. \\ Sentezlenen \quad ürünlerin \quad karakterizasyon \quad calışmaları, X-ışınları toz \quad kırınımı \quad ve \quad FT-IR \\ spektroskopisi ile gerçekleştirilmiştir. \\$

Mikrodalga destekli yüksek sıcaklık sentez yöntemi kullanılarak sentezlenen Na₂VP₂O₈ (ICDD:89-0067) bileşiği, aynı zamanda yüksek sıcaklık katı hal sentez yöntemi ile de elde edilmiştir.

ANAHTAR KELİMELER: Mikrodalga enerji yöntemi, katı-hal sentez yöntemi, çift metal oksitler, çift metal fosfatlar, X-ışınları toz kırınımı.

ABSTRACT

THE SYNTHESIS AND CHARACTERIZATION OF SOME DOUBLE METAL CONTAINING PHOSPHATE AND OXIDE COMPOUNDS MSC THESIS KÜBRA SİLAY BALIKESIR UNIVERSITY INSTITUTE OF SCIENCE CHEMISTRY (SUPERVISOR: PROF. DR. FİGEN KURTULUŞ)

BALIKESİR, JUNE 2019

In this thesis, some double metal containing phosphate and oxide compounds have been synthesized by using microwave energy method, microwave assisted high temperature synthesis method and high temperature solid state synthesis method, different from the literature. The products to be synthesized are characterized primarily by X-ray powder diffraction (XRD) and fourier transform infrared spectroscopy (FT-IR).

 $KPb_4(PO_4)_3$ (ICDD:29-1012) as a double metal-containing phosphate compound has been synthesize using microwave energy method.

 $Na_2VP_2O_8$ (ICDD:89-0067), $Na_2ZnP_2O_7$ (ICDD:87-0499), $NaTi_2(PO_4)_3$ (ICDD:84-2008) and $Na_{1,261}Ti_{1,896}Pal_{0,302}(PO_4)_3$ (ICDD:015-4071) containing phosphate compounds have been synthesized by using microwave assisted high temperature synthesis method. The synthesized compounds have been characterized by X-ray powder diffraction and supported by FT-IR spectroscopy.

The double metal containing oxide compounds $La_{0,96}MnO_{3,67}$ (ICSD:016-3474), SrFeO_{2,5939} (ICSD:015-4940), LaCoO₃ (ICDD:75-0279), Ca_{0,2}Sr_{0,8}FeO₃ (ICSD:009-2334), Ca_{0,9}Sr_{0,1}FeO₃ (ICSD:009-2331), La_{0,5}Sr_{0,5}FeO₃ (ICDD:82-1962), LaFeO₃ (ICDD:75-0541), NiFe₂O₄ (ICSD:024-6894) and SrFeO_{3-x} (ICDD:34-0638) have been synthesized using the microwave assisted high temperature synthesis method. The synthesized compounds have been characterized by X-ray powder diffraction and supported by FT-IR spectroscopy.

 $Na_2VP_2O_8$ (ICDD:89-0067) compound which has been synthesized using microwave assisted high temperature synthesis method was also obtained by high temperature solid state synthesis method.

KEYWORDS: Microwave energy method, solid state synthesis method, double metal oxides, double metal phosphates, X-ray powder diffraction.

İÇİNDEKİLER

<u>Sayfa</u>

ÖZET		i
ABSTRA	ACT	. ii
ICINDE	KILER	iii
SEKİL I	İSTESİ	v
TABLO	LİSTESİ	vii
SEMBO	L LİSTESİ	. X
ÖNSÖZ.		xi
1. GİRİŞ	y)	. 1
1.1	Fosfatlar ve Özellikleri	. 1
1.1.1	Fosfatların Önemi ve Kullanım Alanları	. 2
1.2	Oksitler ve Özellikleri	. 5
1.2.1	Perovskitler	.9
1.2.2	Metal Oksitler	10
1.3	Katı Hal Sentez Yöntemleri	12
1.3.1	Yüksek Sıcaklık Sentez Yöntemi	13
1.3.2	Mikrodalga Enerji Yöntemi	15
1.3	3.2.1 Mikrodalga Enerjinin Farklı Malzemelerle Olan Etkileşimi	17
1.3	3.2.2 Mikrodalga Isıtmanın Mekanizması ve Isıtma Prensibi	18
1.4	X-Işınları Toz Kırınımı ve Önemi	19
1.5	Çalışmanın Amacı	20
2. MATI	ERYAL VE YÖNTEM	22
2.1	Kullanılan Kimyasallar	22
2.2	Kullanılan Cihazlar	23
2.3	Mikrodalga Enerji Yöntemi	23
2.4	Mikrodalga Destekli Yüksek Sıcaklık Sentez Yöntemi	23
2.5	Yüksek Sıcaklık Katı Hal Sentez Yöntemi	24
3. BULC	ULAR	25
3.1	Mikrodalga Enerji Yöntemi ile Gerçekleştirilen Deneyler	25
3.1.1	$NaH_2PO_4.2H_2O/V_2O_5/P^{+3}$ Sisteminde Gerçekleştirilen Deneyler ve	
		25
3.1.2	$Cs_2CO_3 / Co(NO_3)_3.6H_2O / P^{+3}$ Sisteminde Gerçekleştirilen Deneyler	
	ve Sonuçları	27
3.1.3	$Mg^{+2}/Co(NO_3)_3.6H_2O/P^{+3}$ Sisteminde Gerçekleştirilen Deneyler ve	•
0.1.4	Sonuçları	28
3.1.4	$KNO_3 / Pb^{-2} / P^{-3}$ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları. 2	29
3.1.5	$NaH_2PO_4.2H_2O / Pb (Pb^{+2} / Pb^{+}) / P^{+3}$ Sisteminde Gerçekleştirilen	20
210	Deneyler ve Sonuçları	52
3.1.6	KNO ₃ /ZnO/Cr(NO ₃) ₃ .9H ₂ O/P ⁴⁰ Sisteminde Gerçekleştirilen	.
217	Deneyler ve Sonuçiari	55
3.1./	NaH ₂ PO4.2H ₂ O / 11O ₂ / M ²² (Cd, Zn, Sn, N1, Co) / P ²⁰ Sisteminde	24
210	Note the sum of the set of the s)4
3.1.8	Denovler vo Sonucler	27
210	Dencylef ve Sonuçiari)/
3.1.9	$La(1NO_3)3.X\Pi_2O / IVI (IVI: Ca, SI) / IVINO_2 SISTEMINDE GERÇEKIEŞTIFILENDenovler ve Senueler$	20
		20

3.1.10	$La(NO_3)_3.xH_2O / Ca(NO_3)_2.4H_2O / Sr(NO_3)_2 / Fe(NO_3)_3.9H_2O$	
	Sisteminde Gerçekleştirilen Deneyler ve Sonuçları	41
3.1.11	$La(NO_3)_3.xH_2O / Sr(NO_3)_2 / Co(NO_3)_2.6H_2O$ Sisteminde	
	Gerçekleştirilen Deneyler ve Sonuçları	42
3.1.12	M^{+2} (M: Ca, La, Co, Ni) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O Sisteminde	
	Gerçekleştirilen Deneyler ve Sonuçları	44
3.2 Mi	krodalga Destekli Yüksek Sıcaklık Sentez Yöntemi ile Gerçekleştirilen	
D	eneyler	48
3.2.1	Na ⁺ /V ₂ O ₅ /P ⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları	48
3.2.2	Cs ₂ CO ₃ / Co(NO ₃) ₃ .6H ₂ O / P ⁺⁵ Sisteminde Gerçekleştirilen Deneyler	
	ve Sonuçları	52
3.2.3	$KNO_3 / Pb^{+2} / P^{+5}$ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları.	53
3.2.4	NaH ₂ PO ₄ .2H ₂ O / Pb ⁺² / P ⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve	
	Sonuçları	55
3.2.5	NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺² (Cd, Zn, Sn, Ni, Co) / P ⁺⁵ Sisteminde	
	Gerçekleştirilen Deneyler ve Sonuçları	56
3.2.6	NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺² (Al, Cr) / P ⁺⁵ Sisteminde Gerçekleştiriler	i
	Deneyler ve Sonuçları	70
3.2.7	La(NO ₃) ₃ .xH ₂ O / M ⁺² (M: Ca, Sr) / MnO ₂ Sisteminde Gerçekleştirilen	
	Deneyler ve Sonuçları	77
3.2.8	$La(NO_3)_3.xH_2O / Ca(NO_3)_2.4H_2O / Sr(NO_3)_2 / Fe(NO_3)_3.9H_2O$	
	Sisteminde Gerçekleştirilen Deneyler ve Sonuçları	85
3.2.9	La(NO ₃) ₃ .xH ₂ O / Sr(NO ₃) ₂ / Co(NO ₃) ₂ .6H ₂ O Sisteminde	
	Gerçekleştirilen Deneyler ve Sonuçları	89
3.2.10	M^{+2} (M: Ca, La, Co, Ni) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O Sisteminde	
	Gerçekleştirilen Deneyler ve Sonuçları	92
3.3 Yü	iksek Sıcaklık Katı Hal Sentez Yöntemi ile Gerçekleştirilen Deneyler 1	17
3.3.1	Na ⁺ /V ₂ O ₅ /P ⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları. 1	17
4. SONUÇ	LAR	23
5. KAYNA	KLAR1	26

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 1.1: 1	Fosfat anyonunun yapısı	. 2
Şekil 1.2: S	Spinel yapının kristal düzenlenmesi	. 9
Şekil 1.3: /	ABX ₃ formunun genel bir perovskit kristal yapısı	10
Şekil 1.4: (Dlası metal oksit uygulamaları	11
Şekil 1.5: I	Elektromanyetik spektrum.	15
Şekil 3.1: 1	KS-MD1 deneyine ait XRD desenleri	25
Şekil 3.2: 1	KS-MD2 deneyine ait XRD desenleri	26
Şekil 3.3: 1	KS-MD3 deneyine ait XRD desenleri	27
Şekil 3.4: 1	KS-MD11, KS-MD12, KS-MD13 ve KS-MD14 deneylerine ait XRD	
	desenleri.	30
Şekil 3.5: 1	KS-MD11 ve KS-MD12 deneylerine ait FT-IR spektrumu	32
Şekil 3.6: 1	KS-MD18 ve KS-MD19 deneylerine ait XRD desenleri	34
Şekil 3.7: l	KS-MD39, KS-MD40, KS-MD41, KS-MD42, KS-MD43 ve KS-MD44	
	deneylerine ait XRD desenleri.	40
Şekil 3.8: 1	KS-MD45 ve KS-MD46 deneylerine ait XRD desenleri	42
Şekil 3.9: 1	KS-MD47 ve KS-MD48 deneylerine ait XRD desenleri	43
Şekil 3.10:	KS-MDK1, KS-MDK2, KS-MDK3, KS-MDK4, KS-MDK5, KS-	
	MDK6, KS-MDK7, KS-MDK8 ve KS-MDK9 deneylerine ait	50
Şekil 3.11:	KS-MDK8 deneyine ait FT-IR spektrumu	51
Şekil 3.12:	KS-MDK10 deneyine XRD deseni.	52
Şekil 3.13:	KS-MDK11, KS-MDK12 ve KS-MDK13 deneylerine ait XRD	
	desenleri.	54
Şekil 3.14:	KS-MDK14 deneyine ait XRD desenleri	55
Şekil 3.15:	KS-MDK15 ve KS-MDK16 deneylerine ait XRD desenleri	57
Şekil 3.16:	KS-MDK16 deneyine ait FT-IR spektrumu	59
Şekil 3.17:	KS-MDK20, KS-MDK21 ve KS-MDK22 deneylerine ait XRD	
	desenleri.	61
Şekil 3.18:	KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait XRD	
	desenleri	63
Şekil 3.19:	KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait FT-IR	
	spektrumu	65
Şekil 3.20:	KS-MDK26, KS-MDK27 ve KS-MDK28 deneylerine ait XRD	
~	desenleri.	67
Şekil 3.21:	KS-MDK26, KS-MDK27 ve KS-MDK28 deneylerine ait FT-IR	
	spektrumu	69
Şekil 3.22:	KS-MDK29 ve KS-MDK30 deneylerine ait XRD desenleri	71
Şekil 3.23:	KS-MDK29 ve KS-MDK30 deneylerine ait FT-IR spektrumu	72
Şekil 3.24:	KS-MDK31, KS-MDK32 ve KS-MDK33 deneylerine ait XRD	
~	desenleri.	74
Şekil 3.25:	KS-MDK31, KS-MDK32 ve KS-MDK33 deneylerine ait FT-IR	
0.1.11.0.0.4	spektrum.	/6
Şekil 3.26:	KS-MDK34, KS-MDK35 ve KS-MDK36 deneylerine ait XRD	- ^
a 1 9 a a -	desenleri.	/8
Şekil 3.27:	KS-MDK34, KS-MDK35 ve KS-MDK36 deneylerine ait FT-IR	00
	spektrumu	80

Şekil 3.28: K	KS-MDK37, KS-MDK38 ve KS-MDK39 deneylerine ait XRD	
d	lesenleri.	82
Şekil 3.29: K	KS-MDK37, KS-MDK38 ve KS-MDK39 deneylerine ait FT-IR	
S	pektrumu.	84
Sekil 3.30: K	S-MDK40 ve KS-MDK41 denevlerine ait XRD desenleri	87
Sekil 3.31: K	KS-MDK40 ve KS-MDK41 denevlerine ait FT-IR spektrumu	88
Sekil 3.32: K	KS-MDK42 ve KS-MDK43 denevlerine ait XRD desenleri.	90
Sekil 3.33: K	CS-MDK42 ve KS-MDK43 deneylerine ait FT-IR spektrumu	91
Sekil 3 34 · K	CS-MDK44 KS-MDK45 KS-MDK46 ve KS-MDK47 denevlerine ait	1
Şekii 5.54. K	RD desenleri	9/
Sekil 3 35. K	XS-MDK11 ve KS-MDK15 deneylerine ait FT-IR spektrumu	95 95
Şekil 3 36. K	XS-MDK44 ve KS-MDK45 deneyterine att 1 1-IK spektrumu	96
Şekil 3.30. K	XS-MDK40 deneyine ait FT-IR spektrumu	07
Şekii 3.37. K	ZS MDK47 dencyme at 11-1K spektruma)
Ş CKII 3.30. M	AS-MIDR46, RS-MIDR49, RS-MIDR50, RS-MIDR51 VC RS-MIDR52	00
u Salel 2 20. V	Chevicinic all AND descritcin 1 XS MDK49, KS MDK50 vie KS MDK51 denovlaring ait ET ID	00
Şekii 5.59: K	-S-MDK46, KS-MDK50 ve KS-MDK51 deneylerine all F1-IK	02
S_1-11 2 40. K	Pektrumu	02
Şekii 3.40: K	S-MDK49 deneyine ait F1-IR spektrumu1	03
Şekil 3.41: K	S-MDK52 deneyine ait F1-IR spektrumu1	04
Şekil 3.42: K	S-MDK53, KS-MDK54, KS-MDK55, KS-MDK56 ve KS-MDK57	~ ~
d	leneylerine ait XRD desenleri 1	06
Şekil 3.43: K	KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 deneylerine ait	_
F	T-IR spektrumu1	09
Şekil 3.44: K	KS-MDK58, KS-MDK59, KS-MDK60, KS-MDK61 ve KS-MDK62	
d	leneylerine ait XRD desenleri 1	12
Şekil 3.45: K	KS-MDK58, KS-MDK59, KS-MDK60 ve KS-MDK61 deneylerine ait	
F	T-IR spektrumu1	15
Şekil 3.46: K	KS-MDK62 deneyine ait FT-IR spektrumu1	17
Şekil 3.47: K	KS-KF4 ve KS-KF7 deneylerine ait XRD desenleri	20
Şekil 3.48: K	KS-KF4 ve KS-KF7 deneylerine ait FT-IR spektrumu1	21
-	• •	

TABLO LÍSTESÍ

<u>Sayfa</u>

Tablo 1.1: İçerdiği fosfor (P) sayısına göre fosfatlar ve kullanımı	4
Tablo 1.2: Oksitlerin X2O ve XO tipleri.	8
Tablo 2.1: Gerçekleştirilen reaksiyonlarda kullanılan kimyasallar	22
Tablo 2.2: Deneysel çalışmalarda kullanılan cihazlar.	23
Tablo 3.1: NaH ₂ PO ₄ .2H ₂ O / V ₂ O ₅ sisteminde gerçekleştirilen deneyler.	25
Tablo 3.2: NaH ₂ PO ₄ .2H ₂ O / V ₂ O ₅ / (NH ₄)H ₂ PO ₄ sisteminde gerçekleştirilen	
deneyler	26
Tablo 3.3: Na ₃ PO ₄ .12H ₂ O / V ₂ O ₅ / (NH ₄) ₂ HPO ₄ sisteminde gerçekleştirilen	
deneyler	26
Tablo 3.4: Cs ₂ CO ₃ / Co(NO ₃) ₃ .6H ₂ O / P ⁺⁵ sisteminde gerçekleştirilen deneyler	27
Tablo 3.5: $Mg^{+2} / Co(NO_3)_{3.6}H_2O / P^{+5}$ sisteminde gerçekleştirilen deneyler	28
Tablo 3.6: $KNO_3 / Pb^{+2} / P^{+5}$ sisteminde gerçekleştirilen deneyler.	29
Tablo 3.7: KS-MD11 ve KS-MD12 deneylerine ait XRD verileri.	31
Tablo 3.8: KS-MD11 ve KS-MD12 deneylerine ait FT-IR spektrum verileri	32
Tablo 3.9: NaH ₂ PO ₄ .2H ₂ O / Pb (Pb ⁺² / Pb ⁺⁴) / P ⁺⁵ sisteminde gerçekleştirilen	
deneyler.	32
Tablo 3.10: $KNO_3 / ZnO / Cr(NO_3)_3.9H_2O / P^{+5}$ sisteminde gerçekleştirilen	
deneyler	33
Tablo 3.11: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺² (Cd, Zn) / P ⁺⁵ sisteminde gerçekleştirile	en
deneyler	34
Tablo 3.12: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M^{+2} (Sn) / P^{+5} sisteminde gerçekleştirilen	
deneyler	35
Tablo 3.13: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺² (Ni) / P ⁺⁵ sisteminde gerçekleştirilen	
deneyler	36
Tablo 3.14: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺² (Co) / P ⁺⁵ sisteminde gerçekleştirilen	
deneyler	36
Tablo 3.15: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺³ (Al) / P ⁺⁵ sisteminde gerçekleştirilen	
deneyler	37
Tablo 3.16 : NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺³ (Cr) / P ⁺⁵ sisteminde gerçekleştirilen	
deneyler	37
Tablo 3.17: La(NO ₃) ₃ .xH ₂ O / M ⁺² (M: Ca, Sr) / MnO ₂ sisteminde gerçekleştiriler	1
deneyler	38
Tablo 3.18: La(NO ₃) ₃ .xH ₂ O / Ca(NO ₃) ₂ .4H ₂ O / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O	
sisteminde gerçekleştirilen deneyler.	41
Tablo 3.19: La(NO ₃) ₃ .xH ₂ O / Sr(NO ₃) ₂ / Co(NO ₃) ₂ .6H ₂ O sisteminde	
gerçekleştirilen deneyler.	42
Tablo 3.20: M ⁺² (M: Ca) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	L
deneyler	44
Tablo 3.21: M ⁺² (M: La) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	
deneyler	45
Tablo 3.22: M ⁺² (M: Co) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	1
deneyler	46
Tablo 3.23: M ⁺² (M: Ni) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	
deneyler.	46
Tablo 3.24: Na ⁺ / V_2O_5 / P ⁺⁵ sisteminde gerçekleştirilen deneyler	48

Tablo 3.25: KS-MDK8 deneyine ait XRD verileri.	51
Tablo 3.26: KS-MDK8 deneyine ait FT-IR spektrum verileri.	52
Tablo 3.27: $Cs_2CO_3 / Co(NO_3)_{3.6H_2O} / P^{+5}$ sisteminde gerçekleştirilen deneyler.	52
Tablo 3.28: KNO ₃ / Pb ⁺² / P ⁺⁵ sisteminde gerçekleştirilen deneyler.	53
Tablo 3.29: NaH ₂ PO ₄ .2H ₂ O / Pb ⁺² / P ⁺⁵ sisteminde gerceklestirilen deneyler	55
Tablo 3.30: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M ⁺² (Cd, Zn) / P ⁺⁵ sisteminde gerceklestirile	n
denevler.	56
Tablo 3.31: KS-MDK16 denevine ait XRD verileri.	58
Tablo 3.32: KS-MDK16 denevine ait FT-IR spektrum verileri.	59
Tablo 3.33: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M^{+2} (Sn) / P^{+5} sisteminde gerceklestirilen	
denevler	59
Tablo 3.34: NaH ₂ PO ₄ .2H ₂ O / TiO ₂ / M^{+2} (Ni) / P^{+5} sisteminde gerceklestirilen	
denevler.	62
Tablo 3.35: KS-MDK23, KS-MDK24 ve KS-MDK25 denevlerine ait XRD	
verileri	64
Tablo 3.36: KS-MDK23 KS-MDK24 ve KS-MDK25 denevlerine ait FT-IR	
snektrum verileri	65
Table 3.37: NaH ₂ PO ₄ 2H ₂ O / TiO ₂ / M^{+2} (Co) / P^{+5} sisteminde gereeklestirilen	00
denevler	66
Table 3 38: KS-MDK26 KS-MDK27 ve KS-MDK28 denevlerine ait XRD	00
verileri	68
Table 3 39. KS-MDK26 KS-MDK27 ve KS-MDK28 denevlerine ait FT-IR	00
snektrum verileri	69
Table 3 40 . NaH ₂ PO ₄ 2H ₂ O / TiO ₂ / M^{+2} (A1) / P ⁺⁵ sisteminde gereeklestirilen	07
denevler	70
Table 3 41. KS-MDK20 ve KS-MDK30 denevlerine ait XRD verileri	70 72
Table 3.42: KS MDK20 ve KS MDK30 deneylerine ait FT IP spektrum verileri	12 73
Table 3.42. NoHoD(22) ve KS-WDK50 deneyterine at 11-1K spektrum vernen. Table 3.43. NoHoD(2) 2HoO / TiOo / M^{+2} (Cr) / D^{+5} sistemindo gereal/logirilan	. 75
deneyler	73
Table 3 11: MDK31 MDK32 ve MDK33 deneylerine ait XPD verileri	75 75
Table 3.45. KS MDK31, KS MDK32 ve KS MDK33 deneylerine ait FT IP	75
radio 5.45. KS-MDK51, KS-MDK52 ve KS-MDK55 deneyterine att 11-1K	76
Table 3 46: Lo(NO ₂), wHeO / M^{+2} (M:Co) / MnO ₂ gistemindo correct/lestimilar	70
donovlor	77
Table 3 47: KS MDK24 KS MDK25 vo KS MDK26 denovlaring ait VDD	/ /
vorilori	70
Table 2 49: VS MDV24 VS MDV25 vs VS MDV26 denovlaring ait ET ID	19
radio 5.46. KS-WDK54, KS-WDK55 ve KS-WDK50 delleylerine alt I'I-IK	80
Table 3 40: La(NO ₂), $xH_2 \cap /M^{+2}(M; Sr) / MnO_2$ sisteminda garaaklastirilan	00
denovlor	00
Table 2 50: KS MDK27 KS MDK28 vs KS MDK20 denovlaring sit XDD	80
1 abio 5.50: KS-MDK57, KS-MDK58 ve KS-MDK59 deneylerine all AKD	07
Table 2 51, VS MDV27, VS MDV28 vs VS MDV20 denovlaring sit ET ID	03
1abio 3.51: KS-MDK57, KS-MDK58 ve KS-MDK59 deneylerine all F1-IK	0.4
Table 2.52: La(NO) with $O / C_2(NO) = 4U O / C_2(NO) = 100$	84
1 aDio 3.52: La(NO_3) ₃ . XH_2O / Ca(NO_3) ₂ . $4H_2O$ / Sr(NO_3) ₂ / Fe(NO_3) ₃ . $9H_2O$	05
SISTEMINAE GERÇEKIEŞTIRILEN AENEYLER.	83
1 aDio 3.55: KS-MDK40 ve KS-MDK41 deneylerine alt XKD verileri	88
1 aDio 3.54: La(NO_3) ₃ .xH ₂ U / Sr(NO_3) ₂ / Co(NO_3) ₂ .6H ₂ U sisteminde	00
gerçekleştirilen deneyler.	89
1 adio 3.55: K5-MDK42 ve K5-MDK43 deneylerine alt XKD verileri.	91

Tablo 3.56: KS-MDK42 ve KS-MDK43 deneylerine ait FT-IR spektrum verileri. 9	2
Tablo 3.57: M ⁺² (M: Ca) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	
deneyler	2
Tablo 3.58: KS-MDK44 ve KS-MDK45 deneylerine ait XRD verileri	95
Tablo 3.59: KS-MDK44 ve KS-MDK45 deneyine ait FT-IR spektrum verileri 9	95
Tablo 3.61: KS-MDK46 deneyine ait XRD verileri	6
Tablo 3.61: KS-MDK46 deneyine ait FT-IR spektrum verileri	6
Tablo 3.63: KS-MDK47 deneyine ait XRD verileri	17
Tablo 3.63: KS-MDK47 deneyine ait FT-IR spektrum verileri	17
Tablo 3.64: M ⁺² (M: La) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	
deneyler	8
Tablo 3.65: KS-MDK48, KS-MDK50 ve KS-MDK51 deneylerine ait XRD	
verileri)1
Tablo 3.66: KS-MDK48, KS-MDK50 ve KS-MDK51 deneylerine ait FT-ITR	
spektrum verileri 10)2
Tablo 3.67: KS-MDK49 deneyine ait XRD verileri. 10)2
Tablo 3.68: KS-MDK52 deneyine ait XRD verileri. 10	13
Tablo 3.69: KS-MDK65 deneyine ait FT-IR spektrum verileri	14
Tablo 3.70: M ⁺² (M: Co) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	
deneyler	14
Tablo 3.71: KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 deneylerine	
ait XRD verileri10	17
Tablo 3.72: KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 deneylerine	
ait FT-IR spektrumu 11	0
Tablo 3.73 : M ⁺² (M: Ni) / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sisteminde gerçekleştirilen	
deneyler	0
Tablo 3.74: KS-MDK58, KS-MDK59, KS-MDK60 ve KS-MDK61 deneylerine	
ait XRD verileri11	3
Tablo 3.75: KS-DK58, KS-MDK59, KS-MDK60 ve KS-MDK61 deneylerine ait	
FT-IR spektrum verileri11	6
Tablo 3.76: KS-MDK62 deneyine ait XRD verileri. 11	6
Tablo 3.77: KS-MDK62 deneyine ait FT-IR spektrum verileri	7
Tablo 3.78: Na ⁺ / V_2O_5 / P ⁺⁵ sisteminde gerçekleştirilen deneyler.11	7
Tablo 3.79: KS-KF4 ve KS-KF7 deneylerine ait XRD verileri. 12	:1
Tablo 3.80: KF4 ve KF7 deneylerine ait FT-IR spektrum verileri 12	2

SEMBOL LÍSTESÍ

XRD	:	X-ışını Toz Kırınımı						
FT-IR	:	ourier Geçişli Infrared Spektroskopisi						
ICDD	:	International Center for Diffraction Data						
ICSD	:	Inorganic Crystal Structure Database						
MD	:	Mikrodalga ile Gerçekleştirilen Deney						
MDK	:	Mikrodalga Destekli Kül Fırını ile Gerçekleştirilen Deney						
KF	:	Kül Fırını ile Gerçekleştirilen Deney						

ÖNSÖZ

Tez çalışmam sırasında değerli bilgilerini benimle paylaşan, tecrübeleriyle bana yol gösterici olan, kıymetli zamanını benim için ayırıp her konuda yardımlarını esirgemeyen saygıdeğer danışman hocam; Prof. Dr. Figen KURTULUŞ' a,

Yüksek lisans eğitimim boyunca çok değerli bilgi ve tecrübelerini benimle paylaşan, güler yüzünü ve samimiyetini benden esirgemeyen, mesleki hayatımda da bana verdiği bilgilerden faydalanacağımı düşündüğüm kıymetli hocam; Prof. Dr. Halil GÜLER' e,

Çalışmalarım boyunca bana hep destek olan, herhangi bir sorunum olduğunda çözüm bulmama yardım eden, yol gösteren, iş hayatına atılmamda katkısı büyük olan sevgili Mevlüt ALNIAÇIK' a,

Lisans ve Yüksek lisans eğitimim boyunca ders aldığım ve onlar sayesinde bilgi birikimi kazandığım Kimya Bölümündeki tüm hocalarıma,

Deneysel çalışmalarımda her türlü yol gösteren, yardımını benden esirgemeyen, aynı anabilim dalında yüksek lisans yaptığımız sevgili arkadaşım; Burçin SAVRAN' a,

Yüksek lisans dönemim süresince birlikte birçok anı biriktirdiğim, her zaman yanımda olan, arkadaştan öte dostum en yakınım olan sevgili adaşım; Kübra ÇIKRIKÇI' ya,

Cıvıl cıvıl her anımızı kayda alan, unutulmayan karelere birlikte imza attığımız, desteğini üzerimden eksik etmeyen sevgili arkadaşım; Tuğba TAK'a,

Herşeyden önce beni bugünlere getiren, maddi manevi desteklerini üzerimden eksik etmeyen, bana güvenen ve hayata karşı dimdik durmamda payı büyük olan canım aileme,

Sonsuz teşekkürlerimi sunarım.

