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Optimal Control Problem
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This paper presents an optimal boundary temperature control of thermal stresses in a plate, based on time-
conformable fractional heat conduction equation. The aim is to find the boundary temperature that takes thermal
stress under control. The fractional Laplace and finite Fourier sine transforms are used to obtain the fundamental
solution. Then the optimal control is held by successive iterations. Numerical results are depicted by plots produced
by MATLAB codes.
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1. Introduction

Heat conduction in the media with complex internal
structures, such as porous, random and granular materi-
als, semiconductors, polymers, glasses, etc., is more accu-
rately modelled with fractional heat conduction equati-
ons, than with classical ones. The time-fractional heat
conduction equation is defined by [1]

∂αT

∂tα
= a∆T, (1)

where T is temperature, a denotes the heat diffusivity
coefficient and ∂α

∂tα represents the Caputo fractional de-
rivative (see [2]).

Thermoelasticity theory, based on time fractional heat
conduction equation, was first proposed by Povstenko [3],
who investigated the physical behaviour of thermal stres-
ses, by obtaining fundamental solutions of the Cauchy
problems for fractional heat conduction equations, de-
fined in one or multi-dimensional coordinate systems.
The central-symmetric thermal stresses in an infinite me-
dium with a spherical [4] and cylindrical [5] cavities were
analyzed. In addition, the theory of thermal stresses for
space-time fractional heat conduction equation was intro-
duced [6]. Optimal control of thermal stresses, based on
fractional heat conduction equation, was first proposed
by Ozdemir et al. in [7], where boundary temperature
control problem was studied for a sub-heat conduction
process, defined in terms of Caputo fractional derivative.
That paper was the generalization of boundary optimal
control of a standard parabolic heat conduction equation,
presented by Knopp [8].

In this paper, we aim to apply the optimal boundary
control approach to a heat conduction equation with con-
formable fractional derivative, which has been recently
defined by Khalil et al. [9]. It is a natural extension
of usual derivative and it is named as conformable, be-
cause this operator preserves basic properties of classical
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derivative (see [9, 10]). Since conformable fractional deri-
vative is a local and limit-based operator, it quickly takes
a place in application problems [11–13].

2. Preliminaries

Until recently, many real world applications of fracti-
onal calculus have been confined to the well-known
Riemann-Liouville, Caputo and Grünwald-Letnikov
fractional operators (see [14, 15]). Although these fracti-
onal definitions display desired advantages, such as the
description of memory and hereditary effects in natu-
ral phenomena, they unfortunately lead to computatio-
nal complexities, requiring an improvement of numerical
methods, because of their non-local descriptions with we-
akly singular kernels. Due to these complications, fractio-
nal researchers have shown increasing interest for the new
local fractional definitions [16–20]. One of these definiti-
ons is the limit-based conformable fractional derivative,
which is defined as follows.
Definition 1: [9] For a given function f : [0,∞) → R

the conformable fractional derivative of order α ∈ (0, 1]
is defined by

dαf

dtα
= lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε
(2)

for all t > 0. If f is conformable fractional differentia-
ble of order α, simply called as α-differentiable, in some
(0, a), a > 0 and the lim

t→a+
dαf
dtα exists, then

dαf (a)

dtα
= lim
t→a+

dαf

dtα
. (3)

The following theorem shows that the fundamental
properties of usual derivative are satisfied by conformable
fractional derivative.
Theorem 1: [9] Let 0 < α ≤ 1 and f, g : [0,∞) → R

be α-differentiable functions at a point t > 0. Then

1.
dα

dtα
(af + bg) = a

dαf

dtα
+ b

dαg

dtα
, for all a, b ∈ R,

2.
dα

dtα
(tp) = ptp−α, for all p ∈ R,
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3.
dα

dtα
(λ) = 0, for all constant functions f (t) = λ,

4.
dα

dtα
(fg) = f

dαg

dtα
+ g

dαf

dtα
,

5.
dα

dtα

(
f

g

)
=
gdαf/dtα − f dαg/dtα

g2
,

6. If f is a differentiable function,

then
dαf

dtα
= t1−α

df

dt
.

