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Received: 2 May 2016 / Accepted: 1 November 2016 / Published online: 21 November 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Recently, S-metric spaces are introduced as a

generalization of metric spaces. In this paper, we consider

the relationships between of an S-metric space and a metric

space, and give an example of an S-metric which does not

generate a metric. Then, we introduce new contractive

mappings on S-metric spaces and investigate relationships

among them by counterexamples. In addition, we obtain

new fixed point theorems on S-metric spaces.
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Introduction

Recently, Sedghi, Shobe, and Aliouche have defined the

concept of an S-metric space as a generalization of a metric

space in [14] as follows:

Definition 1 [14] Let X be a nonempty set, and S : X3 !
½0;1Þ be a function satisfying the following conditions for

all x; y; z; a 2 X :

1. Sðx; y; zÞ ¼ 0 if and only if x ¼ y ¼ z,

2. Sðx; y; zÞ� Sðx; x; aÞ þ Sðy; y; aÞ þ Sðz; z; aÞ.

Then, S is called an S-metric on X and the pair (X, S) is

called an S -metric space.

The fixed point theory on various metric spaces was

studied by many authors. For example, A. Aghajani, M.

Abbas, and J. R. Roshan proved some common fixed point

results for four mappings satisfying generalized weak

contractive condition on partially ordered complete b-

metric spaces [1]; T. V. An, N. V. Dung, and V. T. L. Hang

studied some fixed point theorems on G-metric spaces [2];

N. V. Dung, N. T. Hieu, and S. Radojevic proved some

fixed point theorems on partially ordered S-metric spaces

[6]. Gupta and Deep studied some fixed point results using

mixed weakly monotone property and altering distance

function in the setting of S-metric space [9]. The present

authors investigated some generalized fixed point theorems

on a complete S-metric space [11].

Motivated by the above studies, our aim is to obtain new

fixed point theorems on S-metric spaces related to

Rhoades’ conditions.

We recall Rhoades’ conditions in (X, d) and (X, S),

respectively.

Let (X, d) be a complete metric space and T be a self-

mapping of X. In [13], T is called a Rhoades’ mapping

ðRNÞ, ðN ¼ 25; 50; 75; 100; 125Þ if the following condition

is satisfied, respectively:

ðR25Þ dðTx; TyÞ\maxfdðx; yÞ; dðx; TxÞ; dðy; TyÞ;
dðx; TyÞ; dðy; TxÞg;

for each x; y 2 X, x 6¼ y:
ðR50Þ There exists a positive integer p, such that

dðTpx; TpyÞ\maxfdðx; yÞ; dðx; TpxÞ; dðy; TpyÞ; dðx; TpyÞ;
dðy; TpxÞg;

for each x; y 2 X, x 6¼ y.
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ðR75Þ There exist positive integers p, q, such that

dðTpx; TqyÞ\maxfdðx; yÞ; dðx; TpxÞ; dðy; TqyÞ; dðx; TqyÞ;
dðy; TpxÞg;

for each x; y 2 X, x 6¼ y.

ðR100Þ There exists a positive integer p(x), such that

dðTpðxÞx; TpðxÞyÞ\maxfdðx; yÞ; dðx; TpðxÞxÞ; dðy; TpðxÞyÞ;
dðx; TpðxÞyÞ; dðy; TpðxÞxÞg;

for any given x, every y 2 X, x 6¼ y.

ðR125Þ There exists a positive integer p(x, y), such that

dðTpðx;yÞx;Tpðx;yÞyÞ\maxfdðx;yÞ;dðx;Tpðx;yÞxÞ;dðy;Tpðx;yÞyÞ;
dðx;Tpðx;yÞyÞ;dðy;Tpðx;yÞxÞg;

for any given x; y 2 X, x 6¼ y.

Let (X, S) be an S-metric space and T be a self-mapping

of X. In [12], the present authors defined Rhoades’ condi-

tion ðS25Þ on (X, S) as follows:

ðS25Þ SðTx; Tx; TyÞ\maxfSðx; x; yÞ; SðTx; Tx; xÞ; SðTy; Ty; yÞ;
SðTy; Ty; xÞ; SðTx; Tx; yÞg;

for each x; y 2 X, x 6¼ y.

In this paper, we consider some forms of Rhoades’

conditions and give some fixed point theorems on S-metric

spaces. In Sect. 2, we investigate relationships between

metric spaces and S-metric spaces. It is known that every

metric generates an S-metric, and in [10], it was given an

example of an S-metric which is not generated by a metric.

Here, we give a new example of an S-metric which is not

generated by a metric and use this new S-metric in the next

sections. In [8], it is mentioned that every S-metric defines

a metric. However, we give a counterexample to this result.

We obtain an example of an S-metric which does not

generate a metric. We introduce new contractive mappings,

such as ðS50Þ, ðS75Þ, ðS100Þ, and ðS125Þ, and also study

relations among them by counterexamples. In Sect. 3, we

investigate some new fixed point theorems using periodic

index on S-metric spaces for the contractive mappings

defined in Sect. 2. In Sect. 4, we define the condition ðQ25Þ
and give new fixed point theorems on S-metric spaces.

New contractive mappings on S-metric spaces

In this section, we introduce new types of Rhoades’ condi-

tions on S-metric spaces, such as ðS50Þ, ðS75Þ, ðS100Þ, and
ðS125Þ. At first, we recall some definitions and theorems.

Definition 2 [14] Let (X, S) be an S-metric space and

A � X.

1. A sequence fxng in X converges to x if and only if

Sðxn; xn; xÞ ! 0 as n ! 1. That is, there exists n0 2 N

such that for all n� n0, Sðxn; xn; xÞ\e for each e[ 0.

We denote this by limn!1 xn ¼ x or limn!1 S

ðxn; xn; xÞ ¼ 0.