Kübra SİLAY

HAZİRAN, 2019

xi

1. GİRİŞ

1.1 Fosfatlar ve Özellikleri

Periyodik tablonun VA grubu elementi olan fosfor, "P" sembolü ile gösterilen, atom numarası 15 ve molekül ağırlığı 30,97376 gmol⁻¹ olan bir ametaldir [1]. Karanlıkta hava ile temas ettiğinde ışıma yapan fosfor elementi, ilk olarak 1969 yılında Alman Kimyacı Hennig Brandt tarafından ürenin ısıtılarak buharlaştırılması sonucunda keşfedilmiştir [2]. Fosforun altı adet izotopu olduğu bilinmektedir. Bunlardan ³¹P, doğada bulunan en kararlı izotopudur. Fosfor, üç çiftleşmemiş elektrona sahiptir ve elektronik konfigürasyonu 1s²2s²2p⁶3s²3p³ şeklindedir. Fosforun boş 3d orbitallerini de kullanması, oksidasyon basamaklarını -5' ten +5' e kadar değiştirmektedir [1].

Elementel fosforun beyaz, kırmızı, siyah ve mor olmak üzere dört çeşit allotropu bulunmaktadır [1].

Fosfor elementinin en yaygın bulunan allotropu, kübik yapıdaki beyaz fosfordur. Bu madde zehirli ve çok reaktif olup termodinamik kararlılığı düşüktür [1]. Havada kolay alev alabilen beyaz fosfor, sudaki çözünürlüğünün düşük olması nedeniyle genellikle su içinde saklanmaktadır [2].

Beyaz fosforun havasız ortamda ısıtılması ile çeşitli polimerik şekillere sahip, amorf bir madde olan kırmızı fosfor oluşmaktadır [2]. Kırmızı fosforun reaktivitesinin düşük olmasından dolayı reaksiyon yeteneği azdır ve zehirsizdir [1,2]. Amorf yapılı kırmızı fosfora uygun ısıl işlemler uygulanarak çeşitli kristal yapılı modifikasyonlara dönüştürülmektedir [1].

Çok yüksek basınçlarda beyaz fosforun ısıtılması ile siyah fosfor elde edilmektedir [2]. Bu maddenin bir amorf şekli ve kübik, ortorombik, rombohedral olmak üzere üç farklı kristal yapısı bulunmaktadır [1]. Siyah fosfor, termodinamik olarak en kararlı olan allotroptur [2]. Yükseltgen maddelerle karşılaştırıldığında sürtünme ile tutuşmasından dolayı kibrit yapımında kullanılan temel bir hammaddedir [3]. Dökme kurşun içerisinde fosforun kristalizasyonu ile monoklinik yapıya sahip olan mor allotropu elde edilmektedir. P₈, P₉ moleküllerinden oluşan mor fosfor modifikasyonu, oldukça kompleks bir yapıya sahiptir [1].

Termodinamik açıdan kararlılıklarının beyaz fosfordan siyah fosfora doğru arttığı görülmektedir [4].

Tabiatta serbest halde bulunmayan fosfor, oksijene karşı olan ilgisinden dolayı genellikle diğer elementler ile bileşikleri halinde bulunmaktadır [4]. Doğal ortamda fosforun inorganik formu olarak bulunan fosfat, PO₄ formül birimine sahip anyonik yapılı tuzdur [5]. Fosfat, bir tetrahedronun merkezine fosfor (P), köşelerine oksijen (O) atomları yerleşmiş bir yapıya sahiptir [1]. P ve O atomları arasındaki üç adet tekli bağ ve bir adet çift bağ nedeniyle fosforun burada +5 oksidasyon durumu vardır (Şekil 1.1) [5].

Şekil 1.1: Fosfat anyonunun yapısı.

Kimyada fosfatlar genellikle fosforik asidin tuzu veya esterleri halinde bulunmaktadır [4]. Fosfatın doğada bulunan en önemli minerali, hegzagonal bipiramit kristal yapısında ve bileşimi Ca₅(PO₄)₃(OH,Cl,F) şeklinde olan apatittir [3].

1.1.1 Fosfatların Önemi ve Kullanım Alanları

Günümüzde, çevre dostu niteliklerin yanı sıra daha uzun ömürlü ve yüksek verimlilik sağlayan, çevre, endüstri, teknoloji ve sağlık gibi alanlarda temel gerekliliği olan fosfatlar, oldukça büyük önem taşımaktadır [6]. Fosfatlar, modern yaşam ve sağlığın vazgeçilmez birçok ürününün önemli bir parçasıdır [7].

Fosfatların özelliklerini tanımlayan başta moleküler yapı olmak üzere birkaç özellik bulunmaktadır ve bunlar fosfatların işlevselliği ile beraber nasıl kullanılacaklarını da belirlemektedir [7]. Fosfat, su ile temas ettiğinde suyun yapısını değiştirerek yumuşatıp köpürme özelliği taşımaktadır. Aynı zamanda kirlilikleri temizleme özelliğine sahip olmasından dolayı genellikle deterjan gibi temizlik ürünlerinin yapısına katılmaktadır. Fosfat ile temizlenen malzemelerde istemesek de kalıntıları bulunabilmekte ve atık sulara karışan bu kalıntılar, akarsu ve göllere ulaşarak sağlık açısından tehlike oluşturabilmektedir. Fosfat elementi, bünyesinde toksinler barındırdığı için canlılara zarar verme potansiyeli yüksek olan kanserojen bir elementtir [8].

Dünya üzerinde birçok kullanım alanına sahip olan ve günden güne önemi daha da artan fosfatın %90' 1 gübre, %10' u kimya sanayisinde kullanılmaktadır [4].

Kimya alanında gelişimin dünya eğilimlerinden biri; uygun ve ekolojik açıdan saf enerji taşıyıcılarının ve diğer perspektifli ticari kimyasal ürünlerin mükemmelliğidir. Diğeri ise rekabetçi, etkili ve ekolojik olarak saf türde ürünlerin üretilmesidir [9].

Metal fosfatlar, iyonik iletkenler, doğrusal olmayan optikler, lityum iyon pillerin elektrot malzemeleri, oksidatif katalizörler, lazerler ve piezoelektrik malzemeler gibi potansiyel uygulamalar için kapsamlı olarak incelenmektedir [10]. Fosfatlar, frekans dönüştürme ve lazer spektrumunda kullanılan önemli doğrusal olmayan optik materyallerdir [11]. +1 ile +4 arasında değişen oksidasyon basamağına sahip katyonlar tarafından oluşturulan fosfatlar, yüksek ısıya, agresif ortamlara, radyasyona karşı yüksek istikrarı ve sıfıra yakın termal genleşme, iyonik iletkenlik, katalitik aktivite, yüksek sıcaklığa dayanıklılık nedeniyle ileri teknoloji seramik materyalleri olarak ilgi çekmektedir. Bu tür seramiklerin çok işlevli özelliği, motor parçaları, astar kiremitleri, hassas lehimleme aksesuarları, yarı iletken yüzeyler, katalizör destekleri, radyasyona dayanıklı atık formları ve ayrıca piller için katı elektrolitler de dahil olmak üzere mühendislik malzemelerinin sensörler, yakıt hücreleri, seçici katalizörler ve lüminesans malzemelerin imalatında kullanılmasına izin vermektedir [12].

Beyaz eşyadan tutun da refrakter ürünlere, özel çimentolara, özel bardaklardan seramik sırlara ve emaye ürünlere kadar birçok seramik ürününün işlenmesinde kullanılan fosfatlar, bu ürünlerin birçoğunun üretiminde hem işleme yardımcı maddeleri olarak hem de seramikteki nihai ürün özelliklerini ve son kullanım performansını iyileştiren önemli fonksiyonel özellikler sağlamak amacıyla kullanılmaktadır. En önemlisi, fosfatlar, birçok seramik sisteminde bağlanma fazı sağlamaktadır [7].

Elementel durumu ve kombine şekliyle fosfatların zirai ve endüstriyel alanlardaki kullanımı birbirinden farklıdır [4]. Tarım ilaçları, süs bombaları, izli mermiler, işaret fişekleri, özel cam yapımı ve yangın söndürücüleri de dahil olmak üzere çeşitli uygulama alanlarına sahiptir [13]. Fosfatlar, fosfor (P) moleküllerinin sayısına bağlı olarak birkaç ana gruba ayrılmaktadır. Bu grupların her biri birçok uygulama için ideal fonksiyonel özelliklere sahiptir (Tablo 1.1) [7].

P atomlarının sayısı İyon		Genel Adı Kullanım Alanı		
1	PO ₄ ³⁻	ortofosfatlar	tamponlama - deterjanlar	
2	$P_2O_7^{4-}$	pirofosfatlar	iyon – su işleme, metal, temizlik	
3	P ₃ O ₁₀ ⁵⁻	tripolifosfatlar	dağıtıcı – et işleme, bulaşık deterjanı	
>3	$P_n O_{(3n+1)}^{(n+2)}$	polifosfatlar	dağıtıcı – kaolin	

Tablo 1.1: İçerdiği fosfor (P) sayısına göre fosfatlar ve kullanımı [7].

Tek bir fosfat bileşiği, ilaç, kişisel bakım ürünleri, endüstriyel temizleyiciler ve yangın söndürücülerde olduğu gibi diğer teknik kullanımlar da dahil olmak üzere oldukça geniş uygulama yelpazesinde kullanılmaktadır. Uygulamaya bağlı olarak malzemenin daha kaliteli formu tercih edilmektedir. Örneğin, teknik sınıf sodyum tripolifosfat (STPP), endüstriyel ve kurumsal deterjanlarda kritik bir bileşen olarak görev yaparken, diş macunu ve ağız gargarasında tartar kontrol maddesi olarak daha yüksek bir gıda sınıfı formu kullanılmaktadır. Fosfor bileşiklerine kalsiyum eklendiğinde, diş macununda bir parlatma maddesi olarak kullanılan dikalsiyum fosfat ve tüpteki kıvamlandırma maddesi olan trikalsiyum fosfat gibi tüpün içerisinden serbestçe akmasını sağlayan ürünler elde edilmektedir. Aynı şekilde gıda kalitesinde trikalsiyum fosfat formu (TCP), diyet takviyelerinde kalsiyum ve fosforun temel unsurlarını sağlamak için kullanılırken, farmasötik dereceli bir form reçeteli ve reçetesiz ilaçlarda etkin madde olarak kullanılmaktadır [7].

1.2 Oksitler ve Özellikleri

6A grubunun ilk elementi olan ve normal şartlarda gaz halinde bulunan tek element oksijen, yer kabuğunda kütlece % 46, atmosferde % 21 oranında bulunmaktadır. Saf oksijen elementi, 1772 yılında C.W. Scheele tarafından keşfedilmiştir. 1774 yılında J.Priestly' nin bir cam balonda HgO' i ısıtarak oksijen gazını elde etmesi klasik kimya tarihinde bir dönüm noktası olmuştur [14]. Gerçekleşen reaksiyona ait denklem aşağıdaki gibidir;

$$2HgO_{(k)} \xrightarrow{lsl} 2Hg_{(k)} + O_{2(g)}$$
(1.1)

H₂O, CO, CO₂, CaO, SO₂ gibi bir veya daha fazla oksijen atomu içeren tek cins element ile birleştirilmiş kimyasal bileşiklere "oksit" denilmektedir [15]. Bir bileşikte birden çok element oksijen ile bileşik oluşturuyorsa o bileşik oksit değildir [16]. Oksitler, oksijenin metal ve metal olmayan maddelerle reaksiyona girmesiyle oluşur, ancak soy gazlar (He-Ne-Ar-Kr-Xe-Rn) ve halojenler (F-Cl-Br-I) oksitleri oluşturmazlar [16,17].

Metal oksitler, -2 oksidasyon basamağına sahiptir ve genellikle bir oksijen anyonundan oluşmaktadır [17]. OF₂ bileşiği, oksijen içermesine rağmen +2 değerlikli olmasından dolayı oksit olarak kabul edilemez. KMnO₄ bileşiği de oksit değildir. Çünkü oksijen iki farklı türde element ile bileşik yapmıştır [16].

Oksitler, oksijenin oksidasyon basamağına göre 3 grupta incelenebilir [18]:

- Oksitler (O²⁻): Oksijenin (-2) oksidasyon basamağında bulunduğu ikili bileşikleridir [18].
- Peroksitler (O₂²⁻) : Oksijenin (-1) oksidasyon basamağında bulunduğu ikili bileşikleridir. Peroksitler H atomu, 1A ve 2A grubu elementleri ile oluşturulmaktadır [16]. En bilindik peroksit türü olan H₂O₂, kovalent peroksittir ve bunun dışındakiler iyoniktir. Peroksitler ısıtıldıklarında normal oksitlerine ve O₂ gazına ayrışırlar.

$$H_2O_{2(s)} \xrightarrow{i_{31}} H_2O_{(s)} + 1/2O_2$$
 (1.2)

Aynı zamanda peroksitler, oksidasyon, polimerizasyon ve oksijen üretme gibi çeşitli reaksiyonlarda kullanılmaktadır. Kararsız oldukları ve kolayca oksijen verdikleri zaman peroksitler antiseptiktir; bu yüzden hidrojen peroksit ile çinko peroksit dermatolojide, magnezyum peroksit ise mide antiseptiği olarak kullanılmaktadır [18].

 Süperoksitler (O₂⁻) : Oksijenin (-1/2) oksidasyon basamağında bulunduğu ikili bileşikleridir. Potasyum, Rubidyum ve Sezyum elementlerinin havada yanmasıyla süperoksitler oluşur. Süperoksitler iyonik bileşikler olduğundan oksijen O₂⁻ halindedir [18].

Oksitler doğada geniş ve bol miktarda yer almaktadır. Su, hidrojen oksididir. Karbondioksit, solunum sırasında hayvanlar ve bitkiler tarafından verilir. Benzin ile içten yanmalı motorların atık gazları arasında karbon monoksit, kükürt dioksit ve azot oksitleri bulunmaktadır. Diazot monoksit (N₂O), genellikle gülme gazı olarak adlandırılan azot oksididir. Metallerin birçoğu oksitleri oluşturmaktadır. Demir, alüminyum, kalay ve çinko gibi bazı metal oksitler önemli cevherler arasındadır. Kurşun (II) oksit ve kırmızı kurşun, boya pigmentleri olarak kullanılan kurşun oksitleridir. Arsenik, karbon, mangan, azot, fosfor ve kükürt gibi birkaç element oksijen ile birleşerek birden fazla oksit oluşturmaktadır [19].

Asit-baz özelliklerine göre oksitler asidik, bazik, amfoterik ve nötr olarak aşağıdaki şekilde sınıflandırılmaktadır [15].

 Asidik oksitler (Ametal oksitler): Ametallerin oksijen ile tepkimeye girerek kovalent bağlarla oluşturduğu oksit bileşikleridir. Bu bileşikler asit anhidritleri olarak da adlandırılmaktadır. Asit anhidritlerin dev moleküller oluşturan B₂O₃ ve SiO₂ gibi bileşikler haricinde genellikle erime ve kaynama noktası düşüktür [17]. Asidik oksitlerin suyla tepkimelerinden asitler (tep.3), bazlarla tepkimelerinden tuz ve su oluşmaktadır (tep.4) [16].

$$SO_3 + H_2O \rightarrow H_2SO_4 \tag{1.3}$$

$$SO_3 + KOH \rightarrow K_2SO_4 + H_2O$$
 (1.4)

 Bazik oksitler (Metal oksitler): Metaller oksijen ile reaksiyona girip bazik oksijen bileşikleri verirler. Bu bileşikler genellikle doğada iyonik olarak bulunmaktadırlar. Grup 1, 2 ve lantanitler dioksijen ile reaksiyona girdiklerinde bazik oksijen bileşiklerini oluşturmaktadırlar. Bu bileşiklerin oluşumu sırasında büyük miktarda enerji açığa çıkmaktadır [17]. Bazik oksitlerin suyla tepkimelerinden baz (tep.5), asitlerle tepkimelerinden tuz ve su oluşmaktadır (tep.6) [16].

$$Na_2O + H_2O \rightarrow 2NaOH$$
 (1.5)

 $Na_2O + 2HCl \rightarrow 2NaCl + H_2O$ (1.6)

• Amfoterik oksitler: Hem asidik hem de bazik özellik sergileyen oksijen bileşikleridir. Bu oksitler asit ile reaksiyona girdiklerinde, su ve tuz oluşturmak üzere nötrleştirme reaksiyonuna girerler (tep7). Bu durum, bileşiklerin temel özelliklerini sergilemektedir [17]. Amfoter oksitlerin baz ve asitlerle tepkimelerinden tuz ve su oluşur (tep.7 ve 8). Suyla tepkime vermezler [16].

$$Al_2O_3 + 6HCl \rightarrow 3Al^{3+} + 6Cl^- + 3H_2O$$
 (1.7)

$$Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2[Al(OH)_4]^-$$
 (1.8)

 Nötr oksitler: Bazı bileşikler, oksijen ile tepkimeye girerek asidik veya bazik özellikler sergilemeyen oksitler oluştururlar. Bu tür bileşikler, nötr oksijen bileşikleri olarak adlandırılmaktadır. CO, NO, N₂O örnek olarak verilebilir [17]. Nötr oksitler su, baz ve asitlerle tepkime vermezler. Oksijen ile yanarak asidik oksitlerine dönüşürler [15].

Oksit mineralleri oldukça farklı bir sınıftır. Genellikle siyah renkli olmasının yanında renkli bileşikleri de ihtiva edebilirler [16]. Oksitler göreceli olarak sert, yoğun ve refrakter minerallerdir. Bu mineraller, sedimanter kayaçlarda kırıntılar halinde, magmatik ve metamorfik kayaçlarda ise eser olarak bulunmaktadır [20]. Oksit mineralleri, oksijenin bir veya birden fazla metal ile bağlandığı doğal bileşikleri kapsamaktadır [16]. Oksitlerin X₂O, XO, X₂O₃ ve XY₂O₄ gibi tipleri vardır (Tablo1.2) [19].

X ₂ O ve XO		X ₂ O ₃ tipi		XY ₂ O ₄ tipi		XO ₂ tipi	
tipleri		(hematit grubu)		(spinel grubu)		(rutil grubu)	
Kuprit	Cu ₂ O	Korund	Al_2O_3	Spinel	MgAl ₂ O ₃	Rutil	TiO ₂
Zinkit	ZnO	Hematit	Fe ₂ O ₃	Gahnit	$ZnAl_2O_4$	Pirolusit	MnO_2
		İlmenit	FeTiO ₃	Magnetit	Fe_3O_4	Kassiterit	SnO_2
				Franklinit	(Fe,Mn,Zn)	Uraninit	UO_2
					(Fe,Mn) ₂ O ₄		
				Kromit	FeCr ₂ O ₄		
				Krizoberil	BeAl ₂ O ₄		

Tablo 1.2: Oksitlerin X₂O ve XO tipleri [19].

X₂O ve XO tipinde bulunan oksit yapılarındaki bağlar, sülfür yapılarındaki kovalent ve metalik bağlara göre kuvvetli iyonik türdedir [20].

Hematit yapısı içinde oksijen iyonları, hekzagonal şeklinde paketlenme göstermektedir. Oksijen iyonları arasında yer alan katyonlar ise oktahedral koordinasyon şeklinde oksijene bağlanmaktadır [21].

XO₂ grubundaki oksitler, rutil ve florit yapısı olmak üzere ikiye ayrılmaktadır. Rutil yapısındaki katyonlar oksijenle altılı koordinasyon yapmaktadır. Florit yapısında ise her oksijen bir tetrahedralin köşelerinde yer alan sekiz adet oksijen ile çevrilidir [20].

Spinel yapının genel formülü, XY₂O₄ şeklindedir. Burada X, +2 yüklü ve Y, +3 yüklü bir metal iyonudur. Spineller, kristallografik olarak özel bir yapıyı temsil etmekte olup kübik kristal yapısındadırlar. Spinel yapıda bulunan oksijen anyonları, yüzey merkezli kübik yapı (YMK) simetrisinde istiflenmektedir [22]. Bileşikte yer alan katyonlardan biri yapıdaki oktahedral boşluklara yerleşirken diğeri tetrahedral boşluklara yerleşmektedir (Şekil 1.2). Örneğin, magnezyum alüminat (MgAl₂O₄) bileşiğinde, yapıdaki oksijen anyonları (O²⁻) YMK simetrisinde istiflenirken, magnezyum katyonları (Mg²⁺) tetrahedral boşluklara, alüminyum katyonları ise (Al³⁺) oktahedral boşluklara yerleşmektedir. Spinel yapıya sahip diğer seramiklere örnek olarak Mg₂SiO₄ ve ZnAl₂O₄ bileşikleri de verilebilir [23].

Şekil 1.2: Spinel yapının kristal düzenlenmesi [24].

Spinel yapı, normal spinel ve ters spinel olmak üzere ikiye ayrılmaktadır [20]. Normal spinel yapısında, çok dolu bir dizi anyon bulunur. X konumundaki katyonlar tetrahedral boşlukların 1/8' ini ve Y konumundaki katyonlar ise oktahedral boşlukların 1/2' ini doldurur. Ters spineller, X-alanı iyonlarının ve Y-alanı iyonlarının yarısının yer değiştirdiği aynı büyük birim hücreye sahiptir. Ters spineller, parantez içindeki XY iyonlarının oktahedral alanı işgal ettiği ve diğer Y iyonlarının tetrahedral alanlarda bulunduğu Y(XY)O₄ olarak formüle edilir [24].

1.2.1 Perovskitler

Perovskitler, kalsiyum titanatla (CaTiO₃) aynı kristal yapıda ve "ABO₃" genel formülüne sahip olan üçlü oksitlerdir [24,25]. Geleneksel olarak perovskitler, yüksek sıcaklıkta (>1300 K) katı hal sentezi ile elde edilir [25]. Perovskit yapısı basit kübik simetriye sahiptir [24]. Bir birim hücrede, 12 koordinasyon sayısına sahip kalsiyum iyonu, kafesin merkezinde bulunur ve titanyum iyonları altı oksijen atomuyla koordine edilmiş köşelerde bulunur. Perovskit kafesindeki A ve B iyonları sadece kalsiyum ve titanyum ile sınırlı değildir, potasyum ve talyum gibi birçok farklı element olabilir; ancak kristal kafese sığacak belirli bir boyuta ihtiyaç duyarlar. Perovskit yapısı çok yönlüdür ve sağlamdır. Kristal yapı sistemi, kübik, tetrahedral veya ortorombik olabilir. Ortorombik ve tetrahedral geometriler, birim hücre boyutları eşit olmadığı için küp geometrisinden farklıdır (Şekil 1.3) [26].

Şekil 1.3: ABX₃ formunun genel bir perovskit kristal yapısı [27].

İlk perovskit türü malzeme, 1839 yılında Gustav Rose tarafından Rusya' nın Ural dağlarında bulunan örneklerde keşfedilmiştir. Daha sonra bu malzeme ismini, yapıyı ilk karakterize eden bir Rus mineralog olan L.A. Perovski' den almıştır. CaTiO₃ tipi ortorombik bir kristal yapısı olan perovskit, ilk kez 1945 yılında Helen Dick McGaw tarafından yayınlanmıştır. 1940' lardan beri perovskit materyalleri, geleceğe uzanan umut verici bir araştırma konusu olmuştur [26].

Perovskitler, özellikle katı hal reaksiyonları için geniş bir uygulama yelpazesine sahiptir. Kendilerini birçok teknolojik uygulama için ideal bir materyal haline getiren eşsiz kimyasal ve fiziksel özelliklere sahiptir [26]. Yapıda hangi atomların/moleküllerinde kullanıldığına bağlı olarak perovskitler; süper iletkenlik, yarı iletken, iletkenlik, ferromayetik, piezoelektrik, termoelektrik, dev manyetizma direnci ve katalitik özellikler gibi ilginç nitelikler taşıyabilmektedir [25,27]. Perovskitler, seramiklerde, refrakterlerde, elektronik sanayiinde veya nükleer atıkların depolanmasında uygulama alanı bulabilmektedirler. Ayrıca sensörler, bellek aygıtları (RAM), yükseltgeçler, yakıt hücreleri, süper iletkenler ve elektroptik aygıtlarda kullanılmaktadır [26]. Perovskitleri birbirinden ayıran ve bunları teknolojik uygulamalar için ideal kılan benzersiz özellikler, fizikçiler, kimyacılar ve malzeme bilimcileri için heyecan verici bir uygulama alanı oluşturmaktadır [26,27].

1.2.2 Metal Oksitler

Metal ve oksijen ile oksit iyonu (O²⁻) oluşturan metalik bileşikler, metal oksitler olarak adlandırılır. Metal oksitler doğada baziktir ve genellikle oda sıcaklığında katı halde bulunurlar. Metal oksitler, suda çözünmezler ve asitlerle tuz oluştururlar [28].

Metal oksitler; kimya, fizik ve malzeme biliminin birçok alanında çok önemli bir rol oynamaktadır. Metal iyonlarının koordinasyon eğiliminin bir sonucu olarak metal oksitler oluşur; böylece oksit iyonları, metal iyonlarının etrafında koordinasyon küresi oluşturarak sıkı istiflenmeye neden olur. Metal oksitlerin farklı fiziksel, manyetik, optik ve kimyasal özellikleri, kimyagerler için büyük önem taşımaktadır ve kolay biçimlenebilen şekilleri, çok işlevli davranışları nedeniyle bilim insanlarının dikkatini çekmektedir [29].

Metal oksitlerin nano yapıları, önemli farklı malzeme özelliklerini sergilediğinden oldukça ilgi görmektedir. Parçacık boyutu etkileri malzemelerin; manyetik ferro-akışkanlar, elektronik ve katalizör gibi geniş bir uygulama yelpazesine uyarlanmasını sağlamaktadır. Tanımlanmış özellikleri elde etmek için ultra ince ve nano boyutlu metal oksitlerin hazırlanması için yeni sentetik yollar sürekli araştırılmaktadır. Bunun önemli sebeplerinden bazıları, hızlı ve enerjiyi verimli kullanan teknikler için sürekli ihtiyaç ve bilinen süreçlerde rakip reaksiyonlardan kaçınmanın gerekliliğidir [30].

Metal oksitler, gerekli enerji miktarı ile uyarıldığında yük taşıyıcıları üretebilme yetenekleri nedeniyle çevresel iyileştirme ve elektronikte teknolojik açıdan önemli bir yere sahiptir [31]. Metal oksit nano malzemeleri, nano boyutu ve yarıiletken doğasından dolayı çeşitli uygulamalarda kullanılmaktadır (Şekil 1.4) [32].

Şekil 1.4: Olası metal oksit uygulamaları [31].