Several papers were devoted to detailed investigation of
the properties and the useful theorems related with this
derivative [21]. Here, we deal with the fractional Laplace
transform which was first defined by Abdeljawad [10].
Definition 2: Let f : [0,∞) → R is a function and

α ∈ (0, 1]. Then the fractional Laplace transform of order
α is defined by

Lα {f (t)} =

∞∫
0

e−s
tα

α f (t) dα (t) =

∞∫
0

e−s
tα

α f (t) tα−1dt, (4)

where s is the transform variable.
The relation between the usual and the fractional Lap-

lace transforms is given below.
Lemma: [10] Let f : [0,∞) → R be a function, such

that Lα {f (t)} exists for 0 < α ≤ 1. Then

Lα {f (t)} = L
{
f
(

(αt)
1/α
)}

, (5)

where L {f (t)} =
∞∫
0

e−stf (t) dt.

As an example, the fractional Laplace transform of
eλ

tα

α , λ ∈ R, often resulting in the solutions of con-
formable fractional differential equations, can be easily
computed as

Lα

{
eλ

tα

α

}
= L

{
eλt
}

=
1

s− λ
, (6)

whereas the usual Laplace transform of such function is
not easy to calculate. Similarly, the fractional Laplace
transform of some certain functions can be simply taken
by using the Lemma.

The following theorem gives the fractional Laplace
transform of conformable fractional derivative.
Theorem 2: [10] Let f : [0,∞) → R is an α-

differentiable function of order, α ∈ (0, 1] and Lα {f (t)}
exists. Then

Lα

{
dαf (t)

dtα

}
= sLα {f (t)} − f (0) . (7)

As it is known, Laplace transform is a powerful tool to
solve linear differential equations. Similarly, it is ex-
pected to solve conformable fractional differential equa-
tions by the fractional Laplace transform. At this stage,
we give the following theorem, which is used to assign

the inverse fractional Laplace transform of certain types
of functions.

Theorem 3: Let f, g : [0,∞) → R be real valued
functions, such that f is the function of tα for 0 < α ≤ 1.
If Lα {f (tα)} and Lα {g (t)} exist, then

Lα {f ∗ g} = Lα {f (tα)}Lα {g (t)} , (8)
where

(f ∗ g) (t) =

t∫
0

f (tα − τα) g (τ) τα−1dτ . (9)

Proof: We first apply the fractional Laplace transform
to Eq. (9)

Lα {(f ∗ g) (t)} =

∞∫
0

e−st

 t∫
0

f (tα − τα) g (τ) τα−1dτ

 tα−1dt.

By changing the order of integration we get
Lα {(f ∗ g) (t)} =

∞∫
0

∞∫
τ

e−s
tα

α f (tα − τα) g (τ) tα−1τα−1dtdτ.

Then we substitute tα − τα = uα into the above integral
and obtain

Lα {(f ∗ g) (t)} =

∞∫
0

∞∫
0

e−s
uα+τα

α f (uα) g (τ)uα−1du τα−1dτ =

∞∫
0

e−s
uα

α f (uα)uα−1du

∞∫
0

e−s
τα

α g (τ) τα−1dτ =

Lα {f (tα)}Lα {g (t)} .

Example: Consider the non-homogenous conforma-
ble fractional initial value problem:

dαy (t)

dtα
= Ay (t) + f (t) , y (0) = y0, t > 0,

where y, f : [0,∞) → Rn and A ∈ Rn×n. Application of
fractional Laplace transform to both sides of the equa-
tion gives

sLα {y (t)} − y0 = ALα {y (t)}+ Lα {f (t)}

and then
Lα {y (t)} = (sI −A)

−1
y0 + (sI −A)

−1
Lα {f (t)} ,

in which I is the identity matrix. The solution is obtai-
ned by taking the inverse fractional Laplace transform
L−1α . By using Eq. (6), we easily deduce that

L−1α

{
(sI −A)

−1
y0

}
= eA

tα

α y0.