2. A sequence fxng in X is called a Cauchy sequence if

Sðxn; xn; xmÞ ! 0 as n;m ! 1. That is, there exists

n0 2 N, such that for all n;m� n0, Sðxn; xn; xmÞ\e for
each e[ 0.

3. The S-metric space (X, S) is called complete if every

Cauchy sequence is convergent.

Lemma 1 [14] Let (X, S) be an S-metric space. Then,

Sðx; x; yÞ ¼ Sðy; y; xÞ: ð2:1Þ

The relation between a metric and an S-metric is given

in [10] as follows:

Lemma 2 [10] Let (X, d) be a metric space. Then, the

following properties are satisfied:

1. Sdðx; y; zÞ ¼ dðx; zÞ þ dðy; zÞ for all x; y; z 2 X is an S-

metric on X.

2. xn ! x in (X, d) if and only if xn ! x in ðX; SdÞ.
3. fxng is Cauchy in (X, d) if and only if fxng is Cauchy

in ðX; SdÞ:
4. (X, d) is complete if and only if ðX; SdÞ is complete.

We call the metric Sd as the S-metric generated by d.

Note that there exists an S-metric S satisfying S 6¼ Sd for

all metrics d [10]. Now, we give an another example which

shows that there exists an S-metric S satisfying S 6¼ Sd for

all metrics d.

Example 1 Let X ¼ R and define the function

Sðx; y; zÞ ¼ jx� zj þ jxþ z� 2yj;

for all x; y; z 2 R. Then, (X, S) is an S-metric space. Now,

we prove that there does not exist any metric d, such that

S ¼ Sd . Conversely, suppose that there exists a metric d,

such that

Sðx; y; zÞ ¼ dðx; zÞ þ dðy; zÞ;

for all x; y; z 2 R. Then, we obtain

Sðx; x; zÞ ¼ 2dðx; zÞ ¼ 2jx� zj and dðx; zÞ ¼ jx� zj

and

Sðy; y; zÞ ¼ 2dðy; zÞ ¼ 2jy� zj and dðy; zÞ ¼ jy� zj;

for all x; y; z 2 R. Hence, we have

jx� zj þ jxþ z� 2yj ¼ jx� zj þ jy� zj;

which is a contradiction. Therefore, S 6¼ Sd.
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Now, we give the relationship between the Rhoades’

condition ðR25Þ and ðS25Þ:

Proposition 1 Let (X, d) be a complete metric space,

ðX; SdÞ be the S-metric space obtained by the S-metric

generated by d, and T be a self-mapping of X. If T satisfies

the inequality ðR25Þ, then T satisfies the inequality ðS25Þ.

Proof Let the inequality ðR25Þ be satisfied. Using the

inequality ðR25Þ and (2.1), we have

SdðTx;Tx;TyÞ¼dðTx;TyÞþdðTx;TyÞ¼2dðTx;TyÞ
\2maxfdðx;yÞ;dðx;TxÞ;dðy;TyÞ;dðx;TyÞ;dðy;TxÞg
¼maxf2dðx;yÞ;2dðx;TxÞ;2dðy;TyÞ;2dðx;TyÞ;2dðy;TxÞg
¼maxfSdðx;x;yÞ;Sdðx;x;TxÞ;Sdðy;y;TyÞ;Sdðx;x;TyÞ;
Sdðy;y;TxÞg
¼maxfSdðx;x;yÞ;SdðTx;Tx;xÞ;SdðTy;Ty;yÞ;SdðTy;Ty;xÞ;
SdðTx;Tx;yÞg;

and so, the inequality ðS25Þ is satisfied on ðX; SdÞ. h

Let (X, S) be any S-metric space. In [8], it was shown

that every S-metric on X defines a metric dS on X as

follows:

dSðx; yÞ ¼ Sðx; x; yÞ þ Sðy; y; xÞ; ð2:2Þ

for all x; y 2 X. However, the function dSðx; yÞ defined in (2.2
) does not always define a metric because of the reason that

the triangle inequality does not satisfied for all elements of

X everywhen. If the S-metric is generated by a metric d on X,

then it can be easily seen that the function dS is a metric onX,

especially we have dSðx; yÞ ¼ 4dðx; yÞ. However, if we

consider an S-metric which is not generated by any metric,

then dS can or cannot be a metric on X. We call this metric dS
as the metric generated by S in the case dS is a metric.

More precisely, we can give the following examples.

Example 2 Let X ¼ f1; 2; 3g and the function S : X �
X � X ! ½0;1Þ be defined as:

Sð1; 1; 2Þ ¼ Sð2; 2; 1Þ ¼ 5;

Sð2; 2; 3Þ ¼ Sð3; 3; 2Þ ¼ Sð1; 1; 3Þ ¼ Sð3; 3; 1Þ ¼ 2;

Sðx; y; zÞ ¼ 0 if x ¼ y ¼ z;

Sðx; y; zÞ ¼ 1 if otherwise;

for all x; y; z 2 X. Then, the function S is an S-metric which is

not generated by any metric and the pair (X, S) is an S-metric

space.However, the function dS defined in (2.2) is not ametric

on X. Indeed, for x ¼ 1, y ¼ 2, and z ¼ 3, we get

dSð1; 2Þ ¼ 10 £ dSð1; 3Þ þ dSð3; 2Þ ¼ 8:

Example 3 Let X ¼ R and consider the S-metric defined

in Example 1 which is not generated by any metric. Using

the Eq. (2.2), we obtain

dSðx; yÞ ¼ 4 x� yj j;

for all x; y 2 R. Then, ðR; dSÞ is a metric space on R.

We give the following proposition.