Dünyanın kabuğu çoğunlukla katı oksitlerden meydana gelmektedir. Oksit kaplamalar, saf elementler üzerinde de oluşabilir. Örneğin alüminyumdan yapılmış folyo ince bir Al₂O₃ cildi ile kaplanır ve bu cilt folyonun korozyona karşı korunmasını sağlar [17].

Son yıllardaki araştırmalar metal oksitlerin ayrıca toksik organik bileşikleri ve fotovoltaik maddeleri ayrıştırmak, camın sislenmesini hatta suyun hidrojen ve oksijene ayrılmasında bir fotokataliz olarak kullanılabileceğini göstermiştir. Bu nedenle çevresel iyileştirme, depolama, hidrojen üretimi ve elektronik endüstrileri alanlarında büyük teknolojik öneme sahiptirler [31].

1.3 Katı Hal Sentez Yöntemleri

Mevcut enerji üretim yöntemlerine temiz alternatiflerin geliştirilmesi, küresel çevrenin korunması ve sürdürülebilir ekonomik büyümenin sağlanması açısından son derece önemlidir [33]. Son yirmi yıl içinde sentezlenmesi mümkün olmayan bileşiklerin elde edilmesinde yeni bir sentez metodu olan katı-hal sentez yöntemi önemli bir rol oynamıştır [34]. Basit ve uygun maliyetli teknoloji, yüksek üretkenlik, seçicilik, çözücüye ve düşük kontaminasyona ihtiyaç duyulmaması gibi nadir avantajlarından dolayı nanomalzemeleri sentezlemek için geliştirilen katı hal sentez yöntemi, toz numunelerin hazırlanmasında tercih edilen tekniklerden biridir [35].

1912 yılından itibaren, özellikle A. Hedvall, G. Tammann ve W. Jander tarafından katı maddelerin toz karışımları arasındaki reaksiyonları incelenmeye başlamıştır. Böylece bütün metallerin ve anorganik tuzların, uygun sıcaklıklarda ve erime noktalarının çok altında, katı faz reaksiyonuna girebilme yeteneğine sahip oldukları anlaşılmıştır [36]. Alkali ve toprak alkali metal gruplarının oksit, sülfit, nitrit, fosfit, arsenid, tellürid, antimonid, karpit, silisid, borid, alüminid formlarını içeren bileşiklerinin oluşması katı hal sentezi ile sağlanmıştır. Bunların yanında nanokristaller, nanotüpler ve yüksek yüzey alanına sahip materyaller de üretilebilmiştir [34].

Genellikle endotermik bir reaksiyon olan katı-hal yöntemi, başlangıç kimyasalları ve elde edilen ürünler arasındaki serbest enerjinin farklı olmasından meydana gelmektedir. Katı-hal sentez yönteminin başlıca önemli basamakları [34];

- ✓ Reaksiyon için uygun başlangıç maddelerinin seçimi,
- ✓ Seçilen başlangıç maddelerinin uygun oranlarda tartılması,
- Başlangıç maddelerinin agat havanda toz haline gelecek biçimde homojen bir karışım elde edilmesi,

- ✓ Reaksiyon için uygun krozenin seçilmesi,
- ✓ İstenilen sıcaklık aralıklarında ısıtma işleminin gerçekleştirilmesi,
- ✓ Isıtma işlemi sonrasında elde edilen ürünün soğutularak agat havanda homojenizasyon işleminin yapılması ve X-ışını toz difraksiyonu için desikatörde saklanması şeklinde sıralanabilir.

Katı hal reaksiyonlarının sentez çalışmalarında sağlamış olduğu avantajlardan dolayı endüstriyel uygulamalarda kullanım alanı gün geçtikçe yaygın hale gelmektedir. Bu durumun başlıca önemli nedenleri arasında çözücü kullanılmaması gelmektedir. Katı hal reaksiyonlarında çözücü kullanılmaması ürün maliyetlerinin düşürülmesine katkı sağlar ve bunun sonucunda daha ucuz ürünlerin alınabilmesini mümkün kılar. Normal reaksiyonlarda oluşan ürün bünyesinde kalan çözücünün reaksiyon sonuçlandığında üründen uzaklaştırılması gerekmektedir. Katı hal reaksiyonları ile sentezlenen ürünlerde ise saflaştırma işlemleri doğrudan uygulanabilmektedir [37].

Katı hal reaksiyonlarının kolay uygulanabilmesi, başlangıç maddelerinin kolay bulunabilmesi ve yüksek oranlarda bileşik hazırlamaya olanaklı olması sağlamış olduğu avantajlar arasında sayılabilmektedir. Bunların yanında saflaştırma, ayırma, kalsinasyon gibi ön işlemlere ihtiyaç duyulmaksızın sentez işlemleri gerçekleştirilerek istenilen ürün elde edilebilmektedir [37].

Katı hal sentezinin sağladığı avantajların yanında dezavantajları da bulunmaktadır. Uzun süreçli olması dezavantajlarının başında gelmektedir ve bu durumdan dolayı bazı reaksiyonlarda tercih edilmemektedir. Bunun yanında bazı reaksiyon sonuçlarında elde edilen ürünün yanında istenmeyen ikinci bir faz oluşumundan dolayı kimyasal homojenliğin yetersiz olması katı hal reaksiyonlarının kullanımını sınırlamaktadır [37].

1.3.1 Yüksek Sıcaklık Sentez Yöntemi

Bir katı hal sentezi olan yüksek sıcaklık yöntemi, hızla gelişen teknolojilerden biridir ve çeşitli malzemeleri sentezlemek için yaygın olarak kullanılmaktadır [38]. Yöntemin prensibi, ekzotermik reaksiyonun kendiliğinden başlaması ve üretilen ısının dalgalar halinde reaktanların üzerinde ilerlemesi şeklindedir [39]. Söz konusu yöntem, oldukça yüksek ısı gerektiren endotermik bir reaksiyondur [37]. Sentez işleminin gerçekleşebilmesi için reaksiyonun yüksek aktivasyon enerjisine sahip olmalıdır [39]. Ayrıca sentezde kullanılan krozelerin bileşikler ile reaksiyon vermemeleri için inert ve yüksek sıcaklıklara dayanıklı olması gerekmektedir [40].

Yüksek sıcaklık yöntemiyle sentezlenecek olan reaksiyon karışımları, metalmetal, metal-ametal, ametal-ametal veya bunların bileşikleri şeklindedir. Bu bileşiklerin reaksiyon sırasında birbirleri ile etkileşimleri sonucunda yüksek ısı açığa çıkarabilmeleri en önemli özeliklerindendir [41]. Uygulanan yüksek sıcaklık ile reaksiyona giren toz parçacıklarının birbirlerine temas etmelerinin artması sonucunda, atomlar ve iyonlar arasında kristal kafes sistemi içerisindeki yüksek dayanımlı atomsal bağlanmaya eş değer bir fiziksel bağ meydana gelmektedir. Böylelikle tüm toz metallere ve seramik parçalara mukavemet kazandırılmaktadır [42]. Genellikle yüksek sıcaklık yöntemiyle elde edilen ürünler [41,39];

- * Karbür, borür, nitrür, silisit ve oksitli refrakter bileşikler,
- İleri teknolojik yapıya sahip olan yüksek ısıya dayanıklı seramikler,
- Elektrik endüstrisinde kullanım alanı bulan malzemeler,
- Modern s
 üper iletken malzemeler,
- Korozyona dayanıklı ve aşınmaya direnç gösteren kaplamalar,
- * Kimya endüstrisi için gerekli olan katalizörler,
- Tıp alanında kullanılan şekil hafızalı alaşımlar olarak sıralanabilmektedir.

Yüksek sıcaklık yöntemini diğer geleneksel üretim yöntemlerinden ayrıcalıklı kılan bazı özellikler bulunmaktadır [39]. Bunlardan bazıları [41,43];

- Yüksek ürün saflığı,
- Sentez sürecinin sadeliği,
- Eş zamanlı ürün oluşumu ve yoğunlaşması,
- Yüksek reaksiyon hızı,
- Kolay uygulanabilir olması ve ince taneli yapıda ürünlerin elde edilmesidir.

Yöntem, sağlamış olduğu avantajlar da göz önüne alındığında günümüzde 700' den fazla ileri malzeme türünü hazırlamak için geleneksel yöntemlere karşı dikkat çekici bir alternatif olarak kabul edilmiştir [43].

1.3.2 Mikrodalga Enerji Yöntemi

Modern teknolojiler, nefes kesici yenilikler elde etmek için sürekli olarak ayrıcalıklı özelliklere sahip malzemeleri gerektirmektedir [44]. Bilimsel ve teknolojik gelişim ile birlikte ileri malzeme kullanımın yaygınlaştırılmasına, bu malzemelerin işlenmesindeki zorlukların üstesinden gelebilen verimli, zaman kazandıran, çevre dostu üretim süreçlerine büyük ihtiyaç duyulmaktadır [45]. Son zamanlarda ortaya çıkan bu gereksinimler doğrultusunda mikrodalga enerji yöntemi, geleneksel ısıtma yöntemine göre sentez çalışmalarında büyük önem kazanmıştır ve bu yöntemin geliştirilmesine çok dikkat edilmiştir [46].

Mikrodalga radyasyon, 0.01-1m dalga boyuna karşılık gelen 0.3-300Ghz frekans aralığına sahip, elektromanyetik spektrumda infrared ve radyo dalgaları arasında yer alan elektromanyetik dalgadır (Şekil 1.5) [46]. Federal Radyo İletişim Komisyonu (FCC) tarafından endüstriyel, bilimsel ve tıbbi (ISM) amaçlar için kullanılan mikrodalga reaktörlerin frekans aralığı, 0.915 ve 2.45 GHz olarak belirlenmiştir [47]. Bunun sebebi ise telekomünikasyon, kablosuz ağlar ve cep telefonu frekanslarının girişiminden kaçınmaktır [48].

Şekil 1.5: Elektromanyetik spektrum [56].

Mikrodalga, ilk kez 1946 yılında Dr. Precy Le Baron Spencer tarafından bir ısıtma yöntemi olarak keşfedilmiştir [46]. Bu keşif, Dr. Spencer' ın magnetron denilen bir vakum tüpü için yaptığı iletken laboratuvar testleri sırasında kazayla cebinde bulunan şekerlemenin mikrodalga radyasyona maruz kalarak ısınmasını fark etmesiyle olmuştur. 1947 yılında ilk ticari mikrodalga fırın geliştirilmiştir. Mikrodalga teknolojisinin kimyada kullanımı 1970' lerin sonundan bu yanadır. Kimyasal sentezlerde mikrodalgaların ilk denemesi 1986 yılında Robert Gedye, George Majetich ve Raymond Giuere tarafından yapılmıştır. Geleneksel ısıtma yöntemleri yerine mikrodalga ısıtma yöntemi kullanılarak reaksiyonların daha hızlı gerçekleşmesi sağlanmıştır [49].

Geleneksel ısıtma yöntemleri ile karşılaştırıldığında mikrodalga enerji yöntemi, homojen ısıtma, iyi bir reaksiyon ivmesi, daha kısa tepkime süresi, azaltılmış enerji tüketimi, yüksek ürün verimi, düşük maliyet gibi sentez çalışmalarında çeşitli avantajlara sahiptir [50]. Aynı zamanda malzemelerin mikrodalga enerji yöntemiyle sentezi, ısıtma mekanizması bakımından da geleneksel sentezden farklıdır. Mikrodalga fırında, mikrodalgalar malzemenin iç kısımlarına girerek elektromanyetik enerjiyi ısı enerjisine dönüştürür ve ısı tüm hacimde üretilir, meydana gelen hacimsel ısıtma işlem süresini en aza indirir, güç tüketimini düşürür ve difüzyon oranını geliştirir [51]. Dahası mikrodalga enerjisi, materyali moleküler seviyede ısıtır ve bu da muntazam ısınmaya neden olmaktadır [44]. Buna karşın geleneksel ısıtma, harici ısı kaynaklarından gelen ısı akışı vasıtasıyla gerçekleşerek numune yüzeyden iç bölgelere doğru ısınır ve bu da dikey termal gradyanlara neden olmaktadır [52,47].

Mikrodalga teknolojisi, 50 yılı aşkın süredir çeşitli uygulamalar için kullanılmaktadır [53]. Mikrodalga enerji yöntemi ile gıda işleme, aktif karbon rejenerasyonu, metallerin ve seramiklerin sinterlenmesi, plazma işleme, çözelti işleme, polimer işleme, fonksiyonel malzemelerin hazırlanması, kirlilik kontrolü, piroliz reaksiyonları gibi pek çok çeşitli teknolojik ve bilimsel alanlarda uygulanmaktadır [54]. Malzemelerin mikrodalga enerji yöntemi ile sentezlenmesi çoğunlukla 2000 yılına kadar seramik, yarı iletkenler, inorganik ve polimerik malzemeler ile sınırlı olduğu düşünülmüştür. Araştırmacılar arasında, tüm metallerin mikrodalgayı yansıttığı veya plazma oluşumuna neden olduğu ve mikrodalga radyasyonun sınırlı nüfuz etmesinden dolayı yüzey ısınması haricinde ısıtılamayacağı konusunda yanlış bir kanı olduğu bildirilmiştir. Şimdilerde ise mikrodalga sinterlemenin pek çok

seramik gibi toz metallere etkin ve etkili bir şekilde uygulanabileceği bulunmuştur [53].

1.3.2.1 Mikrodalga Enerjinin Farklı Malzemelerle Olan Etkileşimi

Mikrodalga ısıtma, bir malzemenin hacimsel olarak elektromanyetik enerjiyi emdiği ve dielektrik yapısına bağlı şekilde onu ısı enerjisine dönüştürdüğü bir işlemdir. Mikrodalgaların elektromanyetik alanları, mikrodalga malzeme etkileşimi sırasında malzemelerin içindeki atomik seviyedeki ısı üretiminde birinci derecede önemli bir role sahiptir [55]. Malzemeler mikrodalgalarla olan etkileşim şekillerine göre aşağıdaki şekilde gruplandırılmaktadır.

- i. Mikrodalgayı geçiren maddeler; mikrodalga fırında herhangi bir emilim, kayıp veya ısı oluşumu olmaksızın malzeme içinden nüfuz edilebilirler ve aynı zamanda iyi yalıtkandırlar [46]. Mikrodalga sistemlerde inert bir malzeme olduğu için reaksiyon kabı olarak kullanılan teflon, geçirgen bir malzemedir. Teflon dışında kuvartz, cam, seramik, polistriren, kağıt ve plastik malzemeler mikrodalgaya karşı geçirgendir [49].
- ii. Mikrodalgayı yansıtan maddeler; mikrodalgalar tarafından etkili bir şekilde ısıtılamazlar [46]. İyi iletken olan pirinç gibi dökme metal ve alaşımlar örnek olarak verilebilir [49].
- iii. Mikrodalgayı soğuran maddeler; mikrodalga için önemli, malzeme sınıfını oluşturmaktadır [46]. Bu maddeler, su gibi polar özellikte olup enerjiyi mikrodalga alanından alarak çok hızlı bir şekilde ısınırlar. Kimyasal sentezde kullanılan maddeler mikrodalga enerjisini soğurduğunda, soğurmayı yapan moleküllerin sadece kinetik enerjileri artmaktadır ve böylece aktivasyon engelini aşmak için gerekli olan enerji sağlanmış olmaktadır [49]. Bu sayede reaksiyon başarılı bir şekilde gerçekleşmektedir.
- iv. Mikrodalgayı karışık soğuran maddeler, farklı dielektrik özellikte iki veya daha fazla faz içermektedir [56]. Fazların birinin yüksek kayıplı bir materyal olduğu, diğerinin ise düşük kayıplı bir materyal olduğu kompozit veya çok fazlı materyallerde görülmektedir [57]. Bu

malzemelerde mikrodalga enerjisi geçirimli fazdan geçerken soğurucu fazı seçimli olarak ısıtabilmektedir [56].

1.3.2.2 Mikrodalga Isitmanın Mekanizması ve Isitma Prensibi

Mikrodalga ısıtmanın mekanizması dört ana bölümden oluşmaktadır. Bunlar [50];

- a) Jenaratör veya magnetron, sabit frekansta mikrodalgalar üretmek için kullanılan kısımdır [46]. Magnetron, bir anot ve katot içeren güçlü manyetik alana sahip silindirdir. En çok kullanılan bir elektron kaynağı olarak işlev görmektedir [46,50].
- b) Mikrodalga boşluğu, belirli bir frekansta elektrik osilatörü olarak işlev görmektedirler. Elektronlar, aralarındaki potansiyel farkla hızlandırılmıştır ve katottan anoda doğru hareket ederler.
- c) Dalga kılavuzu, jeneratörden aplikatöre dalgaların taşınmasından sorumlu olan kanala giden dalgaların iletildiği ortamdır.
- Aplikatör, enerjinin magnetrondan numuneye gelene kadar aktarımını sağlamak içi tasarlanmış bir sistemdir. Hedef malzemenin ısıtılmasını sağlamaktadır. Belirli boyutları yoktur; taşınan dalgaların frekansına bağlıdırlar.

Mikrodalga ısıtması; mikrodalgalar, polar moleküller ya da iyonlarla temas halindeyken hızlı bir şekilde ısıtmasına neden olan iki ana mekanizmaya bağlı olarak meydana gelmektedir [48]. Bunlar; dipol dönme ve iyonik iletimdir. Mikrodalganın elektrik alanına maruz kalan su gibi dipol momentli moleküllerin dönme hareketi sonucu uygulanan alanla aynı hizaya gelmesi sırasında ortaya çıkan sürtünme kuvvetine bağlı olarak moleküllerin enerji kazanıp ısınması olayı dipol dönme mekanizmasıdır [58]. Malzemelerin içindeki su varlığı ısıtmayı kolaylaştırmaktadır. Çünkü su akışı, tüm hacimdeki sıcaklığı yaklaşık aynı oranda yükseltmektedir. Nem, malzeme ve iyon içeriğinin dielektrik özelliklerini belirlediğinden her ikisi de malzemedeki dalgaların nüfuz derinliğini kontrol etmektedir [50].

1.4 X-Işınları Toz Kırınımı ve Önemi

X-ışınları, yüksek enerjiye sahip elektronların yavaşlatılması veya atomların iç yörüngelerindeki elektron geçişleri ile meydana gelen, dalga boyları 0,1-100 Å arasında değişen elektromanyetik dalgalardır. İlk kez Wilhelm Conrad Röntgen tarafından 1895 yılında keşfedilmiştir ve bu keşif kristallografi biliminin gelişmesinde önemli bir rol oynamıştır [59].

Kristal yapı, malzemelerin fiziksel ve kimyasal özelliklerinin tanımlanmasında kullanılan önemli unsurlardan biridir. Bu nedenle kristal yapının çözümlenmesi fizik, kimya, malzeme bilimi ve diğer alanlarda temel bir görev haline gelmiştir. X-ışını kırınımı (XRD), nötron kırınımı ve raman spektroskopisi gibi çeşitli yöntemler, kristal yapı tayini için kullanılmaktadır [60]. Bu yöntemler arasında XRD, maddenin atomik düzeyde moleküler yapısını ve malzeme özelliklerini belirlemek için kullanılan en güçlü ve en güvenilir yöntem olarak kabul edilmiştir [60, 61].

En güvenilir yapı belirleme yöntemi olarak kabul edilen XRD, bilinmeyen materyallerin kristal yapılarının belirlenmesinin yanı sıra çok fazlı numunelerin tanımlanması için de sıklıkla kullanılmaktadır [61].

X-ışını kırınımı, monokromatik X-ışınlarının ve kristalli bir numunenin yapıcı girişimlerine dayanmaktadır. Bu X-ışınları bir katot ışın tüpü tarafından üretilir, tek renkli radyasyon üretmek için süzülür, konsantre edilir ve numuneye doğru yönlendirilir [62]. Meydana gelen kırınım desenleri ayrıca örnek materyallerin saf mı yoksa safsızlıklar mı içerdiğini açıklar [63].

Toz kırınım modelleri her zaman üst üste binen tepeleri gösterir, çünkü üç boyutlu bilgi bir boyuta sıkıştırılır. Bu, tepe konumlarını ve yoğunluklarını belirsizleştirebilir, yapı belirlemesini engelleyebilir hatta önleyebilir. Bu nedenle toz XRD verisinden kristal yapısını belirlemek zordur [60].

Toz XRD verisinden kristal yapıları belirlemede önemli gelişmeler olmuştur. XRD verilerinden kristal yapı tayini genellikle üç aşamadan oluşmaktadır [60]:

- (1) Birim hücre belirleme ve uzay grubu ataması,
- (2) Yapı çözümü,
- (3) Yapı arıtımı.

Önceden tanımlanmış bir birim hücre içinde birçok deneme yapısı oluştururlar ve daha sonra her bir deneme yapısı için kırınım modelini simüle ederler. Simüle edilen desenler daha sonra her bir deneme yapısının uygunluğunu değerlendirmek için deneysel ölçümlerle karşılaştırılır. En doğru uygunluğa sahip deneme yapısı aday yapı olarak kabul edilir. Bununla birlikte önceden tanımlanmış birim hücre parametrelerini ve uzay grubunu gerektirmektedirler. Bu nedenle, deneysel toz verilerinden önceden tanımlanmış yapısal bilgiye ihtiyaç duymadan kristal yapılarının saptanması için çok yönlü bir küresel araştırma yönteminin geliştirilmesi arzu edilmektedir [60].

X-ışını toz kırınımı; akışkanlar, metaller, mineraller, polimerler, katalizörler, plastikler, farmasötikler, ince film kaplamalar, seramikler, güneş pileri ve yarı iletkenler dahil çok çeşitli malzemeleri analiz etmek için kullanılan ileri teknoloji ürünü, tahribatsız bir tekniktir. Bu teknik, mikroelektronik, enerji üretimi ve havacılık olmak üzere çeşitli sektörlerde sayısız pratik uygulama alanı bulmaktadır. XRD analizi, belirli bir kristaldeki kusurların varlığını, strese karşı direncini, dokusunu, büyüklüğünü, kristallik derecesini ve numunenin temel yapısıyla ilgili hemen hemen her türlü değişkeni kolayca tespit edebilmektedir [62].

1.5 Çalışmanın Amacı

Çift metal içeren fosfat ve oksit bileşikleri, yüksek teknolojinin oluşumunda önemli bir avantaj sağlamaktadır. Isıya karşı dirençlerinin yüksek olması, ışığın dalga boyu iletiminde iyi bir özellik taşıması, esneklerinin yok denecek kadar az olmasından dolayı mukavemetlerinin iyi olması sağladığı avantajlar arasında sayılmaktadır. Çift metal içeren fosfat ve oksit bileşiklerinin endüstriyel ve teknolojik uygulamalar başta olmak üzere tıp alanında da önemi oldukça büyüktür. Cep telefonları, bilgisayarlar, projeksiyonlar, tomografi cihazları, uçak-motor gövdeleri, mekikler, uydular gibi endüstriyel ve teknolojik ürünlerde kullanılan bu bileşikler; protez, lens, kalp pili, işitme cihazı, diş teli, ameliyat iplikleri gibi tıp alanındaki önemli malzemelerin oluşumunda da büyük rol oynamaktadır.

Modern toplumda kullanım alanı geniş yer tutan ve bilim, teknoloji, sanayide geliştirilebilir yeni malzeme ihtiyacının karşılanabilmesi için yeni bazı çift metal içeren fosfat ve oksit bileşiklerinin literatürden farklı olarak mikrodalga enerji yöntemi, mikrodalga destekli yüksek sıcaklık yöntemi ve yüksek sıcaklık katı hal yöntemi ile sentezlenmesi amaçlanmış olup sentezlenen ürünlerin karakterizasyon çalışmaları için X-ışınları toz kırınımı (XRD) ve Fourier Geçişli Kızılötesi spektroskopisi (FT-IR) kullanılmıştır.
2. MATERYAL VE YÖNTEM

2.1 Kullanılan Kimyasallar

Gerçekleştirilen reaksiyonlarda başlangıç maddeleri olarak Tablo 2.1' de yer alan analitik saflıktaki kimyasallar kullanılmıştır.

Easfat bilasiklari	Motol Nitrotlan	Kalay	Sezyum
r ostat Dheşikleri	metai mitratiai	Bileşiği	Bileşiği
NaH ₂ PO ₄ .2H ₂ O	$Sr(NO_3)_2$	SnCl ₂ .2H ₂ O	$Cs_2(CO_3)$
Na ₃ PO ₄ .12H ₂ O	$Mg(NO_3)_2$		
$(NH_4)H_2PO_4$	$Pb(NO_3)_2$		
(NH ₄) ₂ HPO ₄	$Ca(NO_3)_2.4H_2O$		
	Cr(NO ₃) ₃ .9H ₂ O		
	Co(NO ₃) ₂ .6H ₂ O		
	Al(NO ₃) ₃ .9H ₂ O		
	Fe(NO ₃) ₃ .9H ₂ O		
	$La(NO_3)_2.6H_2O$		
	Ni(NO ₃) ₂ .6H ₂ O		
	$Zn(NO_3)_2.6H_2O$		
	Fosfat bileşikleri NaH2PO4.2H2O Na3PO4.12H2O (NH4)H2PO4 (NH4)2HPO4	Fosfat bileşikleri Metal Nitratlar NaH2PO4.2H2O Sr(NO3)2 Na3PO4.12H2O Mg(NO3)2 (NH4)H2PO4 Pb(NO3)2 (NH4)2HPO4 Ca(NO3)2.4H2O Cr(NO3)3.9H2O Co(NO3)2.6H2O Al(NO3)3.9H2O Fe(NO3)3.9H2O La(NO3)2.6H2O Ni(NO3)2.6H2O Na(NO3)2.6H2O Sr(NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O Station (NO3)2.6H2O	Fosfat bileşikleriMetal NitratlarKalay BileşiğiNaH2PO4.2H2OSr(NO3)2SnCl2.2H2ONa3PO4.12H2OMg(NO3)2SnCl2.2H2O(NH4)H2PO4Pb(NO3)2Pb(NO3)2(NH4)2HPO4Ca(NO3)2.4H2OCr(NO3)3.9H2OCo(NO3)2.6H2OAl(NO3)2.6H2OAl(NO3)3.9H2OFe(NO3)3.9H2OLa(NO3)2.6H2ONi(NO3)2.6H2ONi(NO3)2.6H2ONi(NO3)2.6H2ONi(NO3)2.6H2O

Tablo 2.1: Gerçekleştirilen reaksiyonlarda kullanılan kimyasallar.

Kullanılan kimyasallar; Carlo Erba, Sigma Aldrich, Fluka ve Merck firmalarından temin edilmiştir.

2.2 Kullanılan Cihazlar

Kullanılan Cihaz	Model	Özellik
Mikrodalga Firin	Arcelik MD 574	1200 W maksimum güç,
Wikiodalga Tilli	Aiçelik MD 574	2.45 GHz frekans
Kül Firmi	Rornstand/Thormolyna 47000	220-240 V, 50/60 Hz,
Kurrinn	Darnstead/Thermoryne 47900	1000 Watts
X-Işınları	PANanalytic X'Pert PRO	CuK _α =1.5406 Å,
Difraktometresi (XRD)		26 mA, 36 Kv radyasyon
Fourier Transform	Perkin Flmer Spectrum 65	4000-400 cm ⁻¹ ısın bölgesi
İnfrared Spektrometresi	r erkin Enner Speetrum 65	4000 400 chi işin bolgesi
Hassas Terazi	Sartorius M power	Max 210 g
	Satonus M-power	d=0.1 mg

 Tablo 2.2: Deneysel çalışmalarda kullanılan cihazlar.

2.3 Mikrodalga Enerji Yöntemi

Başlangıç kimyasalları, reaksiyon denklemlerine göre uygun stokiyometrik oranlarda toplam 1 gram olacak şekilde tartılıp agat havanda homojenize edilmiştir. Homojenize edilen kimyasal karışım porselen krozeye alınarak 600 W ve 800 W güç değerlerinde; 10, 20 ve 30 dakika süre ile mikrodalga ışına maruz bırakılmıştır. Mikrodalgadan çıkan numune yeniden agat havanda homojenize edilerek, XRD desenlerinin ve FT-IR spektrumlarının alınması için desikatörde saklanmıştır.

