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Abstract An S-metric space is a three-dimensional general-
ization of a metric space. In this paper our aim is to examine
some fixed-point theorems using new contractive conditions
of integral type on a complete S-metric space. We give some
illustrative examples to verify the obtained results. Our find-
ings generalize some fixed-point results on a complete metric
space and on a complete S-metric space. An application to the
Fredholm integral equation is also obtained.
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Introduction

Recently, the notion of an S-metric has been introduced
and studied as a generalization of a metric. This notion has
been defined by Sedghi et al. [13] as follows:

Definition 1.1 [13] Let X # () be any set and §: X X
X x X — [0,00) be a function satisfying the following
conditions for all u,v,z,a € X.

(SDH
(52)

S(u,v,z) =0if and only if u =v =z
S(u,v,z) <S(u,u,a) + S(v,v,a) + S(z,z,a).
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Then the function S is called an S-metric on X and the pair
(X, S) is called an S-metric space.

Some fixed-point theorems have been given for self-
mappings satisfying various contractive conditions on an S-
metric space (see [4, 6, 8, 9, 13, 14]). One of the important
results among these studies is the Banach’s contraction
principle on a complete S-metric space.

Theorem 1.2 [13] Let (X, S) be a complete S-metric
space, h € (0,1) and T :X — X be a self-mapping of
X such that

S(Tu, Tu, Tv) < hS(u,u,v),
for all u,v € X. Then T has a unique fixed point in X.

On the other hand some generalizations of the well-
known Ciri¢’s and Nemytskii-Edelstein fixed-point theo-
rems obtained on S-metric spaces via some new fixed point
results (see [8, 9, 13, 14] for more details).

Later, different applications of some contractive condi-
tions have been constructed on an S-metric space such as
differential equations, complex valued functions etc. (see
[5, 7, 10, 11]).

In recent years, fixed-point theory has been examined
for various contractive conditions. For example, contrac-
tive conditions of integral type were adapted into some
studied fixed-point results. So more general fixed-point
theorems were obtained.

Through the whole paper we assume that ¢ : [0, 00) —
[0,00) is a Lebesgue-integrable mapping which is sum-
mable ( i.e., with finite integral) on each compact subset of

[0, 00), nonnegative and such that for each ¢ > 0,
&

/g(r)dz > 0. (1)

0
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Branciari [1] studied a fixed-point theorem for a general
contractive condition of integral type on a complete metric
space as seen in the following theorem.

Theorem 1.3 [1] Let (X, p) be a complete metric space,
h € (0,1), the function ¢ : [0,00) — [0,00) be defined as
in (1) and T : X — X be a self-mapping of X such that

p(Tu,Tv) pu,v)
c(r)dt<h / ¢(t)de,
0 0

forallu,v € X, then T has a unique fixed point w € X such
that

Iim T"u = w,
n—oo

for each u € X.

After the study of Branciari, some researchers have
investigated new generalized contractive conditions of
integral type using different known inequalities on various
metric spaces (see [2, 3, 12]).

The purpose of this paper is to give new contractive
conditions of integral type satisfying some new generalized
inequalities given in [6] on a complete S-metric space. Our
results generalize some known fixed-point results on a
complete metric space and on a complete S-metric space.

Fixed-point results under some contractive
conditions of integral type

In this section we obtain new fixed-point theorems using
some contractive conditions of integral type on a complete
S-metric space. We construct three examples to show the
validity of our results. At first we recall some basic results
about S-metric spaces.

Lemma 2.1
we have

S(u,u,v) = S(v,v,u).

[13] Let (X, S) be an S-metric space. Then

The above Lemma 2.1 can be considered as a symmetry
condition on an S-metric space. The following definition is
related to convergent sequences on an S-metric space.

Definition 2.2 [13] Let (X, S) be an S-metric space.