Proposition 2 Let (X, S) be a complete S-metric space,

ðX; dSÞ be the metric space obtained by the metric gener-

ated by S , and T be a self-mapping of X. If T satisfies the

inequality ðS25Þ, then T satisfies the inequality ðR25Þ.

Proof Let the inequality ðS25Þ be satisfied. Using the

inequality ðS25Þ and (2.1), we have

dSðTx;TyÞ ¼ SðTx;Tx;TyÞþ SðTy;Ty;TxÞ
¼ SðTx;Tx;TyÞþ SðTx;Tx;TyÞ ¼ 2SðTx;Tx;TyÞ
\2maxfSðx;x;yÞ;SðTx;Tx;xÞ;SðTy;Ty;yÞ;SðTy;Ty;xÞ;
SðTx;Tx;yÞg

¼maxf2Sðx;x;yÞ;2SðTx;Tx;xÞ;2SðTy;Ty;yÞ;2SðTy;Ty;xÞ;
2SðTx;Tx;yÞg

¼maxfSðx;x;yÞþ Sðy;y;xÞ;SðTx;Tx;xÞþ Sðx;x;TxÞ;
SðTy;Ty;yÞþ Sðy;y;TyÞ;
SðTy;Ty;xÞþ Sðx;x;TyÞ;SðTx;Tx;yÞþ Sðy;y;TxÞg

¼maxfdSðx;yÞ;dSðx;TxÞ;dSðy;TyÞ;dSðx;TyÞ;dSðy;TxÞg;

and so, the inequality ðR25Þ is satisfied on ðX; dSÞ. h

In [13], it was given another forms of ðR25Þ as ðR50Þ,
ðR75Þ, ðR100Þ, and ðR125Þ. Now, we extend the forms

ðR50Þ � ðR125Þ for complete S-metric spaces. We can

give the following definition.

Definition 3 Let (X, S) be an S-metric space and T be a

self-mapping of X. We define ðS50Þ, ðS75Þ, ðS100Þ, and
ðS125Þ, as follows :

ðS50Þ There exists a positive integer p, such that

SðTpx; Tpx; TpyÞ\maxfSðx; x; yÞ; SðTpx; Tpx; xÞ; SðTpy; Tpy; yÞ;
SðTpy; Tpy; xÞ; SðTpx; Tpx; yÞg;

for any x; y 2 X, x 6¼ y.

ðS75Þ There exist positive integers p, q, such that

SðTpx; Tpx; TqyÞ\maxfSðx; x; yÞ; SðTpx; Tpx; xÞ; SðTqy; Tqy; yÞ;
SðTqy; Tqy; xÞ; SðTpx; Tpx; yÞg;

for any x; y 2 X, x 6¼ y.

ðS100Þ For any given x 2 X, there exists a positive

integer p(x), such that

SðTpðxÞx; TpðxÞx; TpðxÞyÞ\maxfSðx; x; yÞ; SðTpðxÞx; TpðxÞx; xÞ;
SðTpðxÞy; TpðxÞy; yÞ; SðTpðxÞy; TpðxÞy; xÞ;
SðTpðxÞx; TpðxÞx; yÞg;

for any y 2 X, x 6¼ y.
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ðS125Þ For any given x; y 2 X, x 6¼ y, there exists a

positive integer p(x, y), such that

SðTpðx;yÞx; Tpðx;yÞx; Tpðx;yÞyÞ\maxfSðx; x; yÞ;
SðTpðx;yÞx; Tpðx;yÞx; xÞ;

SðTpðx;yÞy; Tpðx;yÞy; yÞ; SðTpðx;yÞy; Tpðx;yÞy; xÞ;
SðTpðx;yÞx; Tpðx;yÞx; yÞg:

Corollary 1 Let (X, d) be a complete metric space, ðX; SdÞ
be the S-metric space obtained by the S-metric generated by

d, and T be a self-mapping of X. If T satisfies the inequality

ðR50Þ [resp. ðR75Þ, ðR100Þ, and ðR125Þ�, then T satisfies the
inequality ðS50Þ [resp. ðS75Þ, ðS100Þ, and ðS125Þ�.

Corollary 2 Let (X, S) be a complete S-metric space,

ðX; dSÞ be the metric space obtained by the metric generated

by S, and T be a self-mapping ofX. If Tsatisfies the inequality

ðS50Þ [resp. ðS75Þ, ðS100Þ, and ðS125Þ�, then T satisfies the

inequality ðR50Þ [resp. ðR75Þ, ðR100Þ, and ðR125Þ�.

The proof of following proposition is obvious, so it is

omitted.

Proposition 3 Let (X, S) be an S-metric space and T be a

self-mapping of X. We obtain the following implications by

the Definition 3:

ðS25Þ ¼) ðS50Þ ¼) ðS75ÞandðS50Þ ¼) ðS100Þ ¼) ðS125Þ:

The converses of above implications in Proposition 3 are

not always true as we have seen in the following examples.

Example 4 Let R be the real line. It can be easily seen

that the following function defines an S-metric on R dif-

ferent from the usual S-metric defined in [15]:

Sðx; y; zÞ ¼ jx� zj þ jxþ z� 2yj

for all x; y; z 2 R. Let

Tx ¼
0 if x 2 ½0; 1�; x 6¼ 1

4

1 if x ¼ 1

4

8
><

>:
:

Then, T is a self-mapping on the S-metric space [0, 1].

For x ¼ 1

2
, y ¼ 1

4
, we have

SðTx; Tx;TyÞ ¼ Sð0; 0; 1Þ ¼ 2;

Sðx; x; yÞ ¼ S

�
1

2
;
1

2
;
1

4

�

¼ 1

2
;

SðTx; Tx; xÞ ¼ S

�

0; 0;
1

2

�

¼ 1;

SðTy; Ty; yÞ ¼ S

�

1; 1;
1

4

�

¼ 3

2

SðTy; Ty; xÞ ¼ S

�

1; 1;
1

2

�

¼ 1;

SðTx; Tx; yÞ ¼ S

�

0; 0;
1

4

�

¼ 1

2

and so

SðTx; Tx; TyÞ ¼ 2\max
1

2
; 1;

3

2
; 1;

1

2

� �

¼ 3

2
;

which is a contradiction. Then, the inequality ðS25Þ is not
satisfied.