According to the Theorem 3, we obtain the solution as

y (t) = eA
tα

α y0 +

t∫
0

eA( t
α−τα
α )f (τ) τα−1dτ .
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We use the fractional Laplace transform to solve our
problem according to the time variable t. Also, we apply
the finite Fourier sine transform to eliminate the spatial
variable x, x ∈ [0, L] in the problem. The finite Fourier
sine transform of a function f : [0, L]→ R is

F {f (x)} = f∗n =

2

L

L∫
0

f (x) sin
(nπx
L

)
dx, n = 1, 2, . . . , (10)

with the inverse transform

F−1 {f∗n} = f (x) =

∞∑
n=1

f∗n sin
(nπx
L

)
dx. (11)

If f (x, t) is a function of two variables, then
F {f (x, t)} = f∗n (t) =

2

L

L∫
0

f (x, t) sin
(nπx
L

)
dx, (12)

F

{
∂2f {x, t}
∂x2

}
= −

(nπ
L

)2
f∗n (t)

+
2nπ

L2

[
f (0, t) + (−1)

n+1
f (L, t)

]
. (13)

Note, that for the rest of this paper we denote both
the fractional Laplace and the finite Fourier sine trans-
forms by asterisk, to avoid the confusion of the trans-
forms notations.

3. Problem formulation

The theory of thermal stresses of a solid is governed by
the equilibrium equation in terms of displacements [3]

µ∆u+ (λ+ µ) grad divu = βTKT gradT, (14)
the stress-strain-temperature relation
σ = µe+ (λ tre− βTKTT ) I (15)

and the time-fractional heat conduction equation
∂αT

∂tα
= a∆T, 0 < α ≤ 1, (16)

where u is the displacement vector, σ is the stress tensor,
e is the linear strain tensor, a is the diffusivity coefficient,
λ and µ are Lamé constants, KT = λ + 2µ/3, βT is the
thermal coefficient of volumetric expansion, I denotes the
unit tensor.

In the present work, we consider a centrally symmetric
temperature distribution T (x, t) on a line segment 0 ≤
x ≤ L at a time t. In this case, the thermoelastic stress
σ (x, t) is proportional to the deviation from the average
temperature [19]:

σyy (x, t) = − αTE
1− υ

[T (x, t)− Taverage (t)] , (17)

where

Taverage (t) =
1

L

L∫
0

T (x, t) dx. (18)

Here, αT is the linear thermal expansion coefficient, E is
Young’s modulus and υ denotes Poisson’s ratio.

Consider the temperature field T (x, t), which satisfies
the time-fractional heat conduction equation

∂αT (x, t)

∂tα
= a

∂2T (x, t)

∂x2
,

0 < x < L, 0 < t <∞, 0 < α ≤ 1, (19)
in which ∂α

∂tα denotes conformable fractional derivative.

Let us assume the following initial
T (x, 0) = 0, (20)

and boundary conditions
x = 0 : T = g (t)T0,

x = L : T = g (t)T0,
(21)

where g (t) is the boundary control function, which we
use to find the optimal temperature regime, to keep the
thermal stress under the intended values. Here, we first
introduce the following non-dimensional quantities

x =
x

L
, τ =

t

t0
, T =

T

T0
, κ2 =

at20
L2

, (22)

where t0 is the characteristic time. Hence, the problem
reduces to

∂αT (x, τ)

∂τα
= a

∂2T (x, τ)

∂x2
,

0 < x < 1, 0 < τ <∞, 0 < α ≤ 1, (23)

τ = 0 : T = 0, (24)

x = 0 : T = g (τ) , (25)

x = 1 : T = g (τ) . (26)
Using the fractional Laplace transform with respect to

time τ and the finite Fourier sine transform with respect
to the spatial coordinate x, we obtain