Mikrodalga enerji yöntemi kullanılarak gerçekleştirilen tüm deneylerde aynı işlemler sırasıyla uygulanmıştır.

2.4 Mikrodalga Destekli Yüksek Sıcaklık Sentez Yöntemi

Başlangıç kimyasalları, reaksiyon denklemlerine göre uygun stokiyometrik oranlarda toplam 1 gram olacak şekilde tartılıp agat havanda homojenize edilmiştir. Homojenize edilen kimyasal karışım porselen krozeye alınarak 600 W ve 800 W güç değerlerinde; 10, 20 ve 30 dakika süre ile mikrodalga ışına maruz bırakılmıştır. Mikrodalgadan çıkan numune agat havanda homojenize edilip porselen kayıkçıklara alınarak; 300 °C ile 1100 °C arasında değişen farklı sıcaklık değerlerinde; 30 dakikadan başlayıp 4 saate kadar değişen belirli sürelerle reaksiyonun tamamlanması için kül fırınına yerleştirilmiştir. Kül fırınında gerçekleştirilen ısıtma işleminin ardından soğuyan numuneler yeniden agat havanda homojenize edilerek, XRD desenlerinin ve FT-IR spektrumlarının alınması için desikatörde saklanmıştır.

Mikrodalga destekli yüksek sıcaklık yöntemi ile gerçekleştirilen tüm deneylerde aynı işlemler sırasıyla uygulanmıştır.

2.5 Yüksek Sıcaklık Katı Hal Sentez Yöntemi

Başlangıç kimyasalları, reaksiyon denklemlerine göre uygun stokiyometrik oranlarda toplam 1 gram olacak şekilde tartılıp agat havanda homojenize edilmiştir. Homojenize edilen kimyasal karışım porselen kayıkçıklara alınarak 400, 600, 800 ve 1000, 1200 °C olmak üzere farklı sıcaklık değerlerinde 1, 2, 4 ve 7 saat şeklinde belirli süre ile reaksiyon oluşumu için kül fırınına yerleştirilmiştir. Kül fırınında gerçekleştirilen ısıtma işleminin ardından soğuyan numuneler yeniden agat havanda homojenize edilerek, XRD desenlerinin ve FT-IR spektrumlarının alınması için desikatörde saklanmıştır.

Yüksek sıcaklık yöntemi kullanılarak gerçekleştirilen tüm deneylerde aynı işlemler sırasıyla uygulanmıştır.

3. BULGULAR

3.1 Mikrodalga Enerji Yöntemi ile Gerçekleştirilen Deneyler

3.1.1 NaH₂PO₄.2H₂O / V₂O₅ / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
KS-MD1	$NaH_2PO_4.2H_2O + V_2O_5$	3:1	800 W / 20 dakika Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃

Tablo 3.1: NaH₂PO₄.2H₂O / V₂O₅ sisteminde gerçekleştirilen deneyler.

KS-MD1 deneyi, Tablo 3.1' de belirtilen şartlar altında gerçekleştirilmiştir. Şekil 3.1' de verilen XRD deseni incelendiğinde mikrodalga ışımanın yetersiz kalmasından dolayı belirli kristal yapıya sahip ürün elde edilememiştir.

Şekil 3.1: KS-MD1 deneyine ait XRD desenleri.

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
KS-MD2	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + (NH_{4})H_{2}PO_{4}$	1:1:2	800 W / 20 dakika Maddenin turuncu olan rengi hardal rengine dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃

Tablo 3.2: NaH₂PO₄.2H₂O / V₂O₅/ (NH₄)H₂PO₄ sisteminde gerçekleştirilen deneyler.

Tablo 3.2' de verilen şartlar altında gerçekleştirilen KS-MD2 deneyi sonucunda elde edilen ürünün Şekil 3.2' de verilen XRD deseni amorf yapıya benzer özellik gösterdiğinden karakterizasyonu yapılamamıştır.

Şekil 3.2: KS-MD2 deneyine ait XRD desenleri.

Tablo 3.3: Na₃PO₄.12H₂O / V₂O₅/ (NH₄)₂HPO₄ sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
KS-MD3	$Na_3PO_4.12H_2O + \\V_2O_5 + (NH_4)_2HPO_4$	1:1:2	800 W / 20 dakika Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃

Tablo 3.3' de verilen KS-MD3 deneyi belirtilen şartlar altında gerçekleştirilmiştir. Hedeflenen ürünün Şekil 3.3' de verilen XRD deseni incelendiğinde amorf yapıya benzer özellik gösterdiği görülmüş ve karakterizasyonu yapılamamıştır.

Şekil 3.3: KS-MD3 deneyine ait XRD desenleri.

3.1.2 Cs₂CO₃ / Co(NO₃)₃.6H₂O / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.4: Cs ₂ Co	O3 / Co(NO3)3.6H2O /	P ⁺⁵ sisteminde	gerçekleştirilen	deneyler.
--------------------------------------	----------------------	----------------------------	------------------	-----------

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
	$Cs_2CO_3 +$		800 W / 20 dakika	
KS-MD4	$Co(NO_3)_3.6H_2O +$	0,5:1:1	Maddenin mor olan rengi	CsCoPO ₄
	NaH ₂ PO ₄ .2H ₂ O		değişmemiştir.	
	$Cs_2CO_3 +$		800 W / 20 dakika	
KS-MD5	$Co(NO_3)_3.6H_2O +$	0,5:1:1	Maddenin mor olan rengi	CsCoPO ₄
	(NH ₄) ₂ HPO ₄		laciverte dönüşmüştür.	
	$Cs_2CO_3 +$		800 W / 20 dakika	
KS-MD6	$Co(NO_3)_3.6H_2O +$	0,5:1:1	Maddenin mor olan rengi	CsCoPO ₄
	$(NH_4)H_2PO_4$		değişmemiştir.	

Tablo 3.4' de Cs_2CO_3 / $Co(NO_3)_3.6H_2O$ / P^{+5} sisteminde gerçekleştirilen deneyler incelendiğinde başlangıç kimyasallarının mol oranı sabit tutulup, farklı P^{+5} kaynakları kullanılmıştır. KS-MD4, KS-MD5 ve KS-MD6 deneylerine ait XRD desenleri incelendiğinde hedeflenen CsCoPO₄ bileşiğinin sentezlenemediği, başlangıç kimyasallarının ortamda kaldığı görülmüştür.

3.1.3 Mg⁺² / Co(NO₃)_{3.6}H₂O / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Moloran	Uygulanan	Hedeflenen
kodu	kimyasalları		işlem/gözlemler	ürün
KS-MD7	MgO + Co(NO ₃) ₃ .6H ₂ O + NaH ₂ PO ₄ .2H ₂ O	0,95:0,05:1	800 W / 20 dakika Maddenin lila olan rengi değişmemiştir.	Mg _{0,95} Co _{0,05} PO ₄
KS-MD8	Mg(NO ₃) ₂ + Co(NO ₃) ₃ .6H ₂ O + NaH ₂ PO ₄ .2H ₂ O	0,95:0,05:1	800 W / 20 dakika Maddenin pembe olan rengi lilaya dönüşmüştür.	Mg _{0,95} Co _{0,05} PO ₄
KS-MD9	Mg(NO ₃) ₂ + Co(NO ₃) ₃ .6H ₂ O + (NH ₄)H ₂ PO ₄	0,95:0,05:1	800 W / 20 dakika Maddenin pembe olan rengi lilaya dönüşmüştür.	Mg _{0,95} Co _{0,05} PO ₄
KS-MD10	$Mg(NO_3)_2 + Co(NO_3)_3.6H_2O + (NH_4)_2HPO_4$	0,95:0,05:1	800 W / 20 dakika Maddenin lila olan rengi kahverengiye dönüşmüştür.	Mg _{0,95} Co _{0,05} PO ₄

Tablo 3.5: $Mg^{+2} / Co(NO_3)_3.6H_2O / P^{+5}$ sisteminde gerçekleştirilen deneyler.

Mg⁺² / Co(NO₃)₃.6H₂O / P⁺⁵ sisteminde sabit mol oranlarında gerçekleştirilen deneylerin reaksiyon şartları Tablo 3.5' de verilmiştir. Sentezlenen bu bileşiklere ait XRD desenleri incelendiğinde hedeflenen bileşiklerin sentezlenemediği görülmüştür.

3.1.4 KNO₃/Pb⁺²/P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen	
kodu	kimyasalları	oranı	işlem/gözlemler	ürün	
			800 W / 10 dakika		
KS-MD11	$KNO_3 + PbO_2 +$	2.1.2	Maddenin siyah olan	$K_{a}Pb(P_{a}O_{a})$	
KO-MD11	NaH ₂ PO ₄ .2H ₂ O	2.1.2	rengi beyaza		
			dönüşmüştür.		
			800 W / 10 dakika		
KS MD12	$KNO_3 + Pb(NO_3)_2$	2.1.2	Maddenin krem olan	K_{2} Pb(P_{1})	
K5-WID12	+ NaH ₂ PO ₄ .2H ₂ O	2.1.2	rengi beyaza	K 21 U(1 2 U 7)	
			dönüşmüştür.		
			800 W / 10 dakika		
KS MD13	$KNO_3 + Pb(NO_3)_2$	2.1.2	Maddenin krem olan	$K_{1}Db(D_{1}O_{2})$	
KS-WD15	+ (NH ₄)H ₂ PO ₄	2.1.2	rengi beyaza	$\mathbf{K}_{2}\mathbf{\Gamma}\mathbf{U}(\mathbf{\Gamma}_{2}\mathbf{U}_{7})$	
			dönüşmüştür.		
			800 W / 10 dakika		
VC MD14	$KNO_3 + Pb(NO_3)_2$	2.1.2	Maddenin krem olan	V D h (D O)	
KS-1VID14	+ (NH ₄) ₂ HPO ₄	2:1:2	rengi beyaza	$\mathbf{K}_{2}\mathbf{\Gamma}\mathbf{U}(\mathbf{\Gamma}_{2}\mathbf{U}_{7})$	
			dönüşmüştür.		

Tablo 3.6: KNO₃ / Pb⁺² / P⁺⁵ sisteminde gerçekleştirilen deneyler.

 $KNO_3 / Pb^{+2} / P^{+5}$ sisteminde gerçekleştirilen deneyler, Tablo 3.6' da verilmiştir. Şekil 3.4' de bu deneylere ait XRD desenleri yer almaktadır. KS-MD11 ve KS-MD12 deneylerine ait XRD desenleri incelendiğinde hexagonal yapıda, hücre parametreleri a=b=9,824 Å, c=7,304 Å ve uzay grubu P63/m(176) olan KPb4(PO4)_3 (ICCD:29-1012) bileşiğinin oluşuğu görülmektedir. KS-MD13 ve KS-MD14 deneylerinde ise amorf yapıya benzer ürün oluşumu gözlemlenmiştir.

Şekil 3.4: KS-MD11, KS-MD12, KS-MD13 ve KS-MD14 deneylerine ait XRD desenleri.

KS-MD11 ve KS-MD12 deneyleri sonucunda meydana gelen KPb₄(PO₄)₃ (ICCD:29-1012) bileşiğine ait deneysel XRD verileri, literatür değerleri ile Tablo 3.7' de verilmiştir.

KS-MD11		KS-MD12						
Deney	sel ürüne	KPb ₄ (PO ₄) ₃		Deney	Deneysel ürüne		KPb ₄ (PO ₄) ₃	
ait XR	D verileri	(ICCD	:29-1012)	XRD	verileri	(ICCD):29-1012)	
I/I ₀	d[Å]	d[Å]	I/I ₀ -hkl	I/I ₀	d[Å]	d[Å]	I/I ₀ -hkl	
26,62	4,2589	4,243	30-[200]	10,76	4,2517	4,243	30-[200]	
41,26	4,0671	4,066	50-[111]	28,47	4,0622	4,066	50-[111]	
31,87	3,6236	3,645	25-[002]	22,77	3,3314	3,353	30-[102]	
21,73	3,3261	3,353	30-[102]	17,73	3,2085	3,212	30-[210]	
21,71	3,2193	3,212	30-[210]	100,0	2,9323	2,932	100-[112]	
100,0	2,9314	2,932	100-[112]	92,93	2,9091	-	-	
50,63	2,9054	-	-	39,91	2,8258	2,833	40-[300]	
46,57	2,8283	2,833	40-[300]	31,72	2,1570	2,180	20-[113]	
17,96	2,1609	2,180	20-[113]	22,34	2,0214	2,037	20-[222]	
22,80	2,0267	2,037	20-[222]	28,60	1,9253	1,940	30-[213]	
12,74	1,9656	1,981	18-[312]	25,04	1,8265	1,824	10-[004]	

Tablo 3.7: KS-MD11 ve KS-MD12 deneylerine ait XRD verileri.

Deneylere ait FT-IR spektrumu, literatür değerleri ile karşılaştırıldığında elde edilen bileşiğe ait fonksiyonel grubun varlığını ve XRD sonuçlarını desteklediği görülmektedir. KS-MD11 ve KS-MD12 deneylerine ait FT-IR spektrumu Şekil 3.5' de verilmiştir. FT-IR spektrum verileri [65] ise Tablo 3.8' de yer almaktadır.

Şekil 3.5: KS-MD11 ve KS-MD12 deneylerine ait FT-IR spektrumu.

Tablo 3.8: KS-MD11	ve KS-MD12	denevlerine a	ait FT-IR	spektrum	verileri.
		denicy for file a		spektrum	verneri.

Titreşim	Frekans (cm ⁻¹)
$v_{I}[PO_{4}]^{3-}$	961, 972
$v_{3}[PO_{4}]^{3}$	1051
v(P=O)	1353, 1374
<i>v</i> (P-O)	1353, 1155, 1374, 1209, 1152, 1051, 961, 972

3.1.5 NaH₂PO₄.2H₂O / Pb (Pb⁺² / Pb⁺⁴) / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.9: NaH₂PO₄.2H₂O / Pb (Pb⁺² / Pb⁺⁴) / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Deney kodu	Başlangıç kimyasalları	Mol oranı	Uygulanan işlem/gözlemler	Hedeflenen ürün
KS-MD15	$Pb(NO_3)_2 + \\NaH_2PO_4.2H_2O$	1:2	800 W / 10 dakika Maddenin beyaz olan rengi griye dönüşmüştür.	Na ₂ Pb(P ₂ O ₇)
KS-MD16	PbO ₂ + NaH ₂ PO ₄ .2H ₂ O	1:2	800 W / 10 dakika Maddenin gri olan rengi siyaha dönüşmüştür.	Na ₂ Pb(P ₂ O ₇)

KS-MD17	PbO + NaH ₂ PO ₄ .2H ₂ O	1:2	800 W / 10 dakika Maddenin krem olan rengi değişmemiştir.	Na ₂ Pb(P ₂ O ₇)
---------	--	-----	---	--

Tablo 3.9' da verilen deneylerde Na₂Pb(P₂O₇) bileşiğinin sentezlenmesi hedeflenmiştir. KS-MD15, KS-MD16 ve KS-MD17 deneylerine ait XRD desenleri incelendiğinde hedeflenen bileşiğin sentezlenemediği, başlangıç maddelerinin ortamda kaldığı görülmüştür.

3.1.6 KNO₃ / ZnO / Cr(NO₃)₃.9H₂O / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
KS-MD18	KNO ₃ + ZnO Cr(NO ₃) ₃ .9H ₂ O + (NH ₄) ₂ HPO ₄	1:1:2:3	800 W / 20 dakika Maddenin koyu yeşil olan rengi kahverengiye dönüşmüştür.	NaZnCr ₂ (PO ₄) ₃
KS-MD19	$KNO_3 + ZnO$ $Cr(NO_3)_3.9H_2O +$ $(NH_4)H_2PO_4$	1:1:2:3	800 W / 20 dakika Maddenin koyu yeşil olan rengi kahverengiye dönüşmüştür.	NaZnCr ₂ (PO ₄) ₃

Tablo 3.10: KNO₃ / ZnO / Cr(NO₃)₃.9H₂O / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Tablo 3.10' da verilen KS-MD18 ve KS-MD19 kodlu deneyler, iki farklı P⁺⁵ kaynağı kullanılarak aynı reaksiyon şartlarında gerçekleştirilmiştir. Bu deneylere ait Şekil 3.6' da verilen XRD desenleri incelendiğinde amorfa benzer özellikte gösteren ürünlerin oluştuğu görülmektedir.

Şekil 3.6: KS-MD18 ve KS-MD19 deneylerine ait XRD desenleri.

3.1.7 NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Cd, Zn, Sn, Ni, Co) / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.11: $NaH_2PO_4.2H_2O / TiO_2 / M^{+2} (Cd, Zn) / P^{+5}$ sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	Hadaflan on Sušu
kodu	kimyasalları	oranı	işlem/gözlemler	Hedellenen urun
KS-MD20	$NaH_2PO_4.2H_2O + TiO_2 + CdO$	3:1:1	800 W / 20 dakika Maddenin açık kahve olan rengi kirli beyaz olmuştur.	Na ₃ TiCd(PO ₄) ₃
KS-MD21	$NaH_2PO_4.2H_2O$ $+ TiO_2 +$ $Zn(NO_3)_2.6H_2O$	3:1:1	800 W / 20 dakika Maddenin beyaz olan rengi değişmemiştir.	Na ₃ TiZn(PO ₄) ₃

Tablo 3.11' de verilen KS-MD20 ve KS-MD21 deneylerinde elde edilen ürünlerin nemli olması ve camsılaşma meydana gelmesinden dolayı XRD analizleri yapılamamıştır.

Fablo 3.12: NaH ₂ PO ₄ .2H ₂	O / TiO ₂ / M ⁺² (Sn) /	/ P ⁺⁵ sisteminde	gerçekleştirilen	deneyler.
--	---	------------------------------	------------------	-----------

Deney	Başlangıç	Mol	Uygulanan	Hadaflanan ürün
kodu	kimyasalları	oranı	işlem/gözlemler	riedenenen urun
KS-MD22	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1:0,99: 0,01:3	800 W / 20 dakika Maddenin beyaz olan rengi değişmemiştir.	NaTi _{0,99} Sn _{0,01} (PO ₄) ₃
KS-MD23	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1:0,95: 0,05:3	800 W / 20 dakika Maddenin beyaz olan rengi değişmemiştir.	NaTi _{0,95} Sn _{0,05} (PO ₄) ₃
KS-MD24	$NaH_2PO_4.2H_2O + TiO_2 + SnCl_2.2H_2O + (NH_4)H_2PO_4$	1:0,9: 0,1:3	800 W / 20 dakika Maddenin beyaz olan rengi değişmemiştir.	NaTi _{0,9} Sn _{0,1} (PO ₄) ₃
KS-MD25	$NaH_2PO_4.2H_2O + TiO_2 + SnCl_2.2H_2O + (NH_4)H_2PO_4$	1:0,01: 0,99:3	800 W / 20 dakika Maddenin beyaz olan rengi değişmemiştir.	NaTi _{0,01} Sn _{0,99} (PO ₄) ₃
KS-MD26	$NaH_2PO_4.2H_2O + TiO_2 + SnCl_2.2H_2O + (NH_4)H_2PO_4$	1:0,05: 0,95:3	800 W / 20 dakika Maddenin beyaz olan rengi değişmemiştir.	NaTi _{0,05} Sn _{0,95} (PO ₄) ₃
KS-MD27	$NaH_2PO_4.2H_2O + TiO_2 + SnCl_2.2H_2O + (NH_4)H_2PO_4$	1:0,1: 0,9:3	800 W / 20 dakika Maddenin beyaz olan rengi değişmemiştir.	NaTi _{0,1} Sn _{0,9} (PO ₄) ₃

Tablo 3.12' de verilen KS-MD22, KS-MD23, KS-MD24, KS-MD25, KS-MD26 ve KS-MD27 deneylerinde elde edilen ürünlerin nemli olması ve camsılaşma meydana gelmesinden dolayı XRD analizleri yapılamamıştır.

Tablo 3.13: NaH2PO4.2H2O / TiO2 / M^{+2} (Ni) / P^{+5} sisteminde gerçekleştirilen deney	/ler.
---	-------

Deney	Başlangıç	Mol	Uygulanan	Uadaflanan ürün	
kodu	kimyasalları	oranı	işlem/gözlemler	neuenenen ur un	
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
KS MD28	+ TiO ₂ +	1,01:1,99:	Maddenin beyaz	Not or $Tit of Nic or (PO_t)$	
K5-MD20	Ni(NO ₃) ₂ .6H ₂ O	0,01:1,99	olan rengi	1101111,991110,01(1 04)3	
	+ (NH ₄)H ₂ PO ₄		değişmemiştir.		
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
KS-MD29	+ TiO ₂ +	1,05:1,95:	Maddenin yeşil	Nator $TitorNicor(PO_4)$	
KS-WD2)	Ni(NO ₃) ₂ .6H ₂ O	0,05:1,95	olan rengi sarı	1441,05111,951410,05(1 04/3	
	+ (NH ₄)H ₂ PO ₄		olmuştur.		
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
KS-MD30	+ TiO ₂ +	1,1:1,9:	Maddenin yeşil	No. Ti , Nie (PO_{i})	
	Ni(NO ₃) ₂ .6H ₂ O	0,1:1,9	olan rengi sarı	1 Na _{1,1} 1 1 _{1,9} 1 NI _{0,1} (FO 4)3	
	+ (NH ₄)H ₂ PO ₄		olmuştur.		

Tablo 3.13' de verilen KS-MD28, KS-MD29 ve KS-MD30 deneylerinde elde edilen ürünlerin nemli olması ve camsılaşma meydana gelmesinden dolayı XRD analizleri yapılamamıştır.

Tablo 3.14: NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Co) / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	Hadaflanan ürün	
kodu	kimyasalları	oranı	işlem/gözlemler	fieuenenen ur un	
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
KS MD31	+ TiO ₂ +	1,01:1,99:	Maddenin pembe	Not of Theorem $(\mathbf{PO}_{t})_{t}$	
KS-WID51	Co(NO ₃) ₂ .6H ₂ O	0,01:1,99	olan rengi krem	1\a1,01111,99CO0,01(1O4)3	
	+ (NH ₄)H ₂ PO ₄		rengi olmuştur.		
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
KS-MD32	+ TiO ₂ +	1,05:1,95:	Maddenin pembe		
KS-WD52	Co(NO ₃) ₂ .6H ₂ O	0,05:1,95	olan rengi	1401,05111,95000,05(104)3	
	+ (NH ₄)H ₂ PO ₄		değişmemiştir.		
KS-MD33	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
	+ TiO ₂ +	1,1:1,9:	Maddenin pembe	No. $Ti_{0}C_{0}$, $(PO_{1})_{0}$	
	Co(NO ₃) ₂ .6H ₂ O	0,1:1,9	olan rengi	INd1,1111,9C00,1(104)3	
	+ (NH ₄)H ₂ PO ₄		değişmemiştir.		

Tablo 3.14' de verilen KS-MD31, KS-MD32 ve KS-MD33 deneylerinde elde edilen ürünlerin nemli olması ve camsılaşma meydana gelmesinden dolayı XRD analizleri yapılamamıştır.

3.1.8 NaH2PO4.2H2O / TiO2 / M⁺³ (Al, Cr) / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen	
kodu	kimyasalları	oranı	işlem/gözlemler	ürün	
	$NaH_2PO_4.2H_2O +$		800 W / 20 dakika		
VS MD24	$TiO_2 +$	Maddenin beyaz			
K5-MD34	$Al(NO_3)_3.9H_2O +$	2.1.1.1	olan rengi	1Na211A1(FO4)3	
	$(NH_4)H_2PO_4$		değişmemiştir.		
	$NaH_2PO_4.2H_2O +$		800 W / 20 dakika		
KS-MD35	$TiO_2 +$	1.1.1.2	Maddenin beyaz	$N_0T; \Lambda 1(\mathbf{D}\Omega_1)_0$	
	$Al(NO_3)_2.9H_2O +$	1.1.1.2	olan rengi	NatiAi(rO4)3	
	$(NH_4)H_2PO_4$		değişmemiştir.		

Tablo 3.15: NaH₂PO₄.2H₂O / TiO₂ / M⁺³ (Al) / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Tablo 3.15' de verilen KS-MD34 ve KS-MD35 kodlu deneylerde hedeflenen bileşikler sentezlenememiştir.

 $\textbf{Tablo 3.16: } NaH_2PO_4.2H_2O \ / \ TiO_2 \ / \ M^{+3} \ (Cr) \ / \ P^{+5} \ sisteminde \ gerçekleştirilen \ deneyler.$

Deney	Başlangıç	Mol	Uygulanan	Hadaflanan ärän	
kodu	kimyasalları	oranı	işlem/gözlemler	Hedenenen urun	
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
KS MD36	+ TiO ₂ +	1,01:1,99:	Maddenin beyaz	Not of $Tit of Croot(PO_1)$	
K3-MD30	Cr(NO ₃) ₃ .9H ₂ O	0,01:1,99	olan rengi açık	1 (a _{1,01} 1 11,99 C 10,01(1O 4)3	
	+ (NH ₄)H ₂ PO ₄		yeşil olmuştur.		
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika		
KS-MD37	+ TiO ₂ +	1,05:1,95:	Maddenin beyaz	NatorTitorCross(PO)	
	Cr(NO ₃) ₃ .9H ₂ O	0,05:1,95	olan rengi açık	1\a1,05111,95C10,05(1 O4)3	
	+ (NH ₄)H ₂ PO ₄		yeşil olmuştur.		

Tablo	3.16:	(Devam).
-------	-------	----------

	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika	
VC MD29	+ TiO ₂ +	1,1:1,9:	Maddenin beyaz	No. T: C_{π} (DO)
KS-MD38	Cr(NO ₃) ₃ .9H ₂ O	0,1:1,9	olan rengi açık	$Na_{1,1}\Pi_{1,9} \cup \Pi_{0,1}(PO_4)_3$
	+ (NH ₄)H ₂ PO ₄		yeşil olmuştur.	

Tablo 3.16' da verilen KS-MD36, KS-MD37 ve KS-MD38 kodlu deneylerde hedeflenen bileşikler sentezlenememiştir.

3.1.9 La(NO₃)₃.xH₂O / M⁺² (M: Ca, Sr) / MnO₂ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.17: La(NO₃)₃.xH₂O / M^{+2} (M: Ca, Sr) / MnO₂ sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen ürün
kodu	kimyasalları	oranı	işlem/gözlemler	medenenen ur un
KS-MD39	La(NO ₃) ₃ .xH ₂ O + MnO ₂	1:1	800 W / 20 dakika Maddenin siyah olan rengi değişmemiştir.	LaMnO ₃
KS-MD40	$\begin{array}{l} La(NO_3)_3.xH_2O + \\ Ca(NO_3)_2.4H_2O + \\ MnO_2 \end{array}$	0,99: 0,01:1	800 W / 20 dakika Maddenin siyah olan rengi değişmemiştir.	La _{0,99} Ca _{0,01} MnO ₃
KS-MD41	$\begin{array}{l} La(NO_3)_3.xH_2O + \\ Ca(NO_3)_2.4H_2O + \\ MnO_2 \end{array}$	0,95: 0,05:1	800 W / 20 dakika Maddenin siyah olan rengi değişmemiştir.	La _{0,95} Ca _{0,05} MnO ₃
KS-MD42	$La(NO_3)_3.xH_2O + Sr(NO_3)_2 + MnO_2$	0,99: 0,01:1	800 W / 20 dakika Maddenin siyah olan rengi değişmemiştir.	La _{0,99} Sr _{0,01} MnO ₃
KS-MD43	$La(NO_3)_3.xH_2O + Sr(NO_3)_2 + MnO_2$	0,95: 0,05:1	800 W / 20 dakika Maddenin siyah olan rengi değişmemiştir.	La _{0,95} Sr _{0,05} MnO ₃

Tablo	3.17:	(Devam).
-------	-------	----------

KS-MD44	$La(NO_3)_3.xH_2O + Sr(NO_3)_2 + Ca(NO_3)_2.4H_2O + MnO_2$	0,65:0,1 :0,2:1	800 W / 20 dakika Maddenin siyah olan rengi değişmemiştir.	La _{0,65} Sr _{0,1} Ca _{0,2} MnO ₃
---------	--	--------------------	--	---

Tablo 3.17' de verilen KS-MD39 kodlu deneyde LaMnO₃ sentezlenmesi, diğer KS-MD40, KS-MD41, KS-MD42, KS-MD43 ve KS-MD44 kodlu deneylerde ise bu bileşiğe Sr⁺² ve Ca⁺² katkılamaya çalışılmıştır. Ancak bu deneylere ait Şekil 3.7' de verilen XRD desenleri incelendiğinde katkılama çalışmasının gerçekleştirilemediği belirlenmiştir.