For each x; y 2 X ðx 6¼ yÞ and p� 2, T is satisfied the

inequality ðS50Þ.

Example 5 We consider the self-mapping T in the

example on page 105 in [3] and the usual S-metric defined

in [15]. If we choose x ¼ ð1
n
þ 1; 0Þ, y ¼ ð1

n
; 0Þ for each n,

then the inequality ðS50Þ is not satisfied. A positive integer

p(x) can be chosen for any given x 2 X, such that the

inequality ðS100Þ is satisfied.

Example 6 Let R be the real line. Let us consider the S-

metric defined in Example 4 on R and let

Tx ¼
0 if x 2 1

2
; 1

� �

1 if x 2 0;
1

2

� �

8
>><

>>:

.

Then, T is a self-mapping on the S-metric space [0, 1].

Let us choose x ¼ 0 and y ¼ 1.

For p ¼ 1, we have

SðTx; Tx; TyÞ ¼ Sð1; 1; 0Þ ¼ 2;

Sðx; x; yÞ ¼ Sð0; 0; 1Þ ¼ 2;

SðTx; Tx; xÞ ¼ Sð1; 1; 0Þ ¼ 2;

SðTy; Ty; yÞ ¼ Sð0; 0; 1Þ ¼ 2;

SðTy; Ty; xÞ ¼ Sð0; 0; 0Þ ¼ 0;

SðTx; Tx; yÞ ¼ Sð1; 1; 1Þ ¼ 0

and so

SðTx; Tx; TyÞ ¼ 2\maxf2; 2; 2; 0; 0g ¼ 2;

which is a contradiction. Then, the inequality ðS50Þ is not
satisfied.

For p ¼ 2, we have

SðT2x; T2x; T2yÞ ¼ Sð0; 0; 1Þ ¼ 2;

Sðx; x; yÞ ¼ Sð0; 0; 1Þ ¼ 2;

SðT2x; T2x; xÞ ¼ Sð0; 0; 0Þ ¼ 0;

SðT2y; T2y; yÞ ¼ Sð1; 1; 1Þ ¼ 0;

SðT2y; T2y; xÞ ¼ Sð1; 1; 0Þ ¼ 2;

SðT2x; T2x; yÞ ¼ Sð0; 0; 1Þ ¼ 2

and so

SðT2x; T2x; T2yÞ ¼ 2\maxf2; 0; 0; 2; 2g ¼ 2;

10 Math Sci (2017) 11:7–16
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which is a contradiction. Then, the inequality ðS50Þ is not
satisfied.

For p� 3 using similar arguments, we can see that the

inequality ðS50Þ is not satisfied.
We now show that the inequality ðS75Þ is satisfied under

the following four cases:

Case 1 We take x 2 ½0; 1
2
Þ, y 2 ½1

2
; 1�, p ¼ 2, and q ¼ 1.

Then, the inequality ðS75Þ is satisfied, since
SðT2x; T2x; TyÞ ¼ 0;

for x 2 ½0; 1
2
Þ, y 2 ½1

2
; 1�, x 6¼ y.

Case 2 We take y 2 ½0; 1
2
Þ, x 2 ½1

2
; 1�, p ¼ 2, and q ¼ 1.

Then, using similar arguments in Case 1, we can see that

the inequality ðS75Þ is satisfied.

Case 3We take x; y 2 ½0; 1
2
Þ, p ¼ 2, and q ¼ 2. Then, the

inequality ðS75Þ is satisfied, since
SðT2x; T2x; T2yÞ ¼ 0;

for x; y 2 ½0; 1
2
Þ, x 6¼ y.

Case 4 We take x; y 2 ½1
2
; 1�, p ¼ 2, and q ¼ 2. Then,

using similar arguments in Case 3, we can see that the

inequality ðS75Þ is satisfied.

Example 7 Let R be the S-metric space with the S-metric

defined in Example 4 and let

Tx ¼

ffiffiffi
x

p
if x 2 ½0; 1�; x 6¼ 1

2
, x 6¼ 1

3
1

3
if x ¼ 1

2

3 if x ¼ 1

3
1

2
if x ¼ 3

8
>>>>>>>><

>>>>>>>>:

:

Then, T is a self-mapping on the S-metric space

½0; 1� [ f3g.
The inequality ðS100Þ is not satisfied, since there is not a

positive integer p(x) for any given x 2 X, such that T is

satisfied the inequality ðS100Þ for any y 2 X, x 6¼ y. How-

ever, for any given x; y 2 X, x 6¼ y, there exists a positive

integer p(x, y), such that the inequality ðS125Þ is satisfied.

Remark 1 ðS75Þ and ðS100Þ are independent of each

other by Examples 5 and 6.

Some fixed point theorems on S-metric spaces

In this section, we give some fixed point theorems by

means of periodic points on S-metric spaces for the con-

tractive mappings defined in Sect. 3.

Theorem 1 Let (X, S) be an S-metric space and Tbe a

self-mapping of X which satisfies the inequality ðS125Þ. If
Thas a fixed point, then it is unique.