(1) A sequence {u,} in X converges to u if and only if
S(tty, un,u) — 0 as n — oo. That is, there exists ny €
N such that for all n>ng, S(u,,u,,u)<e for each
& > 0. We denote this by

lim &, = wor lim S(uy, u,,u) = 0.
n—oo n—oo

@ Springer

(2) A sequence {u,} in X is called a Cauchy sequence if
S(tty, Uy, ) — 0 as n,m — oo. That is, there exists
no € N such that for all n,m>ng, S(uy,uy,u,) <e
for each ¢ > 0.

(3) The S-metric space (X, S) is called complete if every
Cauchy sequence is convergent.

In the following lemma we see the relationship between
a metric and an S-metric.

Lemma 2.3 [4] Let (X,p) be a metric space. Then the
following properties are satisfied :

M Sy(u,v,2) = p(u,2) + p(v,z) for all u,v,z € X is an
S-metric on X.

2 u, —uin (X,p) if and only if u, — uin (X,S,).

3)  A{un} is Cauchy in (X,p) if and only if {u,} is
Cauchy in (X, S,).

4) (X, p) is complete if and only if (X,S,) is complete.

We call the function S, defined in Lemma 2.3 (1) as the
S-metric generated by the metric p. It can be found an
example of an S-metric which is not generated by any
metric in [4, 9].

Now we give the following theorem.

Theorem 2.4 Let (X, S) be a complete S-metric space,
h € (0,1), the function ¢ : [0,00) — [0,00) be defined as
in (1) and T : X — X be a self-mapping of X such that

S(Tu,Tu,Tv) S(u,uv)

/ g(t)dtgh/ s(t)dt, (2)

0 0

forall u,v € X. Then T has a unique fixed point w € X and
we have

lim T"u = w,

n—00
for each u € X.

Proof Let uyp € X and the sequence {u,} be defined as
T'up = u,.

Suppose that u, # u,y; for all n. Using the inequality (2),
we obtain

S (Ut st 1) S(Un—15Un—1,1n) S(ug o ur)

[ ocwasn [ oas<we [ cnar

0 0 0
(3)
If we take limit for n — oo, using the inequality (3) we get

S(“ns“nsun+l>

lim / ¢(t)dr =0,

n—oo
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since h € (0,1). The condition (1) implies

lim S(uy, uy, tyy1) = 0.

n—oo

Now we show that the sequence {u,} is a Cauchy
sequence. Assume that {u,} is not Cauchy. Then there
exists an & > 0 and subsequences {my} and {n;} such that
my <ny <myy; with

Sty Uy s Un,) > € 4)
and

S(Upy s Uy s Uny—1) <E-

Hence using Lemma 2.1, we have

S(umkfla Upy—1, um*l) < 2S(umk*17 Um—15 um")
—|—S(M,,k71,unk717umk)
< 2S(umk—17 l/lmk_h umk) + €
and

Sty —1 Uy —1 sty 1)

lim / c(n)dr < O/Q(Z‘)dl. (5)

k—o00
0

Using the inequalities (2), (4) and (5) we obtain

& S(umk Uy, :uuk) S(”mkfl sUmy—1 aunk—l)
/g(t)dtg / c(t)dr<h / ¢(r)dr
0 0 0

Sh/dmh
0

which is a contradiction with our assumption since
h € (0,1). So the sequence {u,} is Cauchy. Using the
completeness hypothesis, there exists w € X such that

Iim T"ug = w.

From the inequality (2) we find
S(Tw,Tw,uy41) S(Tw,Tw,Tuy,)
¢(r)dr = / ¢()dt<h / ¢(r)de.
0 0

(=)

If we take limit for n — oo, we get
S(Tw,Tw,w)
¢(r)dr =0,
0
which implies Tw = w.
Now we show the uniqueness of the fixed point.

Suppose that w; is another fixed point of 7. Using the
inequality (2) we have

233

S(w,w,w1) S(Tw,Tw,Twy) S(w,ww1)

/ ¢(r)dr = / ¢(n)dr<h / ¢(r)dr,

0 0 0
which implies

S(ww,w1)

/ ¢(r)dr =0,

0

since h € (0,1). Using the inequality (1) we get w = wy.