Şekil 3.7: KS-MD39, KS-MD40, KS-MD41, KS-MD42, KS-MD43 ve KS-MD44 deneylerine ait XRD desenleri.

3.1.10 La(NO₃)₃.xH₂O / Ca(NO₃)₂.4H₂O / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.18: La(NO₃)₃.xH₂O / Ca(NO₃)₂.4H₂O / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	Hadaflanan ürün	
kodu	kimyasalları	oranı	işlem/gözlemler	neuenenen urun	
			800 W / 30 dakika		
	$La(NO_3)_3.xH_2O +$		Maddenin turuncu		
VC MD45	$Ca(NO_3)_2.4H_2O +$	0,7:0,2:	olan rengi kiremit	La Ca Sa EaO	
K3-MD45	$Sr(NO_3)_2 +$	0,05:1	rengine dönüşmüştür.	La _{0,7} Ca _{0,25} Sr _{0,05} FeO ₃	
	Fe(NO ₃) ₃ .9H ₂ O		Nemli ürün		
			oluşmuştur.		
			800 W / 30 dakika		
KS-MD46	$La(NO_3)_3.xH_2O +$		Maddenin turuncu		
	$Ca(NO_3)_2.4H_2O +$	0,7:0,2:	olan rengi kiremit	La Ca Str EaO	
	$Sr(NO_3)_2 +$	0,1:1	rengine dönüşmüştür.	$La_{0,7}Ca_{0,2}SI_{0,1}FeO_3$	
	Fe(NO ₃) ₃ .9H ₂ O		Nemli ürün		
			oluşmuştur.		

Tablo 3.18' de verilen KS-MD45 ve KS-MD46 deney koduna sahip reaksiyonlar, belirtilen mol değerlerinde gerçekleştirilmiştir. Şekil 3.8' de verilen XRD desenleri incelendiğinde amorf yapıya benzer özellik gösteren ürünlerin oluştuğu görülmektedir.

Şekil 3.8: KS-MD45 ve KS-MD46 deneylerine ait XRD desenleri.

3.1.11 La(NO₃)₃.xH₂O / Sr(NO₃)₂ / Co(NO₃)₂.6H₂O Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.19: La(NO₃)₃.xH₂O / Sr(NO₃)₂ / Co(NO₃)₂.6H₂O sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol oranı	Uygulanan	Hedeflenen
kodu	kimyasalları		işlem/gözlemler	ürün
KS-MD47	$La(NO_3)_3.xH_2O$ + $Sr(NO_3)_2$ + $Co(NO_3)_2.6H_2O$	0,95:0,05:1	800 W / 20 dakika Maddenin pembe olan rengi koyu gri olmuştur.	La _{0,95} Sr _{0,05} CoO ₃
KS-MD48	$La(NO_3)_3.xH_2O$ + $Sr(NO_3)_2$ + $Co(NO_3)_2.6H_2O$	0,9:0,1:1	800 W / 20 dakika Maddenin pembe olan rengi siyah olmuştur.	La _{0,9} Sr _{0,1} CoO ₃

La(NO₃)₃.xH₂O / Sr(NO₃)₂ / Co(NO₃)₂.6H₂O sisteminde gerçekleştirilen deneyler Tablo 3.19' da verilmiştir. Belirtilen şartlar altında gerçekleştirilen reaksiyonlar sonucunda başlangıç kimyasallarından La(NO₃)₃.xH₂O' in LaO' e (ICDD:33-0716), Co(NO₃)₂.6H₂O' in CoO' e (ICDD:89-2803) dönüşerek ortamda bulunduğu Şekil 3.9' daki XRD desenlerinden görülmektedir.

Şekil 3.9: KS-MD47 ve KS-MD48 deneylerine ait XRD desenleri.

43

3.1.12 M⁺² (M: Ca, La, Co, Ni) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
KS-MD49	$Ca(NO_3)_2.4H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,5:0,5:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur.	Ca _{0,5} Sr _{0,5} FeO ₃
KS-MD50	$Ca(NO_3)_2.4H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,1:0,9:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur.	Ca _{0,1} Sr _{0,9} FeO ₃
KS-MD51	$Ca(NO_3)_2.4H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,2:0,8:1	800 W / 20 dakika Maddenin krem rengi kahverengi olmuştur.	Ca _{0,2} Sr _{0,8} FeO ₃
KS-MD52	$Ca(NO_3)_2.4H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,9:0,1:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur. Nemli ürün oluşmuştur.	Ca _{0,9} Sr _{0,1} FeO ₃

Tablo 3.20: M⁺² (M: Ca) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

M⁺² (M: Ca) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler Tablo 3.20' de verilmiştir. Gerçekleştirilen deneyler sonucunda başlangıç maddelerinin reaksiyona girmeden ortamda kaldığı ve amorf yapıya benzer bileşiklere dönüştüğü belirlenmiştir.

Deney	Başlangıç	Malanan	Uygulanan	Hedeflenen
kodu	kimyasalları	Mol orani	işlem/gözlemler	ürün
KS-MD53 KS-MD54	$La(NO_{3})_{2}.6H_{2}O + Sr(NO_{3})_{2} + Fe(NO_{3})_{3}.9H_{2}O$ $La(NO_{3})_{2}.6H_{2}O + Sr(NO_{3})_{2} + Fe(NO_{3})_{2} $	0,05:0,95:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur. 800 W / 20 dakika Maddenin krem rengi kızıl	La _{0,05} Sr _{0,95} FeO ₃ La _{0,5} Sr _{0,5} FeO ₃
	$Fe(NO_3)_3.9H_2O$		kahverengi olmuştur.	
KS-MD55	$La(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,1:0,9:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur.	La _{0,1} Sr _{0,9} FeO ₃
KS-MD56	$La(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,2:0,8:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur.	La _{0,2} Sr _{0,8} FeO ₃
KS-MD57	$La(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,9:0,1:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur. Nemli ürün oluşmuştur.	La _{0,9} Sr _{0,1} FeO ₃

Tablo 3.21: M⁺² (M: La) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

M⁺² (M: La) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler Tablo 3.21' de verilmiştir. Gerçekleştirilen deneyler sonucunda başlangıç maddelerinin reaksiyona girmeden ortamda kaldığı ve amorf yapıya benzer bileşiklere dönüştüğü belirlenmiştir.

Deney	Başlangıç	Malaran	Uygulanan	Hedeflenen
kodu	kimyasalları		işlem/gözlemler	ürün
KS-MD58	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,05:0,95:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur.	Co _{0,05} Sr _{0,95} FeO ₃
KS-MD59	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,5:0,5:1	800 W / 20 dakika Maddenin pembe olan rengi siyah olmuştur.	Co _{0,5} Sr _{0,5} FeO ₃
KS-MD60	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,01:0,9:1	800 W / 20 dakika Maddenin krem rengi kızıl kahverengi olmuştur.	Co _{0,01} Sr _{0,9} FeO ₃
KS-MD61	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,2:0,8:1	800 W / 20 dakika Maddenin pembe olan rengi siyah olmuştur.	Co _{0,2} Sr _{0,8} FeO ₃
KS-MD62	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,9:0,1:1	800 W / 20 dakika Maddenin turuncu olan rengi siyah olmuştur.	Co _{0,9} Sr _{0,1} FeO ₃

Tablo 3.22: M⁺² (M: Co) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

M⁺² (M: Co) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler Tablo 3.22' de verilmiştir. Gerçekleştirilen deneyler sonucunda başlangıç maddelerinin reaksiyona girmeden ortamda kaldığı ve amorf yapıya benzer bileşiklere dönüştüğü belirlenmiştir.

Deney	Başlangıç	Mol oranı	Uygulanan	Hedeflenen
kodu	kimyasalları		işlem/gözlemler	ürün
KS-MD63	$Ni(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,05:0,95:1	800 W / 20 dakika Maddenin krem rengi kahverengi olmuştur.	Ni _{0,05} Sr _{0,95} FeO ₃

Tablo 3.23: (Devam).

KS-MD64	$Ni(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,5:0,5:1	800 W / 20 dakika Maddenin yeşil olan rengi kahverengi olmuştur.	Ni _{0,5} Sr _{0,5} FeO ₃
KS-MD65	$Ni(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,01:0,9:1	800 W / 20 dakika Maddenin krem rengi kahverengi olmuştur.	Ni _{0,01} Sr _{0,9} FeO ₃
KS-MD66	Ni(NO ₃) ₂ .6H ₂ O + Sr(NO ₃) ₂ + Fe(NO ₃) ₃ .9H ₂ O	0,2:0,8:1	800 W / 20 dakika Maddenin krem rengi kahverengi olmuştur.	Ni _{0,2} Sr _{0,8} FeO ₃
KS-MD67	$Ni(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,9:0,1:1	800 W / 20 dakika Maddenin yeşil olan rengi koyu kahverengi olmuştur.	Ni _{0,9} Sr _{0,1} FeO ₃

 M^{+2} (M: Ni) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler Tablo 3.23' de verilmiştir. Gerçekleştirilen deneyler sonucunda başlangıç maddelerinin reaksiyona girmeden ortamda kaldığı ve amorf yapıya benzer bileşiklere dönüştüğü belirlenmiştir.

3.2 Mikrodalga Destekli Yüksek Sıcaklık Sentez Yöntemi ile Gerçekleştirilen Deneyler

3.2.1 Na⁺ / V₂O₅ / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
			600 W / 20 dakika +	
VS MDV1	$NaH_2PO_4.2H_2O +$	2.1	1100°C / 4 saat	
KS-MDK1	V_2O_5	5:1	Maddenin turuncu olan	$Na_3 V_2(PO_4)_3$
			rengi yeşile dönüşmüştür.	
			800 W / 10 dakika +	
KC MDV2	$NaH_2PO_4.2H_2O +$	2.1	400°C / 2 saat	$\mathbf{N}_{0} \mathbf{V} (\mathbf{D} \mathbf{O})$
KS-MDK2	V_2O_5	5:1	Maddenin yeşil olan rengi	$Na_3 V_2(PO_4)_3$
			değişmemiştir.	
			800 W / 20 dakika	
VC MDV2	$NaH_2PO_4.2H_2O +$	3:1	500°C / 1 saat	Na ₃ V ₂ (PO ₄) ₃
KS-MDK3	V_2O_5		Maddenin turuncu olan	
			rengi yeşile dönüşmüştür.	
			600 W / 20 dakika +	
VS MDV4	$Na_3rO_4.12H_2O + VO$	1.1.2	1100°C / 4 saat	$\mathbf{N}_{0} \mathbf{V} (\mathbf{D} \mathbf{O})$
KS-IVIDK4	$V_2 U_5 +$	1:1:2	Maddenin turuncu olan	$Na_3 V_2(PO_4)_3$
	$(INH_4)H_2PO_4$		rengi yeşile dönüşmüştür.	
			800 W / 10 dakika +	
VC MDV5	$Na_3rO_4.12H_2O + VO$	1.1.2	400°C / 2 saat	$\mathbf{N}_{0} \mathbf{V} (\mathbf{D} \mathbf{O})$
KS-MDK5	$V_2 O_5 +$	1:1:2	Maddenin yeşil olan rengi	$Na_3 v_2(PO_4)_3$
	(INH4)H2PO4		değişmemiştir.	
			800 W / 20 dakika +	
	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + 1$	1:1:2	500°C / 1 saat	Na ₃ V ₂ (PO ₄) ₃
K2-IMDK0			Maddenin turuncu olan	
	(INIT4)T2PO4		rengi yeşile dönüşmüştür.	

Tablo 3.24: Na ⁺ / V ₂ O ₅ / P ⁺⁵	⁵ sisteminde gerçekleştirilen deneyler.
--	--

KS-MDK7	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + (NH_{4})_{2}HPO_{4}$	1:1:2	600 W / 20 dakika + 1100°C / 4 saat Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃
KS-MDK8	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + (NH_{4})_{2}HPO_{4}$	1:1:2	800 W / 10 dakika + 400°C / 2 saat Maddenin yeşil olan rengi değişmemiştir.	Na ₃ V ₂ (PO ₄) ₃
KS-MDK9	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + (NH_{4})_{2}HPO_{4}$	1:1:2	800 W / 20 dakika + 500°C / 1 saat Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃

Tablo 3.24: (Devam).

Tablo 3.24' de verilen KS-MDK1, KS-MDK2, KS-MDK3, KS-MDK4, KS-MDK5, KS-MDK6, KS-MDK7, KS-MDK8 ve KS-MDK9 kodlu deneylerde sentezlenmesi hedeflenen $Na_3V_2(PO_4)_3$ bileşiğinin elde edilemediği Şekil 3.10' daki XRD desenlerinden görülmektedir. KS-MDK8 kodlu deneyin XRD deseni incelenmesi sonucunda hedeflenen bileşik yerine $Na_2VP_2O_8$ (ICDD:89-0067) bileşiğinin oluştuğu belirlenmiştir. Bu bileşik, P46m(100) uzay grubunda ve a=b=8,1080 Å, c=4,9430 Å hücre parametrelerine sahiptir.

	KS-MDK1
Manager and the state of the st	KS-MDK2
	KS-MDK3
	KS-MDK4
Manual production of the second of the secon	KS-MDK5
	KS-MDK6
	KS-MDK7
Marine have been been been been been been been be	KS-MDK8
	KS-MDK9
20 30 40 50 60 7 2 Α	0
	$\frac{1}{20}$

Şekil 3.10: KS-MDK1, KS-MDK2, KS-MDK3, KS-MDK4, KS-MDK5, KS-MDK6, KS-MDK7, KS-MDK8 ve KS-MDK9 deneylerine ait

XRD desenleri.

KS-MDK8					
Deneysel ürür	ne ait XRD verileri	Na ₂ VP ₂ O ₈ (ICCD:89-0067)			
I/I ₀	Deneysel d[Å]	d[Å]	I/I ₀ -hkl		
100,0	4,9606	4,9430	999-[001]		
10,35	4,6602	-	-		
36,54	3,6173	3,6260	369-[210]		
16,86	3,1768	-	-		
49,02	3,1423	3,1346	570-[201]		
94,48	2,9293	2,9237	965-[211]		
19,38	2,8474	2,8666	98-[220]		
19,68	2,8244	-	-		
25,37	2,5604	2,5639	500-[310]		
36,37	2,4788	2,4715	282-[002]		
15,75	2,2699	2,2760	202-[311]		
9,88	1,9145	1,9110	25-[330]		
16,37	1,8734	1,8718	56-[222]		

Tablo 3.25: KS-MDK8 deneyine ait XRD verileri.

KS-MDK8 deneyi sonucunda elde edilen ürüne ait FT-IR spektrumundaki pikler, bileşikte bulunan fonksiyonel grupların varlığını ve XRD verilerini desteklemektedir. Ürüne ait FT-IR spektrumu Şekil 3.11' de ve FT-IR spektrum verileri [65] Tablo 3.26' da verilmiştir.

Şekil 3.11: KS-MDK8 deneyine ait FT-IR spektrumu.

Titreşim	Frekans (cm ⁻¹)
$v_{3}[PO_{4}]^{3-}$	1036
v(O-P-O)	635
v(P-O)	1245, 1036, 979

 Tablo 3.26: KS-MDK8 deneyine ait FT-IR spektrum verileri.

3.2.2 Cs₂CO₃ / Co(NO₃)₃.6H₂O / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.27: Cs₂CO₃ / Co(NO₃)₃.6H₂O / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Deney kody	Başlangıç	Mol	Uygulanan	Hedeflenen
Deney Kouu	kimyasalları	oranı	işlem/gözlemler	ürün
			800 W / 20 dakika +	
			400°C / 2 saat	
	$Cs_2CO_3 +$		500°C / 30 dakika	
KS- MDK10	$Co(NO_3)_3.6H_2O +$	0,5:1:1	550°C / 30 dakika	CsCoPO ₄
	NaH ₂ PO ₄ .2H ₂ O		600°C / 1 saat 30 dakika	
			Maddenin mor olan rengi	
			siyah olmuştur.	

Tablo 3.27' de yer alan KS-MDK10 kodlu deney sonucunda elde edilen ürünün Şekil 3.12' de verilen XRD deseninde amorf yapıya benzer özellik gösteren ürün elde edildiği görülmektedir. Bu sebeple karakterizasyon yapılamamıştır.

Şekil 3.12: KS-MDK10 deneyine XRD deseni.

3.2.3 KNO₃/Pb⁺²/P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
KS-MDK11	KNO ₃ + PbO + NaH ₂ PO ₄ .2H ₂ O	2:1:2	800 W / 10 dakika + 750°C / 2 saat Maddenin gri olan rengi krem rengine dönüşmüştür.	K ₂ Pb(P ₂ O ₇)
KS-MDK12	$KNO_3 + Pb(NO_3)_2 + (NH_4)H_2PO_4$	2:1:2	800 W / 10 dakika + 750°C / 2 saat Maddenin beyaz olan rengi değişmemiştir.	K ₂ Pb(P ₂ O ₇)
KS-MDK13	$KNO_3 + Pb(NO_3)_2 + (NH_4)_2HPO_4$	2:1:2	800 W / 10 dakika + 750°C / 2 saat Maddenin beyaz olan rengi değişmemiştir.	K ₂ Pb(P ₂ O ₇)

Tablo 3.28: KNO₃ / Pb⁺² / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Tablo 3.28' deki KS-MDK11, KS-MDK12 ve KS-MDK13 deneylerinde elde edilen ürünlerin Şekil 3.13' de verilen XRD desenleri incelendiğinde kristallenmenin iyi olmadığı ve amorf yapıya benzer özellik gösteren maddelerin sentezlendiği görülmüştür.

Şekil 3.13: KS-MDK11, KS-MDK12 ve KS-MDK13 deneylerine ait XRD desenleri.

3.2.4 NaH₂PO₄.2H₂O / Pb⁺² / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan işlem/gözlemler	Hedeflenen
kodu	kimyasalları	oranı		ürün
KS-MDK14	PbO ₂ + NaH ₂ PO ₄ .2H ₂ O	1:2	800 W / 10 dakika + 700°C / 2 saat Maddenin siyah olan rengi beyaza dönüşmüştür. Amorf ürün olmuştur.	Na ₂ Pb(P ₂ O ₇)

Tablo 3.29: NaH₂PO₄.2H₂O / Pb⁺² / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Tablo 3.29' da KS-MDK14 deneyinde sentezlenen bileşiğin, Şekil 3.14' de verilen XRD desenleri incelendiğinde amorf özelliğe benzer ürün meydana geldiği görülmüştür.

Şekil 3.14: KS-MDK14 deneyine ait XRD desenleri.

3.2.5 NaH2PO4.2H2O / TiO2 / M⁺² (Cd, Zn, Sn, Ni, Co) / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
			800 W / 20 dakika +	
			300°C / 30 dakika	
			350°C / 30 dakika	
			400°C / 30 dakika	
KS-MDK15	$haH_2PO_4.2H_2O$	3:1:1	450°C / 30 dakika	Na ₃ TiCd(PO ₄) ₃
	$+ 110_2 + CuO$		500°C / 30 dakika	
			550°C / 30 dakika	
			Maddenin kirli beyaz olan	
			rengi açık pembe olmuştur.	
			800 W / 20 dakika +	
			300°C / 30 dakika	
			350°C / 30 dakika	
	NaH ₂ PO ₄ .2H ₂ O		400°C / 30 dakika	
KS-MDK16	+ TiO ₂ +	3:1:1	450°C / 30 dakika	Na ₃ TiZn(PO ₄) ₃
	Zn(NO ₃) ₂ .6H ₂ O		500°C / 30 dakika	
			550°C / 30 dakika	
			Maddenin beyaz olan rengi	
			kirli beyaz olmuştur.	

Tablo 3.30: NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Cd, Zn) / P⁺⁵ sisteminde gerçekleştirilen deneyler.

NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Cd, Zn) / P⁺⁵ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneyler Tablo 3.30' da, XRD desenleri Şekil 3.15' de verilmiştir. KS-MDK15 kodlu deneyin XRD desenlerinin incelenmesi sonucunda başlangıç maddelerinin ortamda kaldığı görülmüştür. KS-MDK16 deneyinin sonucunda hedeflenen ürün yerine P42/mnm(136) uzay grubunda, tetragonal kristal yapısında ve a=b=7,656 Å, c=10,233 Å hücre parametreleri olan (ICDD:87-0499) $Na_2Zn(P_2O_7)$ bileşiğinin oluştuğu XRD desenlerinin belirlenmiştir. TiO₂' in amorflaşarak incelenmesinden ortamda kaldığı düşünülmektedir.

Şekil 3.15: KS-MDK15 ve KS-MDK16 deneylerine ait XRD desenleri.

57
KS-MDK16					
Deneysel ürün	e ait XRD verileri	Na ₂ Zn(P ₂ O ₇) ICDD:87-0499			
I/I ₀	Deneysel d[Å]	d[Å]	I/I ₀ -hkl		
100,0	5,0795	5.1165	999-[002]		
11,75	4,3443	-	-		
21,62	4,2150	-	-		
15,07	3,8113	3,8280	84-[200]		
26,88	3,6960	3,7185	302-[112]		
40,60	3,6325	-	-		
48,25	3,4853	-	-		
53,79	3,4115	3,4238	281-[210]		
45,35	3,0535	3,0650	508-[202]		
70,45	2,8405	2,8455	774-[212]		
28,43	2,7474	2,7068	110-[220]		
41,53	2,4185	2,4210	335-[310]		
34,86	2,4181	2,4164	199-[213]		

 Tablo 3.31: KS-MDK16 deneyine ait XRD verileri.

Tablo 3.31' de verilen KS-MDK16 deneyine ait XRD verileri, literatür değerleri ile karşılaştırıldığında uyumlu olduğu görülmektedir. Elde edilen ürüne ait FT-IR spektrumu Şekil 3.16' da verilmiştir. Tablo 3.32' de FT-IR spektrum verileri [65] literatür ile karşılaştırıldığında oluşumu desteklediği görülmektedir.

Şekil 3.16: KS-MDK16 deneyine ait FT-IR spektrumu.

Titreşim	Frekans (cm ⁻¹)
v_1^{b} (O-Na-O)	1080
$(P_2O_7^{4-})$	1023, 715
<i>v</i> _{as} (P-O-P)	1023
v(O-P-O)	630
v(P-O)	1173, 1080, 1023, 914

 Tablo 3.32:
 KS-MDK16 deneyine ait FT-IR spektrum verileri.

 $\textbf{Tablo 3.33: } NaH_2PO_{4.}2H_2O \ / \ TiO_2 \ / \ M^{+2} \ (Sn) \ / \ P^{+5} \ sisteminde \ gerçekleştirilen \ deneyler.$

Deney Başlangıç kodu kimyasalları		Mol	Uygulanan	Hadaflanan ürün
		oranı	işlem/gözlemler	neuenenen urun
			800 W / 20 dakika +	
	NaH ₂ PO ₄ .2H ₂ O		800°C / 2 saat	
KS MDV17	+ TiO ₂ +	1:0,99:	Maddenin beyaz olan	NoTi Sp. (PO.)
KS-MDK1/	$SnCl_2.2H_2O + \\$	0,01:3	rengi değişmemiştir.	1Na 1 10,995110,01(F O4)3
	$(NH_4)H_2PO_4$		Nemli ürün	
			oluşmuştur.	
			800 W / 20 dakika +	
KS-MDK18	NaH ₂ PO ₄ .2H ₂ O		800°C / 2 saat	
	+ TiO ₂ +	1:0,95:	Maddenin beyaz olan	NoTi Sp. (PO.)
	$SnCl_2.2H_2O +$	0,05:3	rengi değişmemiştir.	1 1 1 10,95 5 110,05 (FO 4 <i>)</i> 3
	$(NH_4)H_2PO_4$		Nemli ürün	
			oluşmuştur.	

Tablo 3.33: (Devam).

KS-MDK19	$NaH_2PO_4.2H_2O$ $+ TiO_2 +$ $SnCl_2.2H_2O +$ $(NH_4)H_2PO_4$	1:0,9: 0,1:3	800 W / 20 dakika + 800°C / 2 saat Maddenin beyaz olan rengi değişmemiştir. Nemli ürün oluşmuştur.	NaTi _{0,9} Sn _{0,1} (PO ₄) ₃
KS-MDK20	$NaH_2PO_4.2H_2O$ $+ TiO_2 +$ $SnCl_2.2H_2O +$ $(NH_4)H_2PO_4$	1:0,01: 0,99:3	800 W / 20 dakika + 800°C / 2 saat Maddenin beyaz olan rengi açık gri olmuştur.	NaTi _{0,01} Sn _{0,99} (PO ₄) ₃
KS-MDK21	$NaH_2PO_4.2H_2O$ $+ TiO_2 +$ $SnCl_2.2H_2O +$ $(NH_4)H_2PO_4$	1:0,05: 0,95:3	800 W / 20 dakika + 800°C / 2 saat Maddenin beyaz olan rengi açık gri olmuştur.	NaTi _{0,05} Sn _{0,95} (PO ₄) ₃
KS-MDK22	$NaH_2PO_4.2H_2O$ $+ TiO_2 +$ $SnCl_2.2H_2O +$ $(NH_4)H_2PO_4$	1:0,1: 0,9:3	800 W / 20 dakika + 800°C / 2 saat Maddenin beyaz olan rengi açık gri olmuştur.	NaTi _{0,1} Sn _{0,9} (PO ₄) ₃

NaH₂PO₄.2H₂O / TiO₂ / M^{+2} (Sn) / P^{+5} sisteminde gerçekleştirilen deneyler Tablo 3.33' de verilmiştir. KS-MDK17, KS-MDK18 ve KS-MDK19 deneyler sonucunda elde edilen ürünlerin nemli olmasından dolayı XRD analizleri yapılamamıştır. Şekil 3.17' de verilen KS-MDK20, KS-MDK21 ve KS-MDK22 deneylerine ait XRD desenleri incelendiğinde hedeflenen bileşiğin elde edilemediği, başlangıç maddelerinin ortamda kaldığı görülmüştür.

Şekil 3.17: KS-MDK20, KS-MDK21 ve KS-MDK22 deneylerine ait XRD desenleri.

Tablo 3.34: NaH2PO4.2H2O / TiO2 / M ⁺² (Ni) / P ⁺⁵ sisteminde gerçekleştirilen deneyle	er.
--	-----

Deney	Deney Başlangıç		Uygulanan	Hadaflanan ärän	
kodu kimyasalları		oranı	işlem/gözlemler	medenenen ur un	
KS-MDK23	$NaH_2PO_4.2H_2O$ $+ TiO_2 +$ $Ni(NO_3)_2.6H_2O$ $+ (NH_4)H_2PO_4$	1,01:1,99: 0,01:1,99	800 W / 20 dakika + 800°C / 2 saat Maddenin beyaz olan rengi açık sarı olmuştur.	Na _{1,01} Ti _{1,99} Ni _{0,01} (PO ₄) ₃	
KS-MDK24	$NaH_2PO_4.2H_2O$ + TiO ₂ + Ni(NO ₃) ₂ .6H ₂ O + (NH ₄)H ₂ PO ₄	1,05:1,95: 0,05:1,95	800 W / 20 dakika + 800°C / 2 saat Maddenin sarı olan rengi değişmemiştir.	Na _{1,05} Ti _{1,95} Ni _{0,05} (PO ₄) ₃	
KS-MDK25	$NaH_2PO_4.2H_2O$ + TiO ₂ + Ni(NO ₃) ₂ .6H ₂ O + (NH ₄)H ₂ PO ₄	1,1:1,9: 0,1:1,9	800 W / 20 dakika + 800°C / 2 saat Maddenin sarı olan rengi değişmemiştir.	Na _{1,1} Ti _{1,9} Ni _{0,1} (PO ₄) ₃	

Tablo 3.34' de verilen KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait XRD desenleri incelenmesi sonucunda elde edilen d değerlerinin, R3-c(167) uzay grubunda, rombohedral kristal yapılı, a=b=8,485, c=21,799 hücre parametrelerine ve ICDD:84-2008 kart numarasına sahip NaTi₂(PO₄)₃ bileşiği ile uyumlu olduğu Tablo 3.35' de görülmektedir. Bu sonuçlara göre Ni⁺² iyonunun katkılanarak yapıya yerleştiği belirlenmiştir.