Proof Suppose that x and y are fixed points of T, such that

x; y 2 X ðx 6¼ yÞ. Then, there exists a positive integer

p ¼ pðx; yÞ, such that

SðTpx; Tpx; TpyÞ\maxfSðx; x; yÞ; SðTpx; Tpx; xÞ; SðTpy; Tpy; yÞ;
SðTpy; Tpy; xÞ; SðTpx; Tpx; yÞg

¼ maxfSðx; x; yÞ; 0; 0; Sðy; y; xÞ; Sðx; x; yÞg
¼ Sðx; x; yÞ;

by the inequality ðS125Þ. Then, using Lemma 1 and the

fact that Tpx ¼ x, Tpy ¼ y, we obtain

SðTpx; Tpx; TpyÞ ¼ Sðx; x; yÞ\Sðx; x; yÞ:

Thus, the assumption that x and y are fixed points of T has

led to a contradiction. Consequently, the fixed point is

unique. h

Corollary 3 Let (X, S) be an S-metric space, T be a self-

mapping of X, and the inequality ðS25Þ [resp. T 2 ðS50Þ,
T 2 ðS100Þ] be satisfied. If T has a fixed point, then it is

unique.

Proof It can be seen from Proposition 3. h

Corollary 4 Let (X, S) be an S-metric space, T be a self-

mapping of X, and the inequality ðS75Þ be satisfied. If T has

a fixed point, then it is unique.

Proof By a similar argument used in the proof of Theo-

rem 1, the proof can be easily seen by the definition of

ðS75Þ. h

Now, we recall the following definitions and corollary.

Definition 4 [14] Let (X, S) be an S-metric space and

A � X. Then, A is called S-bounded if there exists r[ 0,

such that Sðx; x; yÞ\r for all x; y 2 A.

Definition 5 [4] Let (X, S) be an S-metric space, T be a

self-mapping of X, and x 2 X. A point x is called a periodic

point of T, if there exists a positive integer n, such that

Tnx ¼ x: ð3:1Þ

The least positive integer satisfying the condition (3.1) is

called the periodic index of x.

Definition 6 [10] Let (X, S) be an S-metric space, T, F be

two self-mappings of X, and A � X, x 2 X. Then

1. dðAÞ ¼ supfSðx; x; yÞ : x; y 2 Ag.
2. OT ;Fðx; nÞ ¼ fTx; TFx; TF2x; . . .; TFnxg.
3. OT ;Fðx;1Þ ¼ fTx; TFx; TF2x; . . .; TFnx; . . .g.
4. If T is identify, then OFðx; nÞ ¼ OT ;Fðx; nÞ and

OFðx;1Þ ¼ OT ;Fðx;1Þ.

Math Sci (2017) 11:7–16 11

123



Let A be a nonempty subset of X. In [12], it was called dðAÞ
as the diameter of A and we write

dðAÞ ¼ diamfAg ¼ supfSðx; x; yÞ : x; y 2 Ag:

If A is S-bounded, then we will write dðAÞ\1.

The following corollary is a generalization of [6, The-

orem1] into the structure of S-metric in [5].

Corollary 5 [10] Let (X, S) be an S-metric space and

T be a self-mapping of X, such that

(1) Every Cauchy sequence of the form fTnxg is con-

vergent in X for all x 2 X;

(2) There exists h 2 ½0; 1Þ, such that

SðTx; Tx; TyÞ� hmaxfSðx; x; yÞ; SðTx; Tx; xÞ; SðTx; Tx; yÞ;
SðTy; Ty; xÞ; SðTy; Ty; yÞg;

for each x; y 2 X.

Then

1. dðTix; Tix; T jxÞ� hd½OTðx; nÞ� for all i; j� n, n 2 N

and x 2 X;

2. d½OTðx;1Þ�� 2

1� h
SðTx; Tx; xÞ for all x 2 X;

3. T has a unique fixed point x0;

4. lim
n!1

Tnx ¼ x0.

Theorem 2 Let (X, S) be an S-metric space, T be a self-

mapping of X, the inequality ðS125Þ be satisfied, and

x 2 X. Assume that xis a periodic point of Twith periodic

index m. Then, Thas a fixed point x in fTnxgðn� 0Þif and
only if for any Tn1x, Tn2x 2 fTnxgðn� 0Þ, Tn1x 6¼ Tn2x ,

there exist Tn3x, Tn4x 2 fTnxg, such that

TpðTn3 x;Tn4 xÞðTn3xÞ ¼ Tn1xandTpðTn3 x;Tn4 xÞðTn4xÞ ¼ Tn2x:

Then, the point x is the unique fixed point of T in X.

Proof The proof of the if part of the theorem is obvious.

Therefore, we prove the only if part. If x is a periodic point

of T with periodic index m, then we have

fTnxg ¼ fx; Tx; . . .; Tm�1xg:

If x 6¼ Tx, then there exist Tn1x, Tn2x 2 fTnxg, Tn1x 6¼ Tn2x,

such that

dðfTnxgÞ ¼ max
0� k;l�m�1;k 6¼l

fSðTkx; Tkx; TlxÞg

¼ SðTn1x; Tn1x; Tn2xÞ:

By the hypothesis, there exist Tn3x, Tn4x 2 fTnxg, such
that

TpðTn x;Tn4 xÞðTn3xÞ ¼ Tn1x and TpðTn3 x;Tn4 xÞðTn4xÞ ¼ Tn2x.