Consequently, the fixed point w is unique. O
Remark 2.5
(1) If we set the function ¢ : [0,00) — [0,00) in Theo-
rem 2.4 as
<(r) =1,

for all ¢ € [0,00), then we obtain the Banach’s

contraction principle on a complete S-metric space.

(2) Since an S-metric space is a generalization of a

metric space, Theorem 2.4 is a generalization of the
classical Banach’s fixed-point theorem.

(3) If we set the S-metric as S: X x X x X — C and
take the function ¢ : [0,00) — [0,00) as

() =1,
for all r € [0,00) in Theorem 2.4, then we get

Theorem 3.1 in [10] and Corollary 2.5 in [5] for
n=1.

Example 2.6 Let X =R, k> 1 be a fixed real number
and the function S : X x X x X — [0,00) be defined as

k
Sv2) =7

(v =zl +v+z—2u]),

for all u, v,z € R. It can be easily seen that the function S is
an S-metric. Now we show that this S-metric can not be
generated by any metric p. On the contrary, we assume that
there exists a metric p such that

S(u,v,z) = p(u,z) + p(v,2), (6)

for all u,v,z € R. Hence we find

2k
S = 2 = —
(u,u,2) = 2p(u,2) = = lu — 2|
and
plu,2) =l =zl (7)
Similarly, we get
2k
S(V,V,Z) = 2p(v,z) = k+1 |V_Z|

Y
ﬁ @ Springer
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and

p(v,2) :%W*ZL (8)

Using the equalities (6), (7) and (8), we obtain

k
(v—zl+v+z—2u) == |u—z|+

k+1 Iv=a2l,

k+1 k+1

which is a contradiction. Consequently, S is not generated
by any metric and (R, S) is a complete S-metric space.
Let us define the self-mapping 7 : R — R as

Tu =
u 6,

for all u € R and the function ¢ : [0, 00) — [0, 00) as
o(t) = 3¢,

for all 1 € [0,00). Then we get
€ €

/@mm:/ﬁﬁh:£>q

0 0

for each ¢ > 0. Therefore T satisfies the inequality (2) in
Theorem 2.4 for h = % Indeed, we have
K ak3 3

sl <
27(k+1) (k4 1)

for all u,v € R. Consequently, T has a unique fixed point
u=>0.

Now we give the first generalization of Theorem 2.4.

Theorem 2.7 Let (X, S) be a complete S-metric space,
the function ¢ : [0,00) — [0,00) be defined as in (1) and
T : X — X be a self-mapping of X such that

S(Tu,Tu,Tv) S(u,u,v) S(Tu,Tu,v)
[ swasm [ coarin [ s
0 0 0
S(Tv,Tv,u)
+ hs / ¢(r)dr
0
max{S(Tu,Tuu),S(Tv,Tv,v)}
+h4 g(t)dta

(=}

©)

for all u,v € X with nonnegative real numbers h; (i €
{1,2,3,4}) sarisfying max{h; + 3h3 + 2h4, hy + hy +
h3} <1. Then T has a unique fixed point w € X and we
have

\¢
ﬁ @ Springer

IimT"'u = w,
n—oo

for each u € X.
Proof Let up € X and the sequence {u,} be defined as
T"uy = u,.

Suppose that u,, # u,; for all n. Using the inequality (9),
the condition ($2) and Lemma 2.1 we get

Sttty st 1) S(Tuty—1,Ttty—1,Tuty) S(tty 1,114y
¢(n)dr = c(n)dr < Iy / ¢(r)dr
0 0 0
S(tty sty 1ty ) S(ts 1ttt 1 -1
+ Iy c(1)dt + hs <()dr
0 0
Max{S (tty sttt 1) S (41 st 151 ) }
+ hy / c(r)de
0
S (-1, n—1,Un) S(un1 Unr1,Un—1)