Şekil 3.18: KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri					
NaTi ₂ (PO ₄) ₃ (ICDD:84-2008)		KS-MDK23		KS-MDK24		KS-MDK25	
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
220-[104]	4,3774	-	-	-	-	-	-
317-[110]	4,2427	4,2713	13,24	4,2754	18,54	4,3458	21,43
999-[113]	3,6638	3,6007	100,0	3,6016	100,0	3,6217	100,0
38-[202]	3,4817	3,4680	10,77	3,4596	5,65	3,4869	5,86
230-[024]	3,0465	2,9977	25,20	3,0033	25,99	3,0170	25,36
461-[211]	2,7596	2,7229	51,17	2,7239	52,06	2,7378	59,11
139-[300]	2,4495	2,4229	14,07	2,4244	9,91	2,4255	13,29
47-[119]	2,1035	2,0847	6,28	2,0849	5,60	2,1020	3,15
100-[128]	1,9451	1,9295	10,07	1,9282	10,42	1,9364	10,06
35-[042]	1,8115	1,8187	14,29	1,8186	12,08	1,8232	15,21
45-[137]	1,7053	1,7035	7,22	1,7038	6,27	1,7111	6,62
3-[321]	1,6808	1,6899	6,05	-	-	1,6955	7,04
14-[229]	1,5958	1,5894	8,42	1,5943	9,42	1,5951	10,43

 Tablo 3.35:
 KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait XRD verileri.

Tablo 3.36' da ve Şekil 3.19 da verilen KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait FT-IR spektrum ve verilerinin literatür değerleri ile karşılaştırıldığında XRD desenlerinden elde edilen sonuçları desteklediği görülmektedir.

Şekil 3.19: KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait FT-IR spektrumu.

 Tablo 3.36: KS-MDK23, KS-MDK24 ve KS-MDK25 deneylerine ait FT-IR spektrum verileri.

Titreșim	Frekans (cm ⁻¹)
<i>v</i> ₃ [PO ₄] ³⁻	1012, 1013
v(P-O)	1227, 978, 979, 982
<i>v</i> _s (P-O-P)	638
v(O-P-O)	638

Tablo 3.37: NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Co) / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	Uadaflanan ürün	
kodu	kimyasalları	oranı	işlem/gözlemler	medenenen ur un	
KS-MDK26	$NaH_2PO_4.2H_2O$ + TiO ₂ + Co(NO ₃) ₂ .6H ₂ O + (NH ₄)H ₂ PO ₄	1,01:1,99: 0,01:1,99	800 W / 20 dakika 800°C / 2 saat Maddenin krem olan rengi turuncu olmuştur.	Na _{1,01} Ti _{1,99} Co _{0,01} (PO ₄) ₃	
KS-MDK27	$NaH_2PO_4.2H_2O$ + TiO ₂ + Co(NO ₃) ₂ .6H ₂ O + (NH ₄)H ₂ PO ₄	1,05:1,95: 0,05:1,95	800 W / 20 dakika 800°C / 2 saat Maddenin pembe olan rengi krem olmuştur.	Na _{1,05} Ti _{1,95} Co _{0,05} (PO ₄) ₃	
KS-MDK28	$NaH_2PO_4.2H_2O$ + TiO ₂ + Co(NO ₃) ₂ .6H ₂ O + (NH ₄)H ₂ PO ₄	1,1:1,9: 0,1:1,9	800 W / 20 dakika 800°C / 2 saat Maddenin pembe olan rengi açık kahve olmuştur.	Na _{1,1} Ti _{1,9} Co _{0,1} (PO ₄) ₃	

Tablo 3.37' de verilen KS-MDK26, KS-MDK27 ve KS-MDK28 kodlu deneylere ait XRD desenleri sonucunda elde edilen d değerlerinin, R3-c(167) uzay grubunda, rombohedral kristal yapılı, a=b=8,485, c=21,799 hücre parametrelerine ve ICDD:84-2008 kart numarasına sahip NaTi₂(PO₄)₃ bileşiğinin, d değerleri ile uyumlu olduğu Tablo 3.38' de görülmektedir. Bu sonuçlara göre Co⁺² iyonu katkılanarak yapıya yerleştiği belirlenmiştir.

Şekil 3.20: KS-MDK26, KS-MDK27 ve KS-MDK28 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri						
NaTi ₂ (P (ICDD:84	NaTi ₂ (PO ₄) ₃ (ICDD:84-2008)		KS-MDK26		KS-MDK27		KS-MDK28	
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	
220-[104]	4,3774	-	-	-	-	-	-	
317-[110]	4,2427	4,2831	23,92	4,3312	19,06	4,2919	20,88	
999-[113]	3,6638	3,5928	100,0	3,6298	100,0	3,5999	100,0	
38-[202]	3,4817	3,4633	15,49	3,4833	5,44	3,4686	6,52	
230-[024]	3,0465	3,0017	35,36	3,0236	23,62	3,0101	31,80	
461-[211]	2,7596	2,7234	72,06	2,7390	48,82	2,7325	57,33	
139-[300]	2,4495	2,4200	17,97	2,4301	10,92	2,4224	13,73	
47-[119]	2,1035	2,0864	6,79	2,0936	3,48	2,0886	6,89	
100-[128]	1,9451	1,9284	15,58	1,9359	9,34	1,9339	12,49	
35-[042]	1,8115	1,8180	21,67	1,8252	10,52	1,8178	16,80	
45-[137]	1,7053	1,7057	9,10	1,7096	5,64	1,7057	6,81	
3-[321]	1,6808	1,6951	11,80	1,6977	4,59	1,6893	6,79	
14-[229]	1,5958	1,5929	13,95	1,5975	7,41	1,5896	9,52	

Tablo 3.38: KS-MDK26, KS-MDK27 ve KS-MDK28 deneylerine ait XRD verileri.

Tablo 3.39' da ve Şekil 3.21' de verilen KS-MDK26, KS-MDK27 ve KS-MDK28 deneylerine ait FT-IR spektrum ve verileri, literatür değerleri ile karşılaştırıldığında XRD desenlerinden elde edilen sonuçları desteklediği görülmektedir.

Şekil 3.21: KS-MDK26, KS-MDK27 ve KS-MDK28 deneylerine ait FT-IR spektrumu.

 Tablo 3.39: KS-MDK26, KS-MDK27 ve KS-MDK28 deneylerine ait FT-IR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)
<i>v</i> ₃ [PO ₄] ³⁻	1012, 1013
v(P-O)	1226, 1228, 978, 979, 980,
<i>v</i> _s (P-O-P)	638
v(O-P-O)	638

3.2.6 NaH2PO4.2H2O / TiO2 / M⁺² (Al, Cr) / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Deney	Başlangıç Mol Uygulanan		Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika	
KS-MDK29	$+ TiO_2 +$	2.1.1.1	800°C / 2 saat	$N_{22}TiAl(PO_{1})_{2}$
K3-WDK29	Al(NO ₃) ₃ .9H ₂ O	2.1.1.1	Maddenin beyaz olan	1102/11/11/11/04/3
	$+ (NH_4)H_2PO_4$		rengi değişmemiştir.	
	NaH ₂ PO ₄ .2H ₂ O		800 W / 20 dakika	
KS-MDK30	$+ TiO_{2} +$	1.1.1.2	800°C / 2 saat	NaTiAl(PO ₄) ₂
	$Al(NO_3)_2.9H_2O$	1.1.1.2	Maddenin beyaz olan	1101111(104)3
	+ (NH ₄)H ₂ PO ₄		rengi değişmemiştir.	

Tablo 3.40: NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Al) / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Tablo 3.40' da verilen KS-MDK29 ve KS-MDK30 kodlu deneylere ait XRD desenleri incelendiğinde $Na_{1,261}Ti_{1,696}Al_{0,302}(PO_4)_3$ (ICSD:015-4071) bileşiğinin oluştuğu belirlenmiştir. Bu bileşik, hekzagonal sistemde kristallenmiş olup, R-3c(167) uzay grubunda ve a=b=8,4750 Å, c=21,7690 Å hücre parametrelerine sahiptir. Bu deneylere ait XRD desenleri Şekil 3.22' de, verileri ise Tablo 3.41' de verilmiştir.

Şekil 3.22: KS-MDK29 ve KS-MDK30 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri			
Na _{1,261} Ti _{1,696} Al (ICSD:015	l _{0,302} (PO ₄) ₃ 5-4071)	KS-MDK29		KS-MDK30	
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
16,0-[012]	6,0853	6,0028	12,31	6,0152	11,03
21,7-[104]	4,3715	4,3131	22,80	4,3347	24,35
28,8-[110]	4,2375	4,2011	24,91	4,2125	41,89
100,0-[113]	3,6592	3,6343	100,0	3,6332	100,0
3,8-[202]	3,4774	3,4927	10,41	3,4970	28,92
23,6-[024]	3,0426	3,0185	28,00	3,0249	28,21
47,7-[116]	2,7559	2,7291	54,90	2,7434	53,08
8,4-[030]	2,4465	2,4386	21,13	2,4326	10,19
16,0-[226]	1,8296	1,8236	13,32	1,8266	10,77
1,1-[229]	1,5937	1,5996	10,33	1,5998	7,17

Tablo 3.41: KS-MDK29 ve KS-MDK30 deneylerine ait XRD verileri.

Şekil 3.23' de verilen FT-IR spektrumu, literatür verileri ile karşılaştırıldığında Na_{1,261}Ti_{1,696}Al_{0,302}(PO₄)₃ (ICSD:015-4071) ürünündeki fonksiyonel grupların varlığını ortaya koymakta ve XRD sonuçlarını desteklemektedir.

Şekil 3.23: KS-MDK29 ve KS-MDK30 deneylerine ait FT-IR spektrumu.

Titreșim	Frekans (cm ⁻¹)
v(P=O)	1216
$v_1(PO_4)$	927,958
<i>v</i> (P-O)	1216, 927, 958
<i>v</i> _s (P-O-P)	638, 640,753

Tablo 3.42: KS-MDK29 ve KS-MDK30 deneylerine ait FT-IR spektrum verileri.

Tablo 3.43: NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Cr) / P⁺⁵ sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	TT 1 (9
kodu	kimyasalları	oranı	işlem/gözlemler	Hedeflenen urun
KS-MDK31	NaH ₂ PO ₄ .2H ₂ O + TiO ₂ + Cr(NO ₃) ₃ .9H ₂ O + (NH ₄)H ₂ PO ₄	1,01:1,99: 0,01:1,99	800 W / 20 dakika 800°C / 2 saat Maddenin açık yeşil olan rengi değişmemiştir.	Na _{1,01} Ti _{1,99} Cr _{0,01} (PO ₄) ₃
KS-MDK32	$NaH_2PO_4.2H_2O$ + TiO ₂ + Cr(NO ₃) ₃ .9H ₂ O + (NH ₄)H ₂ PO ₄	1,05:1,95: 0,05:1,95	800 W / 20 dakika 800°C / 2 saat Maddenin açık yeşil olan rengi değişmemiştir.	Na _{1,05} Ti _{1,95} Cr _{0,05} (PO ₄) ₃
KS-MDK33	NaH ₂ PO ₄ .2H ₂ O + TiO ₂ + Cr(NO ₃) ₃ .9H ₂ O + (NH ₄)H ₂ PO ₄	1,1:1,9: 0,1:1,9	800 W / 20 dakika 800°C / 2 saat Maddenin açık yeşil olan rengi değişmemiştir.	Na _{1,1} Ti _{1,9} Cr _{0,1} (PO ₄) ₃

KS-MDK31, KS-MDK32 ve KS-MDK33 deneylerine ait XRD desenleri Şekil 3.24' de, verileri ise Tablo 3.45' de verilmiştir. Elde edilen ürünlere ait XRD desenleri ayrı ayrı incelendiğinde R-3c(167) uzay grubunda, rombohedral kristal yapılı, a=b=8,485 Å, c=21,799 Å parametrelerine sahip NaTi₂(PO₄)₃ (ICDD:84-2008) bileşiğinin oluştuğu Cr⁺² iyonunun yapıya girdiği belirlenmiştir.

Şekil 3.24: KS-MDK31, KS-MDK32 ve KS-MDK33 deneylerine ait XRD desenleri.

			Deneys	el ürünlere	ait XRD v	verileri	
NaTi ₂ (I (ICDD:84	PO ₄) ₃ I-2008)	KS-MDK31		KS-MDK32		KS-MDK33	
I/I₀-hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
14-[012]	6,0950	5,9959	11,32	5,9954	14,52	5,9863	13,27
20-[104]	4,3770	4,3238	21,54	4,3341	22,84	4,3240	22,92
32-[110]	4,2450	4,1849	33,71	4,2017	31,70	4,1916	34,74
100-[113]	3,6660	3,6251	100,0	3,6340	100,0	3,6273	100,0
4-[202]	3,4850	3,4800	7,34	3,4920	8,48	3,4870	4,21
28-[024]	3,0480	3,0212	23,30	3,0277	26,37	3,0222	21,58
64-[211]	2,7590	2,7389	51,60	2,7445	49,67	2,7402	52,12
16-[300]	2,4520	2,4323	11,30	2,4354	14,54	2,4340	12,93
15-[128]	1,9455	1,9352	9,16	1,9382	8,90	1,9353	10,11
16-[226]	1,8330	1,8219	9,35	1,8263	11,27	1,8238	12,43
11-[410]	1,6048	1,5953	8,09	1,5981	8,36	1,5986	8,18

 Tablo 3.44: MDK31, MDK32 ve MDK33 deneylerine ait XRD verileri.

Şekil 3.25' de verilen FT-IR spektrum bantları, literatür verileri ile karşılaştırıldığında ürün oluşumu desteklenmektedir. Yapıdaki fonksiyonel grupların varlığı Tablo 3.45' de verilen FT-IR verilerinden de görülmektedir.

Şekil 3.25: KS-MDK31, KS-MDK32 ve KS-MDK33 deneylerine ait FT-IR spektrum.

 Tablo 3.45: KS-MDK31, KS-MDK32 ve KS-MDK33 deneylerine ait FT-IR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)
<i>v</i> ₃ [PO ₄] ³⁻	1012, 1010
v(P-O)	1227, 1226, 963, 964, 978
<i>v</i> _s (P-O-P)	638
v(O-P-O)	638

3.2.7 La(NO₃)₃.xH₂O / M⁺² (M: Ca, Sr) / MnO₂ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Başlangıç	Malaran	Uygulanan	Hedeflenen	
kimyasalları		işlem/gözlemler	ürün	
		800 W / 20 dakika		
		700°C / 2 saat		
$La(INO_3)_3.XH_2O +$	1:1	Maddenin siyah olan	LaMnO ₃	
IVIIIO ₂		rengi koyu gri		
		olmuştur.		
		800 W / 20 dakika		
		700°C / 2 saat		
S-MDK35 $\begin{array}{c} La(NO_3)_3.xH_2O + \\ Ca(NO_3)_2.4H_2O + \\ MnO_2 \end{array}$		Maddenin siyah olan		
	0,99:0,01:1	rengi koyu gri	La _{0,99} Ca _{0,01} MnO ₃	
		olmuştur.		
		+		
		800°C / 2 saat		
		Maddenin koyu gri		
		olan rengi		
		değişmemiştir.		
		800 W / 20 dakika		
$La(NO_3)_3.xH_2O + \\$		700°C / 2 saat		
$Ca(NO_3)_2.4H_2O +$	0,95:0,05:1	Maddenin siyah olan	$La_{0,95}Ca_{0,05}MnO_3$	
MnO ₂		rengi koyu gri		
		olmuştur.		
	Başlangıç kimyasallarıLa(NO_3)_3.xH_2O + MnO_2La(NO_3)_3.xH_2O + Ca(NO_3)_2.4H_2O + MnO_2La(NO_3)_3.xH_2O + MnO_2	Başlangıç Mol oranı kimyasalları 1:1 La(NO ₃) ₃ .xH ₂ O + 1:1 MnO ₂ 0,99:0,01:1 La(NO ₃) ₃ .xH ₂ O + 0,99:0,01:1 MnO ₂ 0,99:0,01:1 La(NO ₃) ₃ .xH ₂ O + 0,99:0,01:1 MnO ₂ 0,99:0,01:1 MnO ₂ 0,99:0,01:1	Başlangıç kimyasallarıMol oranıUygulanan işlem/gözlemler $La(NO_3)_3.xH_2O +$ MnO2800 W / 20 dakika 700°C / 2 saat Maddenin siyah olan rengi koyu gri olmuştur. $La(NO_3)_3.xH_2O +$ Ca(NO_3)_2.4H_2O + MnO2800 W / 20 dakika 700°C / 2 saat Maddenin siyah olan rengi koyu gri olmuştur. $La(NO_3)_2.4H_2O +$ MnO20,99:0,01:1 0,99:0,01:1 $Harris = 100000000000000000000000000000000000$	

Tablo 3.46: La(NO₃)₃.xH₂O / M⁺² (M:Ca) / MnO₂ sisteminde gerçekleştirilen deneyler.

 $La(NO_3)_{3.x}H_2O / M^{+2}$ (M:Ca) / MnO₂ sisteminde gerçekleştirilen deneyler Tablo 3.46' da verilmiştir. Şekil 3.26' da verilen XRD desenleri incelendiğinde hexagonal yapıda, hücre parametreleri a=b=5,5160 Å c=15,6390 Å ve uzay grubu R-3c(167) olan La_{0,96}MnO_{3,67} (ICSD:016-3474) bileşiğinin sentezlendiği görülmektedir. Deneylere ait XRD verileri Tablo 3.47' de verilmiştir.

Şekil 3.26: KS-MDK34, KS-MDK35 ve KS-MDK36 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri					
La0,96M1 (ICSD:01	nO _{3,67} 6-3474)	KS-MD	0K34	KS-MDK35		KS-MDK36	
I/I₀-hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
22-[012]	4,0764	-	-	3,9459	20,47	-	-
100-[104]	3,0255	3,0284	100,0	3,0412	100,0	3,0213	100,0
75-[110]	2,7580	2,7486	22,25	2,7633	51,56	2,7516	25,11
21-[202]	2,2843	2,2723	12,87	2,3073	36,96	2,3015	29,59
56-[024]	2,0382	1,9827	31,59	1,9846	50,74	1,9809	34,58
6-[122]	1,7592	1,7662	31,49	1,7690	32,27	1,7638	32,44
19-[208]	1,5127	1,5348	7,68	1,5954	17,09	1,5991	7,94
12-[220]	1,3790	1,3815	3,78	1,3690	6,49	1,3927	4,25
11-[134]	1,2548	1,2911	13,02	1,3065	14,75	1,2648	13,26
4-[226]	1,2189	1,2226	4,94	1,2319	22,44	1,2294	7,88

Tablo 3.47: KS-MDK34, KS-MDK35 ve KS-MDK36 deneylerine ait XRD verileri.

Şekil 3.27' de verilen FT-IR spektrum bantları, literatür verileri ile karşılaştırıldığında ürün oluşumunu ve XRD sonuçları desteklenmektedir. Yapıdaki fonksiyonel grupların varlığı Tablo 3.48' de verilen FT-IR verilerinden de görülmektedir.

Şekil 3.27: KS-MDK34, KS-MDK35 ve KS-MDK36 deneylerine ait FT-IR spektrumu.

 Tablo 3.48: KS-MDK34, KS-MDK35 ve KS-MDK36 deneylerine ait FT-IR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)		
Mn-O	604, 605		
La	3608		

Tablo 3.49: $La(NO_3)_3.xH_2O / M^{+2}$ (M: Sr) / MnO₂ sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Malanany	Uygulanan	Hadaflanan änän	
kodu	kimyasalları	Moi orani	işlem/gözlemler	Hedenenen urun	
			800 W / 20 dakika		
	La(NO ₃) ₃ .xH ₂ O		700°C / 2 saat		
KS-MDK37	$+ Sr(NO_3)_2 +$	0,99:0,01:1	Maddenin siyah	$La_{0,99}Sr_{0,01}MnO_{3}$	
	MnO ₂		olan rengi koyu		
			gri olmuştur.		

Tablo 3.49: (Devam).

KS-MDK38	$La(NO_3)_3.xH_2O$ $+ Sr(NO_3)_2 +$ MnO_2	0,95:0,05:1	800 W / 20 dakika 700°C / 2 saat Maddenin siyah olan rengi koyu gri olmuştur.	La _{0,95} Sr _{0,05} MnO ₃
KS-MDK39	$La(NO_3)_3.xH_2O$ + Sr(NO_3)_2 + Ca(NO_3)_2.4H_2O + MnO_2	0,65:0,1: 0,2:1	800 W / 20 dakika 800°C / 2 saat Maddenin siyah olan rengi koyu gri olmuştur.	La _{0,65} Sr _{0,1} Ca _{0,2} MnO ₃

 $La(NO_3)_3.xH_2O / M^{+2} (M:Sr) / MnO_2$ sisteminde gerçekleştirilen deneyler Tablo 3.49' da verilmiştir. Şekil 3.28' de verilen XRD desenleri incelendiğinde içerisinde safsızlık barındıran $La_{0.96}MnO_{3,67}$ (ICSD:016-3474) ürününün sentezlendiği görülmektedir. Gerçekleştirilen deneylere ait XRD verileri Tablo 3.50' de verilmiştir.

Şekil 3.28: KS-MDK37, KS-MDK38 ve KS-MDK39 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri					
La _{0,96} M1 (ICSD:01	nO _{3,67} 6-3474)	KS-MD	0K37	KS-MDK38		KS-MDK39	
I/I0-hkl	d[Å]	Deneysel [Å]	I/I ₀	Deneysel [Å]	I/I ₀	Deneysel [Å]	I/I ₀
22-[012]	4,0764	-	-	3,8294	23,35	-	-
100-[104]	3,0255	3,0199	100,0	3,0355	100,0	3,0107	100,0
75-[110]	2,7580	2,7550	28,72	2,7618	31,58	2,7450	46,56
21-[202]	2,2843	2,3051	27,51	2,3083	54,36	2,3009	27,93
56-[024]	2,0382	1,9881	29,99	1,9886	39,54	1,9816	40,64
6-[122]	1,7592	1,7669	27,40	1,7687	33,88	1,7651	35,60
19-[208]	1,5127	1,6026	12,64	1,5752	14,87	1,6488	26,43
12-[220]	1,3790	1,3786	3,64	1,4068	17,17	1,4274	4,93
11-[134]	1,2548	1,2652	19,34	1,2675	40,76	1,2657	11,30
4-[226]	1,2189	1,2145	23,20	1,2102	11,22	1,2111	9,12

Tablo 3.50: KS-MDK37, KS-MDK38 ve KS-MDK39 deneylerine ait XRD verileri.

Şekil 3.29' da KS-MDK37, KS-MDK38 ve KS-MDK39 deneylerine ait FT-IR spektrumu verilmiştir. Tablo 3.51' da bu deneylere ait FT-IR spektrum verileri [66] yer almaktadır. Bu veriler, literatür ile uyumludur.

Şekil 3.29: KS-MDK37, KS-MDK38 ve KS-MDK39 deneylerine ait FT-IR spektrumu.

 Tablo 3.51: KS-MDK37, KS-MDK38 ve KS-MDK39 deneylerine ait FT-IR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)	
Mn-O	604, 605	
La	3608	

3.2.8 La(NO₃)₃.xH₂O / Ca(NO₃)₂.4H₂O / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.52: La(NO ₃) ₃ .xH ₂ O / Ca(NO ₃) ₂ .4H ₂ O / Sr(NO ₃) ₂ / Fe(NO ₃) ₃ .9H ₂ O sistemin	de
gerçekleştirilen deneyler.	

Deney	Başlangıç	Mol	Uygulanan	Hada f lanan ünün	
kodu	kimyasalları	oranı	işlem/gözlemler	Hedellenen urun	
KS-MDK40	$La(NO_3)_3.xH_2O + Ca(NO_3)_2.4H_2O + Sr(NO_3)_2 + Fe(NO_3)_3.9H_2O$	0,7:0,25 :0,05:1	800 W / 30 dakika + 800°C / 2 saat Maddenin kiremit rengi koyu gri olmuştur. + 800°C / 2 saat Maddenin koyu gri rengi siyah olmuştur.	La _{0,7} Ca _{0,25} Sr _{0,05} FeO ₃	
KS-MDK41	La(NO ₃) ₃ .xH ₂ O + Ca(NO ₃) ₂ .4H ₂ O + Sr(NO ₃) ₂ + Fe(NO ₃) ₃ .9H ₂ O	0,7:0,2: 0,1:1	800 W / 30 dakika + 800°C / 2 saat Maddenin kiremit rengi koyu kahverengi olmuştur. + 800°C / 2 saat Maddenin koyu kahverengi olan rengi siyah olmuştur.	La _{0,7} Ca _{0,2} Sr _{0,1} FeO ₃	

Tablo 3.52' de La(NO₃)₃.xH₂O / Ca(NO₃)₂.4H₂O / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler verilmiştir. Bu deneylere ait Şekil 3.30' da verilen XRD desenleri incelendiğinde hedeflenen ürün yerine SrFeO_{2,5939} (ICSD:015-4940)

bileşiğinin elde edildiği bulunmuştur. Bu bileşik, Pm-3m(221) uzay grubunda, kübik kristal yapısında ve a=b=c=3,880 Å parametrelerinin olduğu bulunmuştur. Tablo 3.53' de deneylere ait XRD "d" değerleri verilmiştir.

Şekil 3.30: KS-MDK40 ve KS-MDK41 deneylerine ait XRD desenleri.

		Deney	sel ürünl	ere ait XRD verile	ri
SrFeO _{2,5939} (ICSD:015-4940)		KS-MDK40		KS-MDK41	
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
1,9-[002]	3,9725	-	-	4,0128	15,81
100,0-[022]	2,8089	2,8280	100,0	2,8112	100,0
9,8-[222]	2,2935	2,2966	19,79	2,2766	12,71
28,1-[004]	1,9862	1,9770	65,77	1,9785	43,45
1,0-[024]	1,7765	1,7696	10,13	-	-
26,3-[024]	1,6217	1,61023	54,27	1,6119	44,06
10,4-[044]	1,4044	1,3928	29,37	1,3965	18,25
0,0-[135]	1,3429	1,3465	24,35	-	-
0,3-[244]	1,3241	1,3146	10,61	1,3270	8,98
7,1-[026]	1,2562	1,2449	21,20	1,2452	25,12
1,1-[226]	1,1977	-	-	-	-
2,2-[444]	1,1467	-	-	-	-
0,2-[046]	1,1017	-	-	-	-

Tablo 3.53: KS-MDK40 ve KS-MDK41 deneylerine ait XRD verileri.

Gerçekleştirilen deneylere ait FT-IR spektrumu Şekil 3.31' de verilmiştir. Ancak FT-IR spektrumlarında istenilen bant değerleri elde edilememiştir.

Şekil 3.31: KS-MDK40 ve KS-MDK41 deneylerine ait FT-IR spektrumu.

3.2.9 La(NO₃)₃.xH₂O / Sr(NO₃)₂ / Co(NO₃)₂.6H₂O Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

deneyler.						
Deney	Başlangıç	M	Uygulanan	Hedeflenen		
kodu kimyasalları		Niol orani	işlem/gözlemler	ürün		
			800 W / 20 dakika			
	La(NO ₃) ₃ .xH ₂ O		800°C / 2 saat			
KS-MDK42	$+ Sr(NO_3)_2 +$	0,95:0,05:1	Maddenin koyu gri	La _{0,95} Sr _{0,05} CoO ₃		
	Co(NO ₃) ₂ .6H ₂ O		olan rengi			

0,9:0,1:1

 $La(NO_3)_3.xH_2O$

 $+ Sr(NO_3)_2 +$

Co(NO₃)₂.6H₂O

KS-MDK43

değişmemiştir. 800 W / 20 dakika

800°C / 2 saat

Maddenin siyah olan

rengi değişmemiştir.