Since Tn1x 6¼ Tn2x, we obtain Tn3x 6¼ Tn4x. Hence, we have

dðfTnxgÞ¼SðTn1x;Tn1x;Tn2xÞ
¼SðTpðTn3 x;Tn4 xÞðTn3xÞ;TpðTn3 x;Tn4 xÞðTn3xÞ;TpðTn3 x;Tn4 xÞðTn4xÞÞ
\maxfSðTn3x;Tn3x;Tn4xÞ;SðTn1x;Tn1x;Tn3xÞ;
SðTn2x;Tn2x;Tn4xÞ;
SðTn2x;Tn2x;Tn3xÞ;SðTn1x;Tn1x;Tn4xÞg
�dðfTnxgÞ;

which is a contradiction, and so, we have x ¼ Tx. It is

obvious that x is unique fixed point of T in X by Theo-

rem 1. h

Corollary 6 Let (X, S) be an S-metric space, T be a self-

mapping of X, the inequality ðS100Þ be satisfied, and x 2 X

be a periodic point of T. Then, the following conditions are

equivalent:

(1) T has a unique fixed point in fTnxgðn� 0Þ,
(2) There exists Tn0x 2 fTnxgðn� 0Þ, such that

TpðTn0 xÞðTn0xÞ ¼ Tn1x;

for any Tn1x 2 fTnxgðn� 0Þ, where pðTn0xÞ is the

positive integer.

Then, the point x is the unique fixed point of T in X.

Corollary 7 Let (X, S) be an S-metric space, T be a self-

mapping of X, the inequality ðS75Þ be satisfied, and x 2 X

be a periodic point of T. Then, x is the unique fixed point of

T if there exist Tn3x, Tn4x 2 fTnxgðn� 0Þ, and

Tn3x 6¼ Tn4x, such that

TpðTn3xÞ ¼ Tn1x and TqðTn4xÞ ¼ Tn2x;

for any Tn1x, Tn2x 2 fTnxgðn� 0Þ, Tn1x 6¼ Tn2x. Here,

p and q are the positive integers.

Corollary 8 Let (X, S) be an S-metric space, T be a self-

mapping of X, and the inequality ðS50Þ be satisfied. Then,

the following conditions are equivalent:

(1) T has a fixed point in X,

(2) There exists a periodic point x 2 X of T.

Then, the point x is the unique fixed point of T in X.

We give some sufficient conditions to guarantee the

existence of fixed point for a self-mapping T satisfying the

inequality ðS75Þ in the following theorem.

Theorem 3 Let (X, S) be an S-metric space, T be a self-

mapping of X, the inequality ðS75Þ be satisfied, and

x 2 Xbe a periodic point of T with periodic index m.

Suppose that p and q are the positive integers and also the

following conditions are satisfied:

1. p ¼ p1mþ p2, q ¼ q1mþ q2; 0� p2; q2\m, and p1
and q1 are non-negative integers.

2. 2 p2 � q2j j 6¼ m.
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Then, the point x is the unique fixed point of T in X.

Proof We now show that x is the fixed point of T in X. On

the contrary, assume that x is not the fixed point of T. Let

A ¼ fTnxg ¼ fx; Tx; T2x; . . .; Tnx; . . .g:

Since the periodic index of x is m, we have

A ¼ fTnxg ¼ fx; Tx; T2x; . . .; Tm�1xg

and the elements in A are distinct. Therefore, there exist i, j,

such that 0� i\j\m and

dðAÞ ¼ max
0� k;l�m�1;k 6¼l

SðTkx; Tkx; TlxÞ ¼ SðTix; Tix; T jxÞ:

We can assume that p2 � q2. In addition, we have TnðAÞ ¼
A for any non-negative integer n. Therefore, there exist

Tn1x and Tn2x 2 A, such that

Tix ¼ Tp2ðTn1xÞ and T jx ¼ Tq2ðTn2xÞ: ð3:2Þ

Similarly, there exist Tn3x and Tn4x 2 A, such that

Tix ¼ Tq2ðTn3xÞ and T jx ¼ Tp2ðTn4xÞ: ð3:3Þ

We prove that at least one of the statements n1 6¼ n2 and

n3 6¼ n4 is true.

Suppose that n3 ¼ n4. Since

0� i; j; p2; q2; n1; n2; n3; n4\m;

using (3.2) and (3.3), there exist a; b; c; d 2 f0; 1g, such
that

p2 þ n1 ¼ amþ i;q2 þ n2 ¼ bmþ j; ð3:4Þ

q2 þ n3 ¼ cmþ i;p2 þ n4 ¼ dmþ j: ð3:5Þ

If n1 ¼ n2, we have amþ i� bmþ j, since p2 � q2. Since

i\j, we have a ¼ 1, b ¼ 0. It follows from (3.4) that

ðp2 � q2Þ þ ðj� iÞ ¼ m: ð3:6Þ

Using the condition (3.5) and n3 ¼ n4, we obtain

ðp2 � q2Þ ¼ ðd � cÞmþ ðj� iÞ: ð3:7Þ

Since 0� p2 � q2 �m� 1, 0� j� i\m, we have d � c ¼
0 using the condition (3.7), and so, p2 � q2 ¼ j� i.

By the condition (3.6), we have

2ðp2 � q2Þ ¼ m;

which is a contradiction. Hence, it should be n1 6¼ n2.

Then, Tn1x 6¼ Tn2x. Using Tp2ðxÞ ¼ Tpx and Tq2ðxÞ ¼ Tqx,

we obtain

dðAÞ ¼ SðTix; Tix; T jxÞ
¼ SðTp2ðTn1xÞ; Tp2ðTn1xÞ; Tq2ðTn2xÞÞ ¼ SðTpðTn1xÞ;
TpðTn1xÞ; TqðTn2xÞÞ
\maxfSðTn1x; Tn1x; Tn2xÞ; SðTpðTn1xÞ; TpðTn1xÞ; Tn1xÞ;
SðTqðTn2xÞ; TqðTn2xÞ; Tn2xÞ; SðTqðTn2xÞ; TqðTn2xÞ; Tn1xÞ;
SðTpðTn1xÞ; TpðTn1xÞ; Tn2xÞg� dðAÞ;

which is a contradiction. Consequently, x ¼ Tx.

Similarly, it can be seen that if n1 ¼ n2, then it should be

n3 6¼ n4, and hence, we get x ¼ Tx.