W

¢(r)dt + hs / ¢(r)dr

0 0
X {S (1t by sty —1) S (1 Uy 1514 ) }
+ hy c(r)de
0
Sttt sty -1 5ty ) 28 (U1 U 41,Un)
<m / c(#)dt + hs / c(r)dr
0 0
S(tty—1 sty 1514y ) S(tty st 1)

+ h3 c(r)dr + hy / ¢(r)de
0
Stt1 41,51 )
+ hy / ¢(t)dr
0

S (U151t —1 514

= (h +hs+ M) c(r)dr
/

Sttt 1)

+ (2h3 +h4) / (,‘(Z)dl‘,

(=1

which implies

Sttt 1) S(Un—15ttn—1,Un)

hy + hs + hy
cC < - - ~ .
¢(r)dr < (1 ~h h4> / ¢(r)dr
0 0
(10)

hiths+hy
T—2hy—hy then we find h<l1

hy + 3h3 + 2hy < 1. Using the inequality (10) we have

If we put h= since
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Sttt st 1) S(uo,uo,ur)

¢(r)dr < h”
0 0

¢(r)dr. (11)

If we take limit for n — oo, using the inequality (11) we
get

Sttty Un 1)

lim / ¢(r)dr =0,
n—oo
0

since  he€ (0,1). The
lim S(uty, w0y, tpi1) = 0.

n—oo

By the similar arguments used in the proof of Theo-
rem 2.4, we see that the sequence {u,} is Cauchy. Then
there exists w € X such that

condition (1)  implies

lim T"uy = w,

n—oo

since (X, S) is a complete S-metric space. From the
inequality (9) we find

Sttty Tw) S(Tup—y,Tup—1,Tw)
¢(r)dr = / c(n)dt < Iy / ¢(r)dr
0 0 0
Sttt ,w) S(Tw,Tw,up—1)
+ hy c(r)dr + h / c(r)de
0 0
max{S(u,l,u,,,un,.l)7S(Tw,Tw,w)}
+ hy ¢(r)dr.
0

Sty 15t —1,w)

Taking limit for n — oo and using Lemma 2.1 we get

S(Tw,Tw,w) S(Tw,Tw,w)
[ cowsmrn [ s
0 0

which implies Tw = w since hz + hy <1.

Now we show the uniqueness of the fixed point. Let w)
be another fixed point of 7. Using the inequality (9) and
Lemma 2.1, we get

S(w,w,wy) S(Tw,Tw,Twy) S(w,w,wy)
/ ¢(r)dr = / ¢(r)dr <y / ¢(r)dr
0 0 0
S(w,w,wi) S(wi,wi,w)
+ c(r)dt + hs / c(r)de
0 0
max{S(w,w,w),S(wi,wi,wi)}
+ h4 / g(t)dt7

(=]

which implies

235
S(w,w,wi) S(w,w,wi)
/ ¢(0)dt < (hy + hy + h3) / ¢(r)dr.
0 0

Then we obtain

S(w,w,wi)

that is, w = wy since h; + hy + h3 <1. Consequently, T has

a unique fixed point w € X. O
Remark 2.8
(1) If we set the function ¢ : [0,00) — [0,00) in Theo-
rem 2.7 as
() =1,

for all ¢ € [0, 00), then we obtain Theorem 3 in [6].

(2) Theorem 2.7 is a generalization of Theorem 2.4 on a
complete S-metric space. Indeed, if we take h; = h
and h, = h3 = hy = 0 in Theorem 2.7, then we get
Theorem 2.4.

(3) Since Theorem 2.7 is a generalization of Theo-
rem 2.4, Theorem 2.7 generalizes the classical
Banach’s fixed-point theorem.

(4) If we set the S-metric as S: X x X x X — C and
take the function ¢ : [0,00) — [0, 00) as

() =1,

for all r € [0,00) in Theorem 2.7, then we get
Theorem 3.1 in [7].

Now we give the second generalization of Theorem 2.4.