 $La_{0,9}Sr_{0,1}CoO_3$

Tablo 3.54: La(NO₃)₃.xH₂O / Sr(NO₃)₂ / Co(NO₃)₂.6H₂O sisteminde gerçekleştirilen deneyler.

Tablo 3.54' de KS-MDK42 ve KS-MDK43 deneyleri, belirlenen mol oranlarında ve koşullarda gerçekleştirilmiştir. Gerçekleştirilen reaksiyonlar sonucunda elde edilen ürünlerin XRD desenleri Şekil 3.32' de verilmiştir. Bu ürünlerin XRD desenleri incelendiğinde Pm-3m(221) uzay grubunda, kübik kristal yapılı ve a=b=c=3,820 Å parametrelerinde LaCoO₃ (ICDD:75-0279) bileşiğinin sentezlendiği belirlenmiştir. Sr⁺² iyonu yapıya katkılanmıştır. Tablo 3.55' de bu bileşiğe ait ve teorik "d" değerleri karşılaştırılmıştır.

Şekil 3.32: KS-MDK42 ve KS-MDK43 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri			
LaCo (ICDD:7	LaCoO3 (ICDD:75-0279) K		42	KS-MDK43	
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
149-[100]	3,8200	3,8930	24,14	-	-
999-[110]	2,7011	2,7314	100,0	2,7467	100,0
177-[111]	2,2054	2,2417	17,51	2,2336	19,80
21-[200]	1,9100	1,9295	41,35	1,9250	62,53
56-[210]	1,7083	1,7265	7,56	1,7135	13,52
282-[211]	1,5595	1,5728	41,18	1,5778	48,37
125-[220]	1,3505	1,3669	11,08	1,3662	12,02
25-[221]	1,2733	1,2778	2,30	1,2827	5,07
93-[310]	1,2079	1,2338	1,54	1,2090	21,77
36-[311]	1,1517	-	-	-	-
33-[222]	1,1027	-	-	-	-

 Tablo 3.55: KS-MDK42 ve KS-MDK43 deneylerine ait XRD verileri.

LaCoO₃ (ICDD:75-0279) bileşiğinin oluşumunu destekleyen FT-IR spektrumu Şekil 3.33' de; spektrum verileri [67] ise Tablo 3.56' da verilmektedir.

Şekil 3.33: KS-MDK42 ve KS-MDK43 deneylerine ait FT-IR spektrumu.

Titreşim	Frekans (cm ⁻¹)
La-O	3607
Co-O	633

Tablo 3.56: KS-MDK42 ve KS-MDK43 deneylerine ait FT-IR spektrum verileri.

3.2.10 M⁺² (M: Ca, La, Co, Ni) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.57: M⁺² (M: Ca) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan	Hedeflenen
kodu	kimyasalları	oranı	işlem/gözlemler	ürün
			800 W / 20 dakika	
	$Ca(NO_3)_2.4H_2O$		800°C / 2 saat	
KS-MDK44	$+ Sr(NO_3)_2 +$	0,5:0,5:1	Maddenin kızıl	Ca _{0,5} Sr _{0,5} FeO ₃
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan rengi	
			siyah olmuştur	
			800 W / 20 dakika	
	Ca(NO ₃) ₂ .4H ₂ O		800°C / 2 saat	
KS-MDK45	$+ Sr(NO_3)_2 +$	0,1:0,9:1	Maddenin kızıl	$Ca_{0,1}Sr_{0,9}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan rengi	
			siyah olmuştur	
			800 W / 20 dakika	
	Ca(NO ₃) ₂ .4H ₂ O		800°C / 2 saat	
KS-MDK46	$+ Sr(NO_3)_2 +$	0,2:0,8:1	Maddenin kahverengi	$Ca_{0,2}Sr_{0,8}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		olan rengi siyah	
			olmuştur.	
			800 W / 20 dakika	
	$Ca(NO_3)_2.4H_2O$		800°C / 2 saat	
KS-MDK47	$+ Sr(NO_3)_2 +$	0,9:0,1:1	Maddenin kızıl	Ca _{0,9} Sr _{0,1} FeO ₃
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan rengi	
			koyu kahve olmuştur.	

Tablo 3.57' de M^{+2} (M: Ca) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde belirli mol oranlarında gerçekleştirilen deneyler verilmiştir. Bu deneylere ait Şekil 3.34' de verilen XRD desenleri incelendiğinde KS-MDK44 ve KS-MDK45 deneylerine ait XRD desenleri incelendiğinde kübik yapıda, hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) olan SrFeO_{3-x} (ICDD:34-0638) bileşiğinin oluştuğu görülmektedir. Deneylere ait deneysel XRD verileri Tablo 3.58' de verilmiştir.

KS-MDK46 kodlu deneye ait XRD desenleri incelendiğinde hedeflenen $Ca_{0,2}Sr_{0,8}FeO_3$ (ICSD:009-2334) bileşiği sentezlenmiştir. Bu bileşik kübik sistemde kristallenmiş olup, hücre parametreleri a=b=c=3,8370 Å ve uzay grubu Pm-3m(221) şeklindedir. Bu deneye ait XRD verileri Tablo 3.60' de verilmiştir.

KS-MDK47 kodlu deneye ait XRD desenleri incelendiğinde hedeflenen $Ca_{0,9}Sr_{0,1}FeO_3$ (ICSD:009-2331) bileşiğinin elde edildiği bulunmuştur. Bu bileşik Pnma(62) uzay grubunda, ortorombik kristal yapısında, a=5,3530 Å, b=7,5550 Å ve c=5,3410 Å parametrelerine sahiptir. Deneylere ait deneysel XRD verileri Tablo 3.62' de verilmiştir.

Şekil 3.34: KS-MDK44, KS-MDK45, KS-MDK46 ve KS-MDK47 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri			
SrF (ICDD:	SrFeO _{3-x} (ICDD:34-0638)		KS-MDK44		MDK45
I/I ₀ -hkl	d[Å]	Deneysel d[Å] I/I ₀ -hkl		d[Å]	Deneysel d[Å]
3-[100]	3,860	-	3-[100]	3,860	-
100-[110]	2,740	2,7679	100-[110]	2,740	2,7679
12-[111]	2,230	2,2567	12-[111]	2,230	2,2567
45-[200]	1,940	1,9471	45-[200]	1,940	1,9471
60-[211]	1,580	1,5832	60-[211]	1,580	1,5832
30-[220]	1,370	1,3708	30-[220]	1,370	1,3708

Tablo 3.58: KS-MDK44 ve KS-MDK45 deneylerine ait XRD verileri.

KS-MDK44 ve KS-MDK45 deneylerine ait Şekil 3.35' de yer alan FT-IR spektrumu ve Tablo 3.59' da verilen FT-IR spektrum verileri ile literatür değerleri karşılaştırıldığında yapısal oluşumları ve XRD sonuçlarını desteklediği görülmektedir.

Şekil 3.35: KS-MDK44 ve KS-MDK45 deneylerine ait FT-IR spektrumu.

Tablo 3.59: KS-MDK44 ve KS-MDK45 deneyine ait FT-IR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)
Sr-Fe-O	854, 853
0-0	1438, 1448

KS-MDK46				
Ca _{0,2} Sr _{0,8} FeO ₃ (ICSD:009-2334)		Deneysel ürüne XRD verileri		
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	
0,2-[001]	3,8370	3,8158	0,73	
100-[011]	2,7131	2,7112	100,0	
13-[111]	2,2152	2,2186	12,72	
37,5-[002]	1,9185	1,9227	26,50	
0,4-[012]	1,7159	-	-	
30,7-[112]	1,5664	1,5702	19,69	
17,3-[022]	1,3565	1,3593	9,62	
0,3-[122]	1,2790	1,2525	0,39	
10,7-[013]	1,2133	1,2165	5,41	
2,7-[113]	1,1569	-	-	

Tablo 3.60: KS-MDK46 deneyine ait XRD verileri.

Şekil 3.36' da KS-MDK46 deneylerine ait FT-IR spektrumu verilmiştir. Tablo 3.61' de bu deneylere ait FT-IR spektrum verileri yer almaktadır. Bu veriler, literatür ile uyumludur.

Şekil 3.36: KS-MDK46 deneyine ait FT-IR spektrumu.

 Tablo 3.61: KS-MDK46 deneyine ait FT-IR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)
Sr-Fe-O	853
0-0	1438

KS-MDK47					
Ca _{0,9} Sr ₀ (ICSD:00	Ca _{0,9} Sr _{0,1} FeO ₃ (ICSD:009-2331)		Deneysel ürüne ait XRD verileri		
I/I ₀	d[Å]	Deneysel d[Å]	I/I ₀		
10,6-[101]	3,7808	-	-		
25,8-[200]	2,6765	2,6985	61,89		
100,0-[121]	2,6722	2,6691	100,0		
23,6-[002]	2,6705	2,6017	15,57		
1,3-[210]	2,5228	2,5171	13,06		
37,2-[202]	1,8904	1,8941	5,44		
21,1-[040]	1,8887	1,8709	8,14		
1,3-[212]	1,8339	1,8423	12,62		
13,2-[321]	1,5444	1,5553	14,95		
14,7-[242]	1,3361	1,3399	5,67		

Tablo 3.62: KS-MDK47 deneyine ait XRD verileri.

Şekil 3.37' de ve Tablo 3.63' de verilen KS-MDK47 kodlu deneyin sonucunda elde edilen ürüne ait FT-IR spektrumları ve verileri, literatür değerleri karşılaştırıldığında oluşumu ve XRD sonuçlarını desteklediği görülmektedir.

Şekil 3.37: KS-MDK47 deneyine ait FT-IR spektrumu.

Tablo 3.63: KS-MDK47 deneyine ait FT-IR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)
Fe-O	855
0-0	1499

Deney	Başlangıç		Uygulanan	Hedeflenen
kodu	kimyasalları	Moi orani	işlem/gözlemler	ürün
			800 W / 20 dakika	
	La(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK48	$+ Sr(NO_3)_2 +$	0,05:0,95:1	Maddenin kızıl	$La_{0,05}Sr_{0,95}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan	
			rengi siyah olmuştur.	
			800 W / 20 dakika	
	$La(NO_3)_2.6H_2O$		800°C / 2 saat	
KS-MDK49	$+ Sr(NO_3)_2 +$	0,5:0,5:1	Maddenin kızıl	$La_{0,5}Sr_{0,5}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan	
			rengi siyah olmuştur.	
			800 W / 20 dakika	
	$La(NO_3)_2.6H_2O$		800°C / 2 saat	
KS-MDK50	$+ Sr(NO_3)_2 +$	0,1:0,9:1	Maddenin kızıl	$La_{0,1}Sr_{0,9}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan	
			rengi siyah olmuştur.	
			800 W / 20 dakika	
	La(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK51	$+ Sr(NO_3)_2 +$	0,2:0,8:1	Maddenin kızıl	$La_{0,2}Sr_{0,8}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan	
			rengi siyah olmuştur.	
			800 W / 20 dakika	
	$I_{\alpha}(NO_{\alpha})_{\alpha} \in H_{\alpha}O_{\alpha}$		800°C / 2 saat	
KS-MDK52	$\pm Sr(NO_2)_2 \pm Sr(NO_2)_2$	0.0.0.1.1	Maddenin kızıl	LassSratEeOs
	$+ \operatorname{SI}(1003)_2 + \operatorname{Fe}(NO_2)_2 \operatorname{OH}_2O$	0,7.0,1.1	kahverengi olan	La0,9510,11 CO3
	10(103)3.71120		rengi koyu kahve	
			olmuştur.	

Tablo 3.64: M⁺² (M: La) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

Tablo 3.64' de M^{+2} (M: La) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneylere ait XRD desenleri Şekil 3.38' de verilmiştir. KS-MDK48, KS-MDK50 ve KS-MDK51 deneylerine ait XRD desenleri incelendiğinde kübik yapıda, hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) olan SrFeO_{3-x} (ICDD:34-0638) bileşiğinin oluştuğu görülmektedir. Deneylere ait deneysel XRD verileri Tablo 3.65' de verilmiştir.

KS-MDK49 kodlu deneye ait XRD desenleri incelendiğinde hedeflenen La_{0,5}Sr_{0,5}FeO₃ (ICSD:082-1962) bileşiği sentezlenmiştir. Bu bileşik rombohedral sitemde kristallenmiş olup, hücre parametreleri a=b=5,511 Å, c=13,415 Å ve uzay grubu R-3c(167) şeklindedir. Bu deneye ait XRD verileri Tablo 3.67' de verilmiştir.

KS-MDK52 kodlu deneye ait XRD desenleri incelendiğinde ICDD:75-0541 kart numarasına sahip LaFeO₃ (ICDD:75-0541) bileşiğinin elde edildiği ve Sr⁺² iyonunun katkılandığı belirlenmiştir. Bu bileşik Pm-3m(221) uzay grubunda, kübik kristal yapısında, a=b=c=3,926 Å parametrelerine sahiptir. Deneylere ait deneysel XRD verileri Tablo 3.69' da verilmiştir.

Şekil 3.38: KS-MDK48, KS-MDK49, KS-MDK50, KS-MDK51 ve KS-MDK52 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD verileri					
SrFeO _{3-x} (ICDD:34-0638)		KS-I	MDK48	KS-I	MDK50	KS-I	MDK51
I/I₀-hkl	d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀ Deneysel d[Å]		I/I ₀	Deneysel d[Å]
3-[100]	3,860	-	-	-	-	2,80	3,8667
100-[110]	2,740	100,0	2,7713	100,0	2,7661	100,0	2,7208
12-[111]	2,230	11,40	2,2561	10,32	2,2553	13,37	2,2239
45-[200]	1,940	34,26	1,9511	40,08	1,9479	27,79	1,9284
60-[211]	1,580	38,42	1,5877	37,19	1,5860	18,19	1,5701
30-[220]	1,370	16,09	1,3696	18,17	1,3725	11,82	1,3644
40	1,230	12,34	1,2260	12,29	1,2255	6,16	1,2206

Tablo 3.65: KS-MDK48, KS-MDK50 ve KS-MDK51 deneylerine ait XRD verileri.

Şekil 3.39' da ve Tablo 3.66' da verilen KS-MDK48, KS-MDK50 ve KS-MDK51 kodlu deneylerinin sonucunda elde edilen ürüne ait FT-IR spektrumları ve verileri, literatür değerleri karşılaştırıldığında oluşumu ve XRD sonuçlarını desteklediği görülmektedir.

Şekil 3.39: KS-MDK48, KS-MDK50 ve KS-MDK51 deneylerine ait FT-IR spektrumu.

 Tablo 3.66: KS-MDK48, KS-MDK50 ve KS-MDK51 deneylerine ait FT-ITR spektrum verileri.

Titreşim	Frekans (cm ⁻¹)
Sr-Fe-O	853, 858
0-0	1435

Tablo 3.67: KS-MDK49	deneyine	ait XRD	verileri.
----------------------	----------	---------	-----------

KS-MDK49					
La0,5Sr0,5FeO3Deneysel ürüne ait XRD(ICDD:082-1962)verileri					
I/I ₀	d[Å]	Deneysel d[Å]	I/I ₀		
116-[012]	3,8888	3,9059	8,9		
881-[110]	2,7555	-	-		
999-[104]	2,7441	2,7317	100,0		

191-[202]	2,2483	2,2403	16,58
518-[024]	1,9444	1,9389	30,0
30-[122]	1,7420	1,7510	2,30
192-[300]	1,5909	1,6017	11,67
132-[208]	1,3720	1,3684	11,76
148-[128]	1,2282	-	-

Tablo	3.67:	(Devam).
-------	-------	----------

Şekil 3.40' da KS-MDK49 kodlu deneyine ait FT-IR spektrumu verilmiştir. Ancak deneye ait bant değeri elde edilememiştir.

Şekil 3.40: KS-MDK49 deneyine ait FT-IR spektrumu.

KS-MDK52					
Lal (ICDD:	LaFeO3 (ICDD:75-0541)		XRD verileri		
I/I0-hkl	I/I0-hkl d[Å]		I/I0		
144-[100]	3,9260	3,9047	13,18		
999-[110]	2,7761	2,7639	100,0		
177-[111]	2,2666	2,2742	23,83		
288-[200]	1,9630	1,9558	24,39		
55-[210]	1,7557	1,7498	9,86		
291-[211]	1,6027	1,6024	24,59		
130-[220]	1,3880	1,3869	6,66		

 Tablo 3.68: KS-MDK52 deneyine ait XRD verileri.

25-[221]	1,3086	1,3069	4,21
98-[310]	1,2415	1,2404	7,92
36-[311]	1,1837	1,2054	3,61
35-[222]	1,1333	-	-

Tablo 3.68: (Devam).

Şekil 3.41' de ve Tablo 3.69' da verilen KS-MDK52 kodlu deneylerinin sonucunda elde edilen ürüne ait FT-IR spektrumları ve verileri, literatür değerleri karşılaştırıldığında oluşumu desteklediği görülmektedir.

Şekil 3.41: KS-MDK52 deneyine ait FT-IR spektrumu.

Titreşim	Frekans (cm ⁻¹)
La-O	3608
0-0	1384

Tablo 3.70: M^{+2} (M: Co) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	M.1	Uygulanan	Hedeflenen
kodu	kimyasalları	Nioi orani	işlem/gözlemler	ürün
			800 W / 20 dakika	
	Co(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK53	$+ Sr(NO_3)_2 +$	0,05:0,95:1	Maddenin kızıl	$Co_{0,05}Sr_{0,95}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan	
			rengi siyah olmuştur.	

KS-MDK54	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,5:0,5:1	800 W / 20 dakika 800°C / 2 saat Maddenin siyah olan rengi değişmemiştir.	Co _{0,5} Sr _{0,5} FeO ₃
KS-MDK55	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,01:0,9:1	800 W / 20 dakika 800°C / 2 saat Maddenin kızıl kahverengi olan rengi siyah olmuştur.	Co _{0,01} Sr _{0,9} FeO ₃
KS-MDK56	$Co(NO_3)_2.6H_2O$ + $Sr(NO_3)_2$ + $Fe(NO_3)_3.9H_2O$	0,2:0,8:1	800 W / 20 dakika 800°C / 2 saat Maddenin siyah olan rengi değişmemiştir.	Co _{0,2} Sr _{0,8} FeO ₃
KS-MDK57	$Co(NO_3)_2.6H_2O + Sr(NO_3)_2 + Fe(NO_3)_3.9H_2O$	0,9:0,1:1	800 W / 20 dakika 800°C / 2 saat Maddenin siyah olan rengi değişmemiştir.	Co _{0,9} Sr _{0,1} FeO ₃

Tablo 3.70: (Devam).

Tablo 3.70' de M^{+2} (M: Co) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneylere ait XRD desenleri Şekil 3.42' de verilmiştir. KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 deneylerine ait XRD desenleri incelendiğinde kübik yapıda, hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) olan SrFeO_{3-x} (ICDD:34-0638) bileşiğinin oluştuğu görülmektedir. Deneylere ait deneysel XRD verileri Tablo 3.71' de verilmiştir.

KS-MDK57 kodlu deneye ait XRD desenleri incelendiğinde başlangıç kimyasallarının reaksiyona girmeden ortamda kaldığı görülmüştür. Bu nedenle karakterizasyon çalışmaları yapılamamıştır.

Şekil 3.42: KS-MDK53, KS-MDK54, KS-MDK55, KS-MDK56 ve KS-MDK57 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD desenleri							
SrFeO (ICDD:34-	^{3-x} •0638)	KS-MD	K53	KS-MD)K54	KS-MD	K55	KS-MI	DK56
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
3-[100]	3,860	-	-	3,8446	1,37	-	-	3,8543	2,40
100-[110]	2,740	2,7600	100,0	2,7282	100,0	2,7684	100,0	2,7267	100,0
12-[111]	2,230	2,2477	9,77	2,2279	9,75	2,2531	8,52	2,2282	8,70
45-[200]	1,940	1,9410	35,00	1,9315	24,46	1,9456	29,60	1,9306	26,43
60-[211]	1,580	1,5822	25,82	1,5758	26,86	1,5851	30,48	1,5749	22,63
30-[220]	1,370	1,3694	19,35	1,3665	9,31	1,3739	17,67	1,3638	9,82
40	1,230	1,2228	12,59	1,2175	6,22	1,2229	9,24	1,2718	0,80

Tablo 3.71: KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 deneylerine ait XRD verileri.

Şekil 3.43' de ve Tablo 3.72' de verilen KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 kodlu deneylerinin sonucunda elde edilen ürüne ait FT-IR spektrumları ve verileri, literatür değerleri karşılaştırıldığında oluşumu desteklediği görülmektedir.

Şekil 3.43: KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 deneylerine ait FT-IR spektrumu.

Tablo 3.72: KS-MDK53, KS-MDK54, KS-MDK55 ve KS-MDK56 deneylerine ait FT-IR spektrumu.

Titreșim	Frekans (cm ⁻¹)
Sr-Fe-O	852, 853, 854, 855
0-0	1437, 1441, 1436,

Tablo 3.73: M⁺² (M: Ni) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Malaran	Uygulanan	Hedeflenen
kodu	kimyasalları		işlem/gözlemler	ürün
	_		800 W / 20 dakika	
	Ni(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK58	$+ Sr(NO_3)_2 +$	0,05:0,95:1	Maddenin kahverengi	Ni _{0,05} Sr _{0,95} FeO ₃
	Fe(NO ₃) ₃ .9H ₂ O		olan rengi siyah	
			olmuştur.	
			800 W / 20 dakika	
	Ni(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK59	$+ Sr(NO_3)_2 +$	0,5:0,5:1	Maddenin kahverengi	Ni _{0,5} Sr _{0,5} FeO ₃
	Fe(NO ₃) ₃ .9H ₂ O		olan rengi siyah	
			olmuştur.	
	_		800 W / 20 dakika	
	Ni(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK60	$+ Sr(NO_3)_2 +$	0,01:0,9:1	Maddenin kahverengi	$Ni_{0,01}Sr_{0,9}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		olan rengi siyah	
			olmuştur.	
			800 W / 20 dakika	
	Ni(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK61	$+ Sr(NO_3)_2 +$	0,2:0,8:1	Maddenin kahverengi	$Ni_{0,2}Sr_{0,8}FeO_3$
	$Fe(NO_3)_3.9H_2O$		olan rengi siyah	
			olmuştur.	
			800 W / 20 dakika	
	Ni(NO ₃) ₂ .6H ₂ O		800°C / 2 saat	
KS-MDK62	$+ Sr(NO_3)_2 +$	0,9:0,1:1	Maddenin koyu	$Ni_{0,9}Sr_{0,1}FeO_3$
	Fe(NO ₃) ₃ .9H ₂ O		kahverengi olan rengi	
			değişmemiştir.	

Tablo 3.73' de M^{+2} (M: Ni) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde gerçekleştirilen deneylere ait XRD desenleri Şekil 3.44' de verilmiştir. KS-MDK58, KS-MDK59, KS-MDK60 ve KS-MDK61 deneylerine ait XRD desenleri incelendiğinde kübik yapıda, hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) olan SrFeO_{3-x} (ICDD:34-0638) bileşiğinin oluştuğu görülmektedir. Deneylere ait deneysel XRD verileri Tablo 3.74' de verilmiştir.

KS-MDK62 kodlu deneye ait XRD desenleri incelendiğinde hedeflenen bileşik yerine ICSD:024-6894 kart numarasına sahip Sr^{+2} iyonu katkılanmış NiFe₂O₄ bileşiği elde edilmiştir. Bu bileşik Fd-3m(227) uzay grubunda, kübik kristal yapısında, a=b=c=8,3390 Å parametrelerine sahiptir. Deneylere ait deneysel XRD verileri Tablo 3.76' da verilmiştir.

Şekil 3.44: KS-MDK58, KS-MDK59, KS-MDK60, KS-MDK61 ve KS-MDK62 deneylerine ait XRD desenleri.

		Deneysel ürünlere ait XRD desenleri							
SrFeO (ICDD:34-	^{3-x} -0638)	KS-MD	K58	KS-MD	0K59	KS-MD	K60	KS-MI	DK61
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
3-[100]	3,860	-	-	3,8568	2,06	-	-	3,8240	1,22
100-[110]	2,740	2,7639	100,0	2,7291	100,0	2,7619	100,0	2,7080	100,0
12-[111]	2,230	2,2477	9,07	2,2271	12,41	2,2495	11,85	2,2213	11,99
45-[200]	1,940	1,9420	37,48	1,9313	27,01	1,9427	38,81	1,9241	35,56
60-[211]	1,580	1,5849	32,27	1,5757	23,04	1,5857	43,00	1,5734	28,01
30-[220]	1,370	1,3682	19,06	1,3621	9,04	1,3665	14,54	1,3630	12,26
40	1,230	1,2223	13,40	-	-	1,2245	16,34	-	-

Tablo 3.74: KS-MDK58, KS-MDK59, KS-MDK60 ve KS-MDK61 deneylerine ait XRD verileri.

Şekil 3.45' de ve Tablo 3.75' de verilen MDK58, MDK59, MDK60 ve MDK61 kodlu deneylerinin sonucunda elde edilen ürüne ait FT-IR spektrumları ve verileri, literatür değerleri karşılaştırıldığında oluşumu ve XRD sonuçlarını desteklediği görülmektedir.

Şekil 3.45: KS-MDK58, KS-MDK59, KS-MDK60 ve KS-MDK61 deneylerine ait FT-IR spektrumu.

Tablo 3.75: KS-DK58, KS-MDK59, KS-MDK60 ve KS-MDK61 deneylerine ait FT-IRspektrum verileri.

Titreşim	Frekans (cm ⁻¹)
Sr-Fe-O	852, 853, 854, 855
O-0	1436, 1437, 1438

Tablo 3.76: KS-MDK62 deneyine ait XRD verileri.

KS-MDK62				
NiFe ₂ O ₄ (ICSD:024-6894)		Deneysel ürüne ait XRD verileri		
I/I ₀	d[Å]	Deneysel d[Å]	I/I ₀	
9-[111]	4,8145	-	-	
29-[022]	2,9482	2,9533	28,59	
100-[113]	2,5143	2,5166	100,0	
8-[222]	2,4072	2,4130	34,61	
22-[004]	2,0847	2,0897	85,08	
25-[115]	1,6048	1,6072	24,46	
42-[044]	1,4741	1,4740	58,90	
8-[335]	1,2716	1,2717	7,57	
4-[226]	1,2571	1,2600	10,28	
3-[444]	1,2036	1,2063	8,94	

Şekil 3.46' da KS-MDK62 deneyine ait FT-IR spektrumu verilmiştir. Tablo 3.77' de bu deneylere ait FT-IR spektrum verileri yer almaktadır. Bu veriler, literatür ile uyumludur.

Şekil 3.46: KS-MDK62 deneyine ait FT-IR spektrumu.

Tablo 3.77: KS-MDK	62 deneyine ai	t FT-IR spe	ektrum verileri.
--------------------	----------------	-------------	------------------

Titreşim	Frekans (cm ⁻¹)		
Fe-O	857		
0-0	1435		

3.3 Yüksek Sıcaklık Katı Hal Sentez Yöntemi ile Gerçekleştirilen Deneyler

3.3.1 Na⁺ / V₂O₅ / P⁺⁵ Sisteminde Gerçekleştirilen Deneyler ve Sonuçları

Tablo 3.78: Na⁺ / V_2O_5 / P^{+5} sisteminde gerçekleştirilen deneyler.