T
∗∗

=
2κ2ξn
s+ κ2ξ2n

g∗ (s) [1− (−1)
n
] , (27)

where ξn = nπ. Taking the inverse Fourier and the in-
verse fractional Laplace transforms leads to

T (x, τ) = 2κ2
∞∑
n=1

ξn [1− (−1)
n
]

× sin (ξnx)

τ∫
0

e−κ
2ξ2n

τα−uα
α g (u)uα−1du. (28)

Similarly, we calculate the average value T average (τ)
using Eqs. (18) and (28)

T average (τ) = 2κ2
∞∑
n=1

[1− (−1)
n
]
2

×
τ∫

0

e−κ
2ξ2n

τα−uα
α g (u)uα−1du. (29)

Now, the associated non-dimensional thermal stress
can be calculated as

σyy (x, τ) =
1− ν
αTET0

σyy (x, τ) (30)
or

σyy (x, τ) = −
[
T (x, τ)− T average (τ)

]
. (31)
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Let σyy (1, τ) represent the thermal stress at the boun-
dary of line segment. We call
|σyy (1, τ)| = σcrit (32)

and also assume that maximal temperature and the re-
sulting maximal thermal stress are reached at the boun-
dary: |σmax (τ)| = |σyy (1, τ)|. Taking into account
Eqs. (28)–(32), we get

g (τ) = σcrit + 2κ2
τ∫

0

∞∑
n=1

[1− (−1)
n
]
2

×e−κ
2ξ2n

τα−uα
α g (u)uα−1du. (33)

To find the temperature control function g (τ), we
apply a numerical approach that solves the integral
Eq. (33). It is worth noting, that numerous numerical
methods of analysis of thermal and mechanical compo-
nents, arising from heat conduction, have recently been
improved [22–24].

4. Numerical algorithm
We obtain the optimal boundary control of g (τ) by

using the following iteration formula

gm+1 (τ) = σcrit + 2κ2
τ∫

0

∞∑
n=1

[1− (−1)
n
]
2

×e−κ
2ξ2n

τα−uα
α gm (u)uα−1du, m = 0, 1, 2, . . . , (34)

where we assume the initial values g0 (τ) = σcrit = 1.
The integration of the iteration is numerically solved with
cumulative trapezoidal rule. The numerical results are
achieved by dividing the chosen time interval [0,1] into
N equal parts. The obtained results are illustrated in
figures under some variation of problem parameters. We
plot all the figures for N = 300 and for the upper limit
of the sum in Eq. (34) of 10. The dependence of the
10th iteration value of control function g10 (τ) on α, the
order of conformable fractional derivative, is analyzed in
Fig. 1. We estimate contribution of the iteration number
to the solution in Fig. 2. Note, that the results overlap
for the iteration number m ≥ 8. In Fig. 3, we show
the dependency of the boundary optimal control on the
non-dimensional parameter κ.

Fig. 1. Dependence of optimal control on the variation
of α for N = 300 and κ = 0.5.

Fig. 2. Dependence of optimal control on iteration
number m for α = 0.75, N = 300 and κ = 0.5.

Fig. 3. Dependence of optimal control on the variation
of κ for α = 0.75 and N = 300.

5. Conclusions

In this study, optimal control problem of a sub-heat
conduction process, defined by a time-conformable par-
tial fractional differential equation, which is a local gene-
ralization of the problem from [8], has been considered.
The boundary temperature has been studied as a control
function that is used to bring the thermal stress within
the desired range. To find the optimal boundary condi-
tion, the fractional Laplace transform has been initially
applied with respect to the time variable. In line with the
requirements, a useful theorem has been given, which can
be used to attain the inverse fractional Laplace transform
of convenient types of functions. Then the finite Fourier
sine transform has been applied to the problem and an in-
tegral equation has been obtained for the boundary con-
trol. Finally, this integral equation has been solved by
successive iterations and the optimal boundary control
has been achieved numerically. Influence of the parame-
ters on the solution has been shown using plots produced
by MATLAB codes.
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