Theorem 2.9 Let (X, S) be a complete S-metric space,
the function ¢ : [0,00) — [0,00) be defined as in (1) and
T : X — X be a self-mapping of X such that

S(Tu,Tu,Tv) S(uu,v) S(Tu,Tu,u)

/ g()ydt < Iy / ¢(t)dt + hy / c(t)de

0 0 0
S(Tu,Tu,v)
+ hs / c(t)de
0
S(Tv,Tv.u) S(Tv,Tv,v)
hy / S(1)dt + hs / S(r)dr
0 0
max{S(u,u,v),S(Tu,Tuu),S(Tu,Tu,y),S(Tv,Tv,u),S(Tv,Tv,v) }
+ he c(r)dr,
0
(12)

Y
ﬁ @ Springer



236

Math Sci (2017) 11:231-240

for all u,v € X with nonnegative real numbers h; (i €
{1,2,3,4,5,6}) satisfying max{hy + hy + 3hy + hs +
3he,hi +h3 +hy+ he} <1. Then T has a unique fixed
point w € X and we have

lim T"u = w,

for each u € X.
Proof Let up € X and the sequence {u,} be defined as
T”uo = Uy.

Suppose that u,, # u,+ for all n. Using the inequality (12),
the condition ($2) and Lemma 2.1 we get

Sttt tny1) S(Tuty—1,Tuty—1,Tuty) S (U1 Un—1,Un)

¢(r)dr = ¢(r)dr < hy / S
0 0

Sty Uy ty—1) Sttty i)

+ hy 1)dt + h3 /
0 0

St 11 5Un—1) S(Unr1 3415

+ hy c(#)dt + hs
0 0

S(ttn st sttn1)

lim / ¢(r)dr =0,
n—oo
0

since h € (0,1). The condition (1) implies

lim S(up, y, tny1) = 0.

n—oo
By the similar arguments used in the proof of Theorem 2.4,
we see that the sequence {u, } is Cauchy. Then there exists
w € X such that

Iim T"ug = w,

n—oo

c(t)de

max{S(u— 1,1 ,Un) S (Ut sty —1 ) S (U 1ty 1 ) oS (Wt g 1 s 1 1), S (s 1 1 1)

+ he /
0

S(u»x—l sUn—1 -,Mn)

< (hy + hy + ha + he)

c(t)de

St 1 Ut 1,Un )

c()dt + (2hg + hs + 2he) / ¢(n)ds,

0 0
which implies since (X, S) is a complete S-metric space. From the
Sttt tins1) S 1t 1 1) inequality (12) we find
" (1)t < ( hy +hy 4+ hy + he > . <(r)dt. Sttt T0) S(Tutn 1, Tty 1, Tw) Sttt 1 W)
0 1 —2hy — hs — 2hs 0 ¢(ndt = c(nyde <y c(r)de
13 0 0 0
( ) Sttty ty—1) Sttty ,w)
If we put h = Juthothithe thep we find h<1 since hy + + by (t)dr + hs c(r)dr
4 5 6
hy + 3h4 + hs + 3he < 1. Using the inequality (13) we have 0 0
S(Tw. Tw,uy,_1) S(Tw,Tw,w)
Sttty tni1) S(uo,uo,ur) + hy ;(l‘)dl‘ + hs ;(l)dl

(r)ydr < b c(r)dr. (14)
o /

If we take limit for n — oo, using the inequality (14) we
get

ﬁ @ Springer

max{S (1 ,un—1,w),S Wty un—1),S (W 1y, w),S(Tw,Tw.1t,_1 ) S(Tw,Tw,w) }
+ he / c(r)de.
0

If we take limit for n — oo, using Lemma 2.1 we get
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S(Tw,Tw,w) S(Tw,Tw,w)

/ c()dt < (hg + hs + he) / ¢(r)dr,

0 0

which implies Tw = w since hy + hs + hg < 1.