It is obvious that x is the unique fixed point of T in X by

Corollary 4. h

Some applications of contractive mappings on S-
metric spaces

The following corollary was given in [15] on page 123 by

Sedghi and Dung.

Corollary 9 [15] Let (X, S) be a complete S -metric

space, T be a self-mapping of X, and

SðTx; Tx; TyÞ� hmaxfSðx; x; yÞ; SðTx;Tx; xÞ; SðTx; Tx; yÞ;
SðTy; Ty; xÞ; SðTy; Ty; yÞg;

ð4:1Þ

for some h 2 ½0; 1
3
Þ and each x; y 2 X. Then, T has a unique

fixed point in X. In addition, T is continuous at this fixed point.

We call the inequality (4.1) as ðQ25Þ in Corollary as

follows:

There exists a number h with h 2 ½0; 1
3
Þ, such that

ðQ25Þ SðTx; Tx; TyÞ� hmaxfSðx; x; yÞ; SðTx; Tx; xÞ; SðTx; Tx; yÞ;
SðTy; Ty; xÞ; SðTy; Ty; yÞg;

for any x; y 2 X.

In this section, we study fixed point theorems using the

inequality ðQ25Þ on S-metric spaces. Finally, we obtain a

fixed point theorem for a self-mapping T of a compact S-

metric space X satisfying the inequality ðS25Þ.
Now, we give the definition of TS-orbitally complete

space.

Definition 7 Let (X, S) be an S-metric space and T be a

self-mapping of X. Then, an S-metric space X is said to be

TS-orbitally complete if and only if every Cauchy sequence

which is contained in the sequence fx; Tx; . . .;Tnx; . . .g for

some x 2 X converges in X.
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Theorem 4 Let (X, S) be TS-orbitally complete, T be a

self-mapping of X, and the inequality ðQ25Þ be satisfied.

Then, T has a unique fixed point in X.

Proof It is obvious from Corollary 5. h

Now, we will extend the definition ðQ25Þ on an S-metric

space as follows:

ðQ25aÞ SðTpx;Tpx; TqyÞ� hmaxfSðTr1x; Tr1x;Ts1yÞ; SðTr1x; Tr1x; Tr2xÞ;
SðTs1y;Ts1y;Ts2yÞ : 0� r1; r2 � p and 0� s1; s2� qg;

for each x; y 2 X, some fixed positive integers p and

q. Here, h 2 ½0; 1
2
Þ.

The following theorems are the generalizations of the

fixed point theorems given in [7] to an S-metric space

(X, S).

Theorem 5 Let (X, S) be a complete S-metric space, Tbe

a continuous self-mapping of X, and the inequality ðQ25aÞ
be satisfied. Then, T has a unique fixed point in X.

Proof Without loss of generality, we assume that

h 2 ½1
3
; 1
2
Þ. Then, we have

h

1� 2h
� 1. Suppose that p� q.

Let x 2 X and assume that the sequence fTnx : n ¼
1; 2; . . .g is unbounded. Then, clearly, the sequence

fSðTnx; Tnx; TqxÞ : n ¼ 1; 2; . . .g

is unbounded. Hence, there exists an integer n, such that

SðTnx;Tnx;TqxÞ[ h

1� 2h
maxfSðTix;Tix;TqxÞ : 0� i�pg:

Suppose that m is the smallest such n. Clearly, we have

m[p�q. Therefore

SðTmx; Tmx; TqxÞ[ h

1� 2h
maxfSðTix; Tix; TqxÞ : 0� i� pg

� maxfSðTr1x; Tr1x; TqxÞ : 0� r1\mg:
ð4:2Þ

Using (4.2), we obtain

ð1� 2hÞSðTmx; Tmx; TqxÞ[ hmaxfSðTix; Tix; TqxÞ :
0� i� pg

� hmaxfSðTix; Tix; Tr1xÞ � 2SðTr1x; Tr1x; TqxÞ :
0� i� p and 0� r1\mg
� hmaxfSðTix; Tix; Tr1xÞ � 2SðTmx; Tmx; TqxÞ :

0� i� p and 0� r1\mg

and then

SðTmx; Tmx; TqxÞ[ hmaxfSðTix; Tix; Tr1xÞ :
0� i� pand0� r1\mg:

ð4:3Þ

Now, we prove that

SðTmx; Tmx; TqxÞ[ hmaxfSðTix; Tix; Tr1xÞ : 0� i; r1\mg:
ð4:4Þ

For if not

SðTmx; Tmx; TqxÞ� hmaxfSðTix; Tix; Tr1xÞ : 0� i; r1\mg

and so using (4.3)

SðTmx; Tmx; TqxÞ� hmaxfSðTix; Tix; Tr1xÞ : p\i; r1\mg:
ð4:5Þ

Using the inequality ðQ25aÞ, we can write

SðTmx; Tmx; TqxÞ� hk maxfSðTix; Tix; Tr1xÞ : p\i; r1\mg

for k ¼ 1; 2; . . ., since we can omitted the terms of the form

as SðTix; Tix; Tr1xÞ with 0� i� p by (4.3).

Now, we get SðTmx; Tmx; TqxÞ ¼ 0 for k ! 1, which is

a contradiction by our assumption. Therefore, we obtain

the inequality (4.4).

However, using the inequality ðQ25aÞ, we have

SðTmx; Tmx; TqxÞ� hmaxfSðTr1x; Tr1x; Ts1xÞ; SðTr1x; Tr1x; Tr2xÞ;
SðTs1x; Ts1x; Ts2xÞ : m� p� r1; r2 �m and 0� s1; s2 � qg

� hmaxfSðTr1x; Tr1x; Ts1xÞ : 0� r1; s1 �mg;

which is a contradiction from (4.4). Then, the sequence

fTnx : n ¼ 1; 2; . . .g should be S-bounded.