Deney	Başlangıç	Mol	Uygulanan işlem/gözlemler	Hedeflenen
kodu	kimyasalları	oranı		ürün
KS-KF1	$NaH_2PO_4.2H_2O + V_2O_5$	3:1	400°C / 2 saat Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃

KS-KF2	NaH ₂ PO ₄ .2H ₂ O + V ₂ O ₅	3:1	400°C / 4 saat Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃
KS-KF3	NaH ₂ PO ₄ .2H ₂ O + V ₂ O ₅	3:1	+ 600°C / 1 saat 800°C / 1 saat 1000°C / 1 saat 1200°C / 7 saat Ürün oluşumu gözlemlenemedi.	Na ₃ V ₂ (PO ₄) ₃
KS-KF4	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + (NH_{4})H_{2}PO_{4}$	1:1:2	400°C / 2 saat Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃
KS-KF5	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + (NH_{4})H_{2}PO_{4}$	1:1:2	400°C / 4 saat Maddenin turuncu olan rengi yeşile dönüşmüştür. +	Na ₃ V ₂ (PO ₄) ₃
KS-KF6	Na ₃ PO ₄ .12H ₂ O + V ₂ O ₅ + (NH ₄)H ₂ PO ₄	1:1:2	600°C / 1 saat 800°C / 1 saat 1000°C / 1 saat 1200°C / 7 saat Ürün oluşumu gözlemlenemedi.	Na ₃ V ₂ (PO ₄) ₃
KS-KF7	$Na_{3}PO_{4}.12H_{2}O + V_{2}O_{5} + (NH_{4})_{2}HPO_{4}$	1:1:2	400°C / 2 saat Maddenin turuncu olan rengi yeşile dönüşmüştür.	Na ₃ V ₂ (PO ₄) ₃

Tablo 3.78: (Devam).

	$Na_{3}PO_{4}.12H_{2}O +$		400°C / 4 saat	
KS-KF8	$V_{2}O_{5} +$	1:1:2	Maddenin turuncu olan rengi	$Na_3V_2(PO_4)_3$
	(NH ₄) ₂ HPO ₄		yeşile dönüşmüştür.	
			+	
			600°C / 1 saat	
	$Na_{3}PO_{4}.12H_{2}O +$		800°C / 1 saat	
KS-KF9	$V_2O_5 +$	1:1:2	1000°C / 1 saat	$Na_3V_2(PO_4)_3$
	(NH ₄) ₂ HPO ₄		1200°C / 7 saat	
			Ürün oluşumu	
			gözlemlenemedi.	

Tablo 3.78: (Devam).

Tablo 3.78' de Na⁺ / V_2O_5 / P⁺⁵ sisteminde belirli sitokiyometrik ve belirli sıcaklık koşullarında gerçekleştirilen deneyler verilmiştir. KS-KF1, KS-KF2, KS-KF3, KS-KF5, KS-KF6, KS-KF8 ve KS-KF9 deneylerinde amorf özellik gösteren ürünler elde edilmiş olup karakterizasyon çalışması yapılamamıştır.

KS-KF4 ve KS-KF7 deneylerine ait XRD desenleri Şekil 3.47' de verilmiştir. Deneylere ait XRD desenleri incelendiğinde ICDD:89-0067 kart numarasına sahip Na₂(VP₂O₈) bileşiği elde edilmiştir. Bu bileşik P46m(100) uzay grubunda, tetragonal kristal yapıda ve a=b=8,1080 Å, c=4,9430 Å hücre parametrelerine sahiptir. XRD verileri ise Tablo 3.79' da verilmiştir.

Şekil 3.47: KS-KF4 ve KS-KF7 deneylerine ait XRD desenleri.

		Dene	e ait XRD ver	ileri	
Na ₂ (VP ₂ O ₈) (ICDD:89-0067)		KS-KF4		KS-KF7	
I/I ₀ -hkl	d[Å]	Deneysel d[Å]	I/I ₀	Deneysel d[Å]	I/I ₀
999-[001]	4,9430	4,9569	100,0	4,9915	100,0
570-[201]	3,1346	3,1189	60,80	3,14475	46,16
965-[211]	2,9237	2,9280	70,13	2,9370	80,97
500-[310]	2,5639	-	-	2,5660	74,44
202-[311]	2,2760	-	-	2,2595	23,06
73-[321]	2,0468	2,0419	16,54	2,0322	8,29
104-[410	1,9664	1,9394	11,00	-	-
43-[421]	1,7021	-	-	1,7281	12,96
72-[510]	1,5901	-	-	1,6174	10,82

Tablo 3.79: KS-KF4 ve KS-KF7 deneylerine ait XRD verileri.

Elde edilen ürüne ait FT-IR spektrumu Şekil 3.48' de verilmiştir. Tablo 3.80' de verilen FT-IR spektrum verileri [65] incelendiğinde elde edilen bileşikte bulunan fonksiyonel grupların varlığı ortaya çıkmaktadır.

Şekil 3.48: KS-KF4 ve KS-KF7 deneylerine ait FT-IR spektrumu.

Titreșim	Frekans (cm ⁻¹)	
v(P=O)	1216, 1284, 1153	
P-P	1037, 1153	
O-P-O	635, 622	

Tablo 3.80: KF4 ve KF7 deneylerine ait FT-IR spektrum verileri

4. SONUÇLAR

Bu tez çalışmasında öncelikle bazı çift metal içeren fosfat ve oksit bileşiklerinin mikrodalga enerji yöntemi, mikrodalga destekli yüksek sıcaklık yöntemi ve yüksek sıcaklık katı hal sentez yöntemleri ile sentezlenmesi üzerine çalışılmıştır. Elde edilen ürünlerin kristal yapıları XRD çalışmaları ile karakterize edilerek FT-IR spektroskopisi ile ürüne ait fonksiyonel grupların varlığı tespit edilmiş olup XRD sonuçları desteklenmiştir.

 $Na^+/V_2O_5/P^{+5}$ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ve yüksek sıcaklık katı hal sentez yöntemi kullanılarak gerçekleştirilen deneylerde, $Na_2(VP_2O_8)$ (ICDD:89-0067) bileşiği sentezlenmiştir. Elde edilen bileşiğin tetragonal sistemde kristallendiği, hücre parametrelerinin a=b=8,1080 Å, c=4,9430 Å ve uzay grubunun P46m(100) olduğu belirlenmiştir.

 KNO_3 / Pb^{+2} / P^{+5} sisteminde mikrodalga enerji yöntemi kullanılarak gerçekleştirilen deneylerde hexagonal sistemde kristallenen $KPb_4(PO_4)_3$ (ICDD:29-1012) bileşiği sentezlenmiştir. Bileşiğe ait hücre parametreleri a=b=9,824 Å, c=7,304 Å ve uzay grubu P63/m(176) şeklinde belirlenmiştir

 $NaH_2PO_4.2H_2O / TiO_2 / M^{+2} (Zn) / P^{+5}$ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde $Na_2Zn(P_2O_7)$ (ICDD:87-0499) bileşiği elde edilmiştir. Bileşiğin hücre parametreleri a=b=7,656 Å, c=10,233 Å ve uzay grubu P42/mnm(136) şeklinde belirlenmiştir.

NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Ni) / P⁺⁵ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde Ni⁺² katkılı NaTi₂(PO₄)₃ (ICDD:84-2008) bileşiği sentezlenmiştir. Elde edilen bileşik rhombohedral sitemde kristallenmiş olup hücre parametreleri a=b=8,485 Å, c=21,799 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir.

NaH₂PO₄.2H₂O / TiO₂ / M⁺² (Co) / P⁺⁵ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde Co⁺² katkılı NaTi₂(PO₄)₃ (ICDD:84-2008) bileşiği sentezlenmiştir. Elde edilen bileşik rhombohedral sitemde kristallenmiş olup hücre parametreleri a=b=8,485 Å, c=21,799 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir. NaH₂PO₄.2H₂O / TiO₂ / M⁺³ (Al) / P⁺⁵ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde Na_{1,261}Ti_{1,696}Al_{0,302}(PO₄)₃ (ICSD:015-4071) bileşiği sentezlenmiştir. Bu bileşik, hekzagonal sistemde kristallenmiş olup hücre parametreleri a=b=8,4750 Å, c=21,7690 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir.

NaH₂PO₄.2H₂O / TiO₂ / M⁺³ (Cr) / P⁺⁵ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde Cr⁺² katkılı NaTi₂(PO₄)₃ (ICDD:84-2008) bileşiği sentezlenmiştir. Bu bileşik, rombohedral sistemde kristallenmiş olup hücre parametreleri a=b=8,485 Å, c=21,799 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir.

 $La(NO_3)_3.xH_2O / M^{+2}$ (M: Ca) / MnO₂ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde $La_{0,96}MnO_{3,67}$ (ICSD:016-3474) bileşiği sentezlenmiştir. Bu bileşik hexagonal sistemde kristallenmiş olup, hücre parametreleri a=b=5,5160 Å, c=15,6390 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir.

 $La(NO_3)_3.xH_2O / M^{+2}$ (M: Sr) / MnO₂ sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde $La_{0,96}MnO_{3,67}$ (ICSD:016-3474) bileşiği sentezlenmiştir. Bu bileşik hexagonal sistemde kristallenmiş olup, hücre parametreleri a=b=5,5160 Å, c=15,6390 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir.

La(NO₃)₃.xH₂O / Ca(NO₃)₂.4H₂O / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi gerçekleştirilen deneylerde SrFeO_{2,5939} (ICSD:015-4940) bileşiği elde edilmiştir. Bu bileşik kübik sistemde kristallenmiş olup, hücre parametreleri a=b=c=7,9450 Å ve uzay grubu Fm-3c(226) şeklinde belirlenmiştir.

La(NO₃)₃.xH₂O / Sr(NO₃)₂ / Co(NO₃)₂.4H₂O sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde Sr⁺² katkılı LaCoO₃ (ICDD:75-0279) bileşiği elde edilmiştir. Bu bileşik kübik sistemde kristallenmiş olup, hücre parametreleri a=b=c=3,820 Å ve uzay grubu Pm-3m(221) şeklinde belirlenmiştir. M^{+2} (M: Ca) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde Ca⁺² katkılı SrFeO_{3-x} (ICDD:34-0638), Ca_{0,2}Sr_{0,8}FeO₃ (ICSD:09-2334) ve Ca_{0,9}Sr_{0,1}FeO₃ (ICSD:09-2331) bileşikleri sentezlenmiştir. SrFeO_{3-x} bileşiği kübik sistemde kristallenmiş olup hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) şeklinde belirlenmiştir. Ca_{0,2}Sr_{0,8}FeO₃ bileşiği kübik sistemde kristallenmiş olup hücre parametreleri a=b=c=3,8370 Å ve uzay grubu Pm-3m(221) şeklinde belirlenmiştir. Ca_{0,9}Sr_{0,1}FeO₃ bileşiği ortorombik sistemde kristallenmiş olup hücre parametreleri a=5,3530 Å, b=7,5550 Å, c=5,3410 Å ve uzay grubu Pnma(62) şeklinde belirlenmiştir.

 M^{+2} (M: La) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde La⁺² katkılı SrFeO_{3-x} (ICDD:34-0638), La_{0,5}Sr_{0,5}FeO₃ (ICDD:82-1962) ve Sr⁺² katkılı LaFeO₃ (ICDD:75-0541) bileşikleri sentezlenmiştir. SrFeO_{3-x} bileşiği kübik sistemde kristallenmiş olup hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) şeklinde belirlenmiştir. La_{0,5}Sr_{0,5}FeO₃ bileşiği rhombohedral sistemde kristallenmiş olup hücre parametreleri a=b=5,511 Å c=13,415 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir. LaFeO₃ bileşiği kübik sistemde kristallenmiş olup hücre parametreleri a=b=5,511 Å c=13,415 Å ve uzay grubu R-3c(167) şeklinde belirlenmiştir.

 M^{+2} (M: Co) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde Co⁺² katkılı SrFeO_{3-x} (ICDD:34-0638) bileşiği sentezlenmiştir. SrFeO_{3-x} bileşiği kübik sistemde kristallenmiş olup hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) şeklinde belirlenmiştir.

 M^{+2} (M: Ni) / Sr(NO₃)₂ / Fe(NO₃)₃.9H₂O sisteminde mikrodalga destekli yüksek sıcaklık sentez yöntemi ile gerçekleştirilen deneylerde SrFeO_{3-x} (ICDD:34-0638), NiFe₂O₄ (ICSD:024-6894) bileşikleri sentezlenmiştir. Ni⁺² katkılı SrFeO_{3-x} bileşiği kübik sistemde kristallenmiş olup hücre parametreleri a=b=c=3,86 Å ve uzay grubu Pm-3m(221) şeklinde belirlenmiştir. Sr⁺² katkılı NiFe₂O₄ bileşiği kübik sistemde kristallenmiş olup hücre parametreleri a=b=c=8,3390 Å ve uzay grubu Fd-3m(227) şeklinde belirlenmiştir.

5. KAYNAKLAR

- Altundoğan, H. S., "Boksit Kullanarak Sulardan Fosfat Giderilmesi", Doktora Tezi, *Fırat Üniversitesi Fen Bilimleri Enstitüsü*, Kimya Mühendisliği Anabilim Dalı, Elazığ, (1998).
- [2] Miessler, G.L. and Tarr D.A., *İnorganik Kimya*, (Çeviri: Karacan, N. ve Gürkan, P.), Palme Yayıncılık, Ankara, 272-273, (2009).
- [3] "Fosfor ve Fosfat Kimyası [online]", (15 Ocak 2018), http://www.kimyasaldeneyler.blogspot.com.tr/2013/04/fosfor-ve-fosfatkimyasi.html, (2013).
- [4] Berker, E., "Fosfat Kimyası, Kullanılış Alanları ve Süperfosfat", Bilimsel Madencilik Dergisi, 11(4), 59-62, (1972).
- "Difference Between Phosphorus and Phosphate [online]", (6 Ocak 2018), http://www.differencebetween.com/difference-between-phosphorus-and-vsphosphate/, (2011).
- [6] Upadhyay, K., Tamrakar, R. K. and Dubey, V., "High temperature solid state synthesis and photoluminescence behavior of Eu³⁺ doped GdAlO₃ nanophosphor" *Superlattices and Microstructures*, 78, 116-124, (2015).
- [7] "What are phosphates [online]", (16 Ocak 2018), http://phosphatesfacts.org/what-are-phophates/.
- [8] "Fosfat, Fosfat Kullanımı ve Faydaları [online]", (25 Ocak 2018), https://fosfat.gen.tr, (2017).
- [9] Shchelokov, I., Asabina, E., Sukhanov, M., Ermilova, M., Orekhova, N., Pet'kov, V., et al., "Synthesis, surface properties and catalytic activity of phosphates Cu_{0.5(1+y)}Fe_yZr_{2-y}(PO₄)₃ in methanol conversion", *Solid State Sciences*, 10(4), 513-517, (2008).
- [10] Souiwa, K., Chennabasappa, M., Decourt, R., Ben Amara, M., Hidouri, M. And Toulemonde, O., "Novel Mixed Cobalt/Chromium Phosphate NaCoCr₂(PO₄)₃ Showing Spin-Flop Transition", *Inorganic chemistry*, 54(15), 7345-7352, (2015).
- [11] Zhang, Y. C., Cheng, W. D., Wu, D. S., Zhang, H., Chen, D. G., Gong, Y. J., et al., "Crystal structure and energy band and optical properties of phosphate Sr₃P₄O₁₃", *Journal of Solid State Chemistry*, 177(7), 2610-2616, (2004).

- [12] Pet'kov, V. I., Asabina, E. A., Sukhanov, M. V., Schelokov, I. A., Shipilov, A. S., and Alekseev, A. A., "Design and characterization of phosphate-containing ceramics with Kosnarite-and Langbeinite-type structures for industrial applications", *Chem Eng Trans*, 43, 1825-30, (2015).
- [13] "Fosfor nedir? Fosfor Elementinin Özellikleri [online]", (22 Ocak 2018), https://www.nkfu.com/fosfor-nedir-forfor-elementinin-ozellikleri/, (2012).
- [14] Brasted, C. R., "Oxygen Chemical Element [online]", (02 Mart 2018), https://www.britannica.com, (2018).
- [15] "Oxides [online]", (27 Aralık 2017), https://chem.libretexts.org/Core/Inorganic_Chemistry/Descriptive_Chemistry /Main_Group_Reactions/Compounds/Oxides, (2017).
- [16] Milli Eğitim Bakanlığı, *Kimya Teknolojisi*, "Tuzlar ve Okistler", (2011).
- [17] "Classification Of Oxides [online]", (15 Aralık 2017), https://byjus.com/chemistry/classification-of-oxides/, (2016).
- [18] Zumdahl, S. S., "Oxide Chemical Compound [online]", (12 Mart 2018), https://www.britannica.com/science/oxide.
- [19] "Oxide [online]", (27 Aralık 2017), http://www.encyclopedia.com/scienceand-technology/chemistry/compounds-and-elements/oxide.
- [20] "Oksitler [online]", (9 Ocak 2018), http://www.nevoku.com/oksitlermineraloji/viewdeck/843fd292-a7de-49ac-a5cf-bad2ab618e29, (2005).
- [21] Laçin, D., "Mineraloji [online], (11 Ocak 2018), http://slideplayer.biz.tr/slide/2737659/.
- [22] Menlik, T., Sözen, A., Gürü, M., Çağlayan, N. ve Öztaş, S., "Spineloksit partikül içeren nanoakışkanların termofiziksel özelliklerinin belirlenmesi", *Gazi Mühendislik Bilimleri Dergisi*, 285-304, (2015).
- [23] "Spinel yapı çeşitleri [online]", (11 Ocak 2018), https://muhendishane.org/kutuphane/temel-malzeme-bilgisi/seramiklerinkristal-yapisi/.
- [24] "Spinel, perovskite, and rutile structures [online]", (11 Ocak 2018), https://chem.libretexts.org/Textbook_Maps/Inorganic_Chemistry_Textbook_ Maps/Map%3A_Inorganic_Chemistry_(Wikibook)/Chapter_08%3A_Ionic_a nd_Covalent_Solids_Structures/8.6%3A_Spinel%2C_perovskite%2C_and_r utile_structures, (2018).

- [25] Snaith, J. H., "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells", *The Journal of Physical Chemistry Letters*, 4, 3623–3630, (2013).
- [26] "Structure Perovskite [online]", (13 Ocak 2018), https://chem.libretexts.org/Textbook_Maps/Inorganic_Chemistry_Textbook_ Maps/Map%3A_Inorganic_Chemistry_(Housecroft)/06%3A_Structures_and _energetics_of_metallic_and_ionic_solids/6.11%3A_Ionic_Lattices/6.11J%3 A_Structure_-_Perovskite_(%5C(CaTiO_3%5C)), (2014).
- [27] "Perovskites and Perovskite Solar Cells: An Introduction [online]", (13 Ocak 2018), https://www.ossila.com/pages/perovskites-and-perovskite-solar-cellsan-introduction.
- [28] "Metal Oxide [online]", (27 Aralık 2017), https://chemistry.tutorvista.com/inorganic-chemistry/metal-oxide.html.
- [29] Arora, K. A., Jaswal, S. V., Singh, K. and Singh, R., "Applications of Metal/Mixed Metal Oxides as Photocatalyst: A Review", *Oriental Journal of Chemistry*, http://dx.doi.org/10.13005/ojc/320430, 32(4), 2035-2042, (2016).
- [30] Reddy, K.G., Thrimurthulu, G. and Reddy, M. B., "A Rapid Microwave-Induced Solution Combustion Synthesis of Ceria-Based Mixed Oxides for Catalytic Applications", *Catal Surv Asia*, Published online, doi:10.1007/s10563-009-9081-9, 13, 237–255, (2009).
- [31] Khan, M. M., Adil, F. S. and Al-Mayouf, A., "Metal oxides as photocatalysts", *Journal of Saudi Chemical Society*, 19, 462–464, (2015).
- [32] Ashok, CH. and Rao, K. V., "Synthesis of Nanostructured Metal Oxide by Microwave-Assisted Method and its Humidity Sensor Application", *Materials Today: Proceedings*, 4, 3816–3824, (2017).
- [33] Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. and Kanatzidis, M. G.,
 "Lead-free solid-state organic–inorganic halide perovskite solar cells", *Nature Photonics*, online Publication, doi: 10.1038/NPHOTON.2014.82, (2014).
- [34] Gacanoğlu, S. Ş., "Teni Tip Bazı Metal Ortoborat Bileşiklerinin Katı-Hal Kimyasal Sentezleri ve Karakterizasyon Çalışmaları", Doktora Tezi, *Balıkesir* Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Balıkesir, (2009).
- [35] Cao, F., Li, Y., Tang, C., Qian, X. and Bian, Z., "Fast synthesis of anatase TiO₂ single crystals by a facile solid-state method", *Res. Chem. Intermed*, online Publication, doi: 10.1007/s11164-015-2418-2, 42, 5975–5981, (2016).

- [36] Eker, E., "Lantanborat Bileşiğinin Katı-hal Yöntemi ile Sentezi ve Karakterizasyonu", Yüksek Lisans Tezi, *Hacettepe Üniversitesi Fen Bilimleri Entitüsü*, Fizik Mühendisliği Anabilim Dalı, Ankara, (2006).
- [37] Ergüven, H., "Sodyum Metaborat (NaBO₂)' ın Katı Hal Yöntemi ile Sentezi ve Reaksiyon Mekanizmasının İncelenmesi", Yüksek Lisans Tezi, *Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü*, Kimya Mühendisliği Anabilim Dalı, İstanbul, (2011).
- [38] Lia, D., Hagosa, K., Huang, L., Lua, X., Liua, C. and Qian, H., "Selfpropagating high-temperature synthesis of potassium hexatitanate whiskers", *Ceramics International*, 43, 15505–15509, (2017).
- [39] Altınordu, Ö. Ş., "Kendiliğinden İlerleyen Yüksek Sıcaklık Sentezi Yöntemi ile Nikel Esaslı Yeni ve Özel Alaşımların Üretimi ve Geliştirilmesi", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği Anabilim Dalı, İstanbul, (2012).
- [40] Ayvacıklı, M., "Nadir Toprak Elementleri ile Katkılandırılmış Seramik Fosforların Sentezlenmesi ve Karakterizasyonu", Yüksek Lisans Tezi, *Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü*, Fizik Anabilim Dalı, Manisa, (2011).
- [41] Akkaş, B., "Kendiliğinde İlerleyen Yüksek Sıcaklık Sentezi Yöntemi ile Zirkonyum Diborür Tozu Üretimi", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği Anabilim Dalı, İstanbul, (2010).
- [42] Kurt, A.O., "Toz Üretim Yöntemleri ve Sinterleme", Ders Notları, Sakarya Üniversitesi, Metalurji ve Malzeme Mühendisliği Bölümü, (2004-2010).
- [43] Huczko, A., Kurcz, M., Dąbrowska, A., Baranowski, P., Bhattarai, A. and Gierlotka, S., "Self-propagating high-temperature synthesis (SHS) of crystalline nanomaterials", *Journal of Crystal Growth*, 401, 469–473, (2014).
- [44] Bafrooein, H. B., Ebadzadeh, T. and Majidian H., "Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling", *Ceramics International*, 40, 2869–2876, (2014).
- [45] Mishra, R. R. and Sharma, A. K., "Microwave–material interaction phenomena: Heating mechanisms, challenges and opport unities in material processing", *Composites: Part A*, 81, 78–97, (2016).
- [46] Mirzaeia, A. and Nerib, G., "Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review", *Sensors and Actuators B: Chemical*, 237, 749–775, (2016).
- [47] Thostenson, E. T. and Chou, T. W., "Microwave processing: fundamentals and applications", *Composites Part A: applied science and manufacturing*, 30, 1055–1071(1999).
- [48] Kostas, E. T., Beneroso, D. and Robinson, J. P., "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass", *Renewable and Sustainable Energy Reviews*, 77, 12–27, (2017).
- [49] Ebadzadeh, T. and Valefi, M., "Microwave-assisted sintering of zircon", Journal of Alloys and Compounds, 448, 246–249, (2008).
- [50] Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, R. Ma., Aguilar, C. N., Garrote, G. and Ruiz, H. A., "Microwave heating processing as alternative of pretreatment in secondgeneration biorefinery: An overview", *Energy Conversion and Management*, 136, 50–65, (2017).
- [51] El Khaleda, D., Novasa, N., Gazqueza, J. A. and Manzano-Agugliaro, F.,
 "Microwave dielectric heating: Applications on metals processing", *Renewable and Sustainable Energy Reviews*, 1364-0321, (2017).
- [52] Bhattacharya, M. and Basak, T., "A review on the susceptor assisted microwave processing of materials", *Energy*, 97, 306-338, (2016).
- [53] Oghbaei, M. ve Mirzaee, O., "Microwave versus conventional sintering: A review of fundamentals, advantages and applications", *Journal of Alloys and Compounds*, 494, 175–189, (2010).
- [54] Sun, J., Wang, W., Yue, Q., Ma, C., Zhang, J., Zhao, X., et al., "Review on microwave-metal discharges and their applications in energy and industrial processes", *Applied Energy*, 175, 141–157, (2016).
- [55] Choy, M. T., Tang, C. Y., Chen, L., Law, W. C., Tsui, C. P. and Lu, W. W., "Microwave assisted-in situ synthesis of porous titanium/calcium phosphate composites and their in vitro apatite-forming capability", *Composites Part B: Engineering*, 83, 50-57, (2015).
- [56] Kadıoğlu, S., "Döküm endüstrisinde sodyum silikat bağlayıcılı kalıp/maça kum özelliklerinin mikrodalga yöntemiyle geliştirilmesi", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, (2014).

- [57] Clark, D. E., Folz, D. C. and West, J. K., "Processing materials with microwave energy", *Materials Science and Engineering: A*, 287(2), 153-158, (2000).
- [58] Gümüşderelioğlu M. Ve Kaynak G., "Mikrodalgalar ve uygulamaları", *Bilim ve Teknik Dergisi, Temmuz Sayısı*, 38-42, (2012).
- [59] Nascimento, M. L. F., "Brief history of X-ray tube patents", *World Patent Information*, 37, 48-53, (2014).
- [60] Gao, P., Tong, Q., Lv, J., Wang, Y. and Ma, Y., "X-ray diffraction data-assisted structure searches", *Computer Physics Communications*, 213, 40-45, (2017).
- [61] Ouyang, L., Liu, Q., Xu, C., Liu, C. and Liang, H., "Powder X-ray diffraction detection on a paper-based platform", *Talanta*, 164, 283-290, (2017).
- [62] Bunaciu, A. A., UdriŞTioiu, E. G. and Aboul-Enein, H. Y., "X-ray diffraction: instrumentation and applications", *Critical reviews in analytical chemistry*, 45(4), 289-299, (2015).
- [63] Rasel Das, M., Ali, E. and Hamid, S. B. A., "CURRENT APPLICATIONS OF X-RAY POWDER", *Rev. Adv. Mater. Sci*, 38, 95-109, (2014).
- [64] Ishii, Y., Nishiwaki, Y., Al-zubaidi, A. and Kawasaki, S., "Pore size determination in ordered mesoporous materials using powder x-ray diffraction" *The Journal of Physical Chemistry C*, 117(35), 18120-18130, (2013).
- [65] Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, John Wiley & Sons, New York, (1997).
- [66] Hu, J., Ma, J., Wang, L., Huang, H. and Ma, L., "Preparation, characterization and photocatalytic activity of Co-doped LaMnO3/graphene composites", *Powder Technology*, 254, 556-562, (2014).
- [67] Cornei, N., Feraru, S., Bulimestru, I., Sandu, A. V. and Mita, C., "Influence of type of precursors on the sol-gel synthesis of the LaCoO3 nanoparticles", *Acta Chemica Iasi*, 22(1), 1-12, (2014).
- [68] Nesaraj, A. S., Dheenadayalan, S., Raj, I. A. and Pattabiraman, R., "Wet chemical synthesis and characterization of strontium-doped LaFeO3 cathodes for an intermediate temperature solid oxide fuel cell application", *Journal of Ceramic Processing Research*, 13(5), 601-606. (2012).
- [69] Atta, N. F., Galal, A. and Ekram, H., "Perovskite nanomaterials–synthesis, characterization, and applications", *InTech*, (2016).

[70] Naveenkumar, A., Kuruva, P., Shivakumara, C. and Srilakshmi, C., "Mixture of fuels approach for the synthesis of $SrFeO_{3-\delta}$ nanocatalyst and its impact on the catalytic reduction of nitrobenzene" *Inorganic chemistry*, 53(22), 12178-12185, (2014).