Now we show the uniqueness of the fixed point. Let w;
be another fixed point of 7. Using the inequality (12) and
Lemma 2.1, we get

S(w,w,wy) S(Tw,Tw,Tw)) S(w,wwy)

c(r)dr = / c(r)dr <h / c(r)de
0 0 0
S(w,w,w) S(w,wwy)
+ Iy / c(r)dt + hy / c(r)dr
0 0

S(wiwi,w)
vy / <(1)dt +hs / <)t

3 .

max{S(w,w,w) .S(w‘w.w).S(w‘vtxw| ).S(wi,wi,w).S(wi wiwy)}

+ hg ¢(r)de,

S(wi,wi,wi)

which implies
S(w.w,wr) S(w,w,wy)

g(t)dt < (h1 4+ h3 + ha + he) g(t)dt.
0

(=)

Then we obtain

S(w,wow1)
/ ¢(r)dr =0,
0
that is, w = wy since h; + h3 + hy + hg < 1. Consequently,
T has a unique fixed point w € X. O
Remark 2.10
(1) In Theorem 2.9, if we set the function ¢ : [0,00) —
[0, 00) as
<(r) =1,

for all ¢ € [0, 00), then we obtain Theorem 4 in [6].

(2) Theorem 2.9 is a generalization of Theorem 2.4 on a
complete S-metric space. Indeed, if we take h; = h
and hp = hs = hy = hs = hg =0 in Theorem 2.9,
then we get Theorem 2.4.

(3) Since Theorem 2.9 is another generalization of
Theorem 2.4, Theorem 2.9 generalizes the classical
Banach’s fixed-point theorem.

(4) If we set the S-metric as S: X x X x X — C and
take the function ¢ : [0,00) — [0,00) as

() =1,

for all r € [0,00) in Theorem 2.9, then we get
Theorem 3.4 in [7].

In the following example we give a self-mapping sat-
isfying the conditions of Theorems 2.7 and 2.9, respec-
tively, but does not satisfy the condition of Theorem 2.4.

Example 2.11 Let R be the complete S-metric space with
the S-metric defined in Example 1 given in [9]. Let us
define the self-mapping 7 : R — R as
u+80 if wue{0,2}
Tu = . . )
75 if otherwise

for all ¥ € R and the function ¢ : [0,00) — [0, 00) as
c(r) =21,

for all 1 € [0,00). Then we get
€ €

/g(t)dt = /tht =&’ >0,

0 0

for each ¢ > 0. Therefore T satisfies the inequality (9) in
Theorem 2.7 for hy =h, =h3 =0, hy=7% and the
inequality (12) in Theorem 2.9 for hy = h3 = hy = hs = 0,
hy = hg = % Hence T has a unique fixed point u = 75. But
T does not satisfy the inequality (2) in Theorem 2.4.
Indeed, if we take u = 0 and v = 1, then we obtain

10 2
/ 2tdr = 100 gh/2tdt = 4h,
0 0

which is a contradiction since & € (0, 1).
Finally, we give another generalization of Theorem 2.4.

Theorem 2.12 Let (X, S) be a complete S-metric space,
the function ¢ : [0,00) — [0,00) be defined as in (1) and
T : X — X be a self-mapping of X such that

S(Tu,Tu,Tv) S(uu,v) S(Tu,Tu,u)
/ ¢(t)dt <hy / c(r)dt + hy / c(r)dt
0 0 0
S(Tv,Tv,v)
+ h3 / c(r)dt
0

+ h4 / Q(t)dt,

(=}

(15)

for all u,v € X with nonnegative real numbers h; (i €
{1,2,3,4}) satisfying h; + hy + h3 + 3hy<1. Then T has
a unique fixed point w € X and we have

IimT"'u = w,

n—oo

for each u € X.

Y
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Proof Let up € X and the sequence {u,} be defined as
T ug = u,.