Now, we put

N ¼ supfSðTr1x; Tr1x; Ts1xÞ : r1; s1 ¼ 0; 1; 2; . . .g\1.

Therefore, for arbitrary e[ 0, choose M, so that hMN\e.
For m; n�Mmaxfp; qg and using the inequality ðQ25aÞ
M times, we have

SðTmx; Tmx; TnxÞ� hMN\e:

Hence, the sequence fTnx : n ¼ 1; 2; . . .g is a Cauchy

sequence in the complete S-metric space (X, S) and so has a

limit x0 in X. Since T is continuous, we have Tx0 ¼ x0 and

then x0 is a fixed point of T. It can be easily seen that the

point x0 is a unique fixed point of T. Then, the proof is

completed. h

From the inequality ðQ25aÞ, for q ¼ 1 (or p ¼ 1), we

define the following generalization of ðQ25Þ:
ðQ25bÞ SðTpx; Tpx; TyÞ� hmaxfSðTr1x; Tr1x; TsyÞ; SðTr1x; Tr1x; Tr2xÞ;

SðTy; Ty; yÞ : 0� r1; r2 � p and s ¼ 0; 1g;

for each x; y 2 X, some fixed positive integer p. Here,

h 2 ½0; 1
2
Þ.

The condition that the self-mapping T be continuous is

not necessary when the inequality ðQ25bÞ is satisfied as we

have seen in the following theorem.
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Theorem 6 Let (X, S)be a complete S-metric space and

T be a self-mapping of X satisfying the inequality ðQ25bÞ.
Then, T has a unique fixed point in X.

Proof Let x 2 X. Then, the sequence fTnx : n ¼ 1; 2; . . .g
is a Cauchy sequence in the complete S-metric space X as

we have seen in the proof of Theorem 5. Hence, the

sequence has a limit x0 in X. For n� p, we obtain

SðTnx; Tnx; Tx0Þ� hmaxfSðTr1x; Tr1x; Tsx0Þ; SðTr1x; Tr1x; Tr2xÞ;
SðTx0; Tx0; x0Þ : n� p� r1; r2 � n and s ¼ 0; 1g:

Then, by (2.1), we have

Sðx0; x0; Tx0Þ ¼ SðTx0; Tx0; x0Þ
� hmaxfSðTsx0; T

sx0; x0Þ : s ¼ 0; 1g
¼ hSðTx0; Tx0; x0Þ;

when n goes to infinity. Since h\1, we have Tx0 ¼ x0.

Then, the proof is completed. h

Corollary 10 Let (X, S) be a complete S-metric space

and T be a self-mapping of X satisfying the inequality

ðQ25Þ. Then, Thas a unique fixed point in X.

Remark 2 The condition that T be continuous when

p; q� 2 is necessary in Theorem 5. The following example

shows that Theorem 5 cannot be always true when T is a

discontinuous self-mapping of X.

Example 8 Let R be the real line. Let us consider the S-

metric defined in Example on R and let

Tx ¼
1 if x ¼ 0
x

4
if x 6¼ 0 :

(

Then, T is a discontinuous self-mapping on the complete S-

metric space [0, 1]. For each x; y 2 X, we obtain

SðTpx; Tpx; TqyÞ ¼ 1

4
SðTp�1x; Tp�1x; Tq�1yÞ

and so the inequality ðQ25aÞ is satisfied with h ¼ 1

4
.

However, T has not a fixed point.

Now, we consider compact S-metric spaces and prove

the following theorem.

Theorem 7 Let (X, S) be a compact S-metric space and

T be a continuous self-mapping of X satisfying

SðTpx; Tpx; TqyÞ\maxfSðTr1x; Tr1x; Ts1yÞ; SðTr1x; Tr1x; Tr2xÞ;
SðTs1y; Ts1y; Ts2yÞ : 0� r1; r2 � p and 0� s1; s2 � qg

ð4:6Þ

for each x; y 2 X. Here, the right-hand side of (4.6) is

positive. Then, T has a unique fixed point in X.

Proof Let the inequality ðQ25aÞ be satisfied. Then, T has

a unique fixed point in X from Theorem 5.

Let the inequality ðQ25aÞ be not satisfied. If fhn : n ¼
1; 2; . . .g is a monotonically increasing sequence of num-

bers converging to 1, then there exist sequences fxn : n ¼
1; 2; . . .g and fyn : n ¼ 1; 2; . . .g in X, such that

SðTpxn;T
pxn;T

qynÞ[hnmaxfSðTr1xn;T
r1xn;T

s1ynÞ;SðTr1xn;T
r1xn;T

r2xnÞ;
SðTs1yn;T

s1yn;T
s2ynÞ : 0� r1;r2�p and 0� s1;s2�qg

for n¼ 1;2; . . .. Using compactness of X, there exist sub-

sequences fxnk : k¼ 1;2; . . .g and fynk : k¼ 1;2; . . .g of fxng
and fyng converging to x and y, respectively. Since T is

continuous self-mapping, for k!1, we have

SðTpx; Tpx; TqyÞ� maxfSðTr1x; Tr1x; Ts1yÞ; SðTr1x; Tr1x; Tr2xÞ;
SðTs1y; Ts1y; Ts2yÞ : 0� r1; r2 � p and 0� s1; s2 � qg;

which is a contradiction unless Tx ¼ x ¼ y. Then, T has a

fixed point x. It can be easily seen that x is the unique fixed

point. h

We have the following corollary for p ¼ q ¼ 1.

Corollary 11 Let (X, S) be a compact S-metric space and

T be a continuous self-mapping of X satisfying the

inequality ðS25Þ. Here, the right-hand side of the

inequality ðS25Þ is positive. Then, T has a unique fixed

point in X.
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