Suppose that u,, # u,, for all n. Using the inequality (15),
the condition (S2) and Lemma 2.1 we get

Sttty Upg1) S(Tuy—1,Tuty—y Tuty) S(tty—1 1 ity

c(r)dt= c(n)dr <y
0 0 0

St 1 514n)
+ hy / ¢(t)dr + hs / c(r)dr
0 0

max{S (it ttn),S(Uns1,Unst Un—1)}

+ hy

c(r)de

S (Ut sty —1)

c(r)de
0
S(tty—1 1,14y

<h c(r)dr+hy ¢(r)dr
/ /

St 1 sty -1 3ty )

(=1

Un U Un+1

S(
+ h3 /
0

28 (ttyy sttty 1) FS (U1 U151 )
+ hy / c(r)dr

)
¢(r)dr

=}

which implies

Sttt 1) S (U1, Un—1,Un)

hy +hy + hy
cdt < | ———— c(t)dr.
s (P 0
0 0
(16)
If we put h:% then we find h<1 since

hy + hy + hy +3hy <1. Using the inequality (16) and
mathematical induction, we have

Sttt 1) S(uo,uo,u1)
/ c(r)de<h” / c(r)dr. (17)
0 0

Taking limit for n — oo and using the inequality (17) we
find

S(ttn st sttn1)
lim / ¢(r)dt =0,
n—oo
0

since h € (0,1). The condition (1) implies

ﬁ @ Springer

Him S(uy,, up, 1) = 0.

n—oo

By the similar arguments used in the proof of Theorem 2.4,
we see that the sequence {u, } is Cauchy. Then there exists
w € X such that

lim T"uy = w,
n—oo

since (X, S) is a complete S-metric space. From the
inequality (15) we find

S(ttn—1,tp—1,w)
ar<m [ cnar

0 0 0
S(Tw,Tw,w)
0

/ ¢(r)dr
0
max{S(u un,w),S(Tw,Tw,u,_1)}

+ hy / ¢(r)dr.
0

S(tty sty , Tw) S(Tuy—1,Tup—1,Tw)

S(tt st sttn—1)

+ hy / ¢(r)det + hs

If we take limit for n — oo, using Lemma 2.1 we get

S(Tw,Tw,w)

/ c(r)dr < (h3 + ha) / c(r)de,

0 0

S(Tw,Tw,w)

which implies Tw = w since hs + hy <1.

Now we show the uniqueness of the fixed point. Let w
be another fixed point of 7. Using the inequality (15) and
Lemma 2.1, we get

S(w,wowr) S(Tw,Tw,Twi) S(w,wowr)
/ c(t)dr = / c(n)dr < Iy / c(r)dr
0 0 0
S(w,w,w) S(wiwi,wi)
+ / S(1)dt + Iy / <(1)dr
0 0
max{S(w,w,wi),S(wi,wi,w)}
+ hs <(n)dr,
0
which implies
S(w,wowr) S(w,wwr)
/ s(t)dt < (hy + ha) / c(r)dr.
0 0
Then we obtain
S(w,wwi)
/ c(t)dr =0,
0
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that is, w = wy since h; + hs <1. Consequently, 7 has a p(f,h) = sup |f(u) — h(u)|. (21)
unique fixed point w € X. | u€la,b]
Remark 2.13 Similarly, we obtain
(1) If we set the function ¢ : [0,00) — [0, 00) in Theo- S(g,8,h) =2p(g,h) =2 sup |g(u) — h(u)

rem 2.12 as u€la,b]

s(t) =1, and

for all ¢ € [0, 00), then we obtain Theorem 2 in [6]. p(g:h) = sup |g(u) — h(u)|. (22)

(2) Theorem 2.12 is another generalization of Theo-
rem 2.4 on a complete S-metric space. Indeed, if we
take hy = h and h, = h3 = hy = 0 in Theorem 2.12,
then we get Theorem 2.4.

(3) Since Theorem 2.12 is another generalization of
Theorem 2.4, Theorem 2.12 generalizes the classical
Banach’s fixed-point theorem.

Let us consider the self-mapping 7: R — R and the
function ¢:[0,00) — [0,00) defined in Example 2.11.
Then T satisfy the contractive condition (15) in Theo-
rem 2.12 and so u = 75 is a unique fixed point of 7. Notice
that T does not satisfy the inequality (2) in Theorem 2.4.

An application to the Fredholm integral equation

In this section, we give an application of the contraction
condition (2) to the Fredholm integral equation

b

) = 1)+ 4 [ Klu (o), (18)

a

where y : [a,b] — R with —oco <a<b <00, k(u, f) which is
called the kernel of the integral equation (18) is continuous
on the squared region [a,b] X [a,b] with |k(u,t)|<M
(M > 0) and I(u) is continuous on [a, b].

Let Cla,b] ={f | f : [a, b] — Risacontinuousfunction}.
Now we define the function S: Cla,b] x Cla,b] x

Cla,b] — [0,00) by
S(f.g,h) = Zl[lpb]lf(u)* h(u)| + il[lpb|f( u) + h(u) — 2g(u)],
(19)

for all f, g,h € Cla, b]. Then the function § is an S-metric.
Now we show that this S-metric can not be generated by
any metric p. We assume that this S-metric is generated by
any metric p, that is, there exists a metric p such that

S(f8,h) = p(f,h) + p(g, h), (20)
for all f, g,h € Cla,b]. Then we get
S(fof h) =2p(f k) = 2 sup |f(u) — h(u)|

ucla,b

and

ucla,b

Using the equalities (20), (21) and (22), we find

SL[IIL]V(M) — h(u)| + S‘[lpb]|f(u) + h(u) — 2g(u)|
= sup |f(u) — h(u)| + sup |g(u) — h(u)],
u€la,b) u€(a,b]

which is a contradiction. Hence this S-metric is not gen-
erated by any metric p. Consequently, (Cla,b],S) is a
complete S-metric space.

Proposition 3.1 Let (Cla,b],S) be a complete S-metric
space with the S-metric defined in (19) and 7 be a real
number with

1
Mb—a)

Then the Fredholm integral equation (18) has a unique
solution y : [a,b] — R.

|4] <

Proof Let us define the function T : Cla,b] — Cla, b] as
b

Ty(u) = l(u) + i/k(u, 1)y(t)dr.

a

Now we show that T satisfies the contractive condition (2).
We get

S(Ty1,Ty1,Ty2) = 2 sup |Ty;(u) —

u€la,b]

b

= 2 sup |4 /
u€la,b]

<2iM sup] /(y1(u) —y2(u))dt

u€la,b

Tyz(u)l

— y2(u))dt

<2|A|M sup /\yl u)|dt
u€la,b)
b
<2|AIM sup [y (u) — y2(u)] /dt
u€la,b] .
< |AM(b — a)S(y1,y1,y2)

< Sy, y1,¥2)s

Y
ﬁ @ Springer
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which implies

S(Ty1,Ty1,Ty2) S(y1y1.y2)
¢(nde< / ¢(r)de.
0 0

Consequently, the contractive condition (2) is satisfied and
the Fredholm integral equation (18) has a unique solution
y. U

Now we give an example of Proposition 3.1.

Example 3.2 Let us consider the Fredholm integral
equation defined as

e

y(u)=e+ /”L/lnTuy(t)dt. (23)

Now we find a solution of the Fredholm integral equation
(23) with the initial condition yo(u) = 0. We solve this
equation for || < 1 since |'“7”| <1forall 1 <u,t<e. We
obtain

)’1(”) =e,

[
y2(u) :e—i—),/%edt:e—&—)nelnu,
i

[

ya(u) = e+l/¥(e+ﬂelnt)dt
1

12
= e—l—/lelnu—i—?elnu,

[ P

ya(u) = e—l—/l/%(e—i—/lelnt—&-?elnt)dt
1

/12 3
= e+/lelnu+?elnu+761nu,

YRE i
yn(u)e+ielnu{l+2+4+~-+2n]

(!

—>e+2 }elnu.

ﬁ @ Springer

Consequently, this is a solution of the Fredholm integral
equation (18) for |2|< 25 <1.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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