Constr. Approx. (2001) 17: 335–351 DOI: 10.1007/s003650010030

Approximation by *p*-Faber Polynomials in the Weighted Smirnov Class $E^p(G, \omega)$ and the Bieberbach Polynomials

D. M. Israfilov

Abstract. Let $G \subset C$ be a finite domain with a regular Jordan boundary *L*. In this work, the approximation properties of a *p*-Faber polynomial series of functions in the weighted Smirnov class $E^p(G, \omega)$ are studied and the rate of polynomial approximation, for $f \in E^p(G, \omega)$ by the weighted integral modulus of continuity, is estimated. Some application of this result to the uniform convergence of the Bieberbach polynomials π_n in a closed domain \overline{G} with a smooth boundary *L* is given.

1. Introduction

Let *G* be a finite domain in the complex plane bounded by a rectifiable Jordan curve *L*, let ω be a weight function on *L*, and let $1 . We denote by <math>L^p(L)$ and $E^p(G)$ the set of all measurable complex valued functions such that $|f|^p$ is Lebesgue integrable with respect to arclength, and the Smirnov class of analytic functions in *G*, respectively. Each function $f \in E^p(G)$ has a nontangential limit almost everywhere (a.e.) on *L*, and if we use the same notation for the nontangential limit of *f*, then $f \in L^p(L)$.

For p > 1, $L^{p}(L)$ and $E^{p}(G)$ are Banach spaces with respect to the norm

$$\|f\|_{E^{p}(G)} = \|f\|_{L^{p}(L)} := \left(\int_{L} |f(z)|^{p} |dz|\right)^{1/p}$$

For further properties, see [7, pp. 168–185] and [14, pp. 438–453].

Theorder of polynomial approximation in $E^p(G)$, $p \ge 1$, has been studied by several authors. In [27], Walsh and Russel give results when *L* is an analytic curve. For domains with sufficiently smooth boundary, namely when *L* is a smooth Jordan curve, and $\theta(s)$, the angle between the tangent and the positive real axis expressed as a function of arclength *s*, has modulus of continuity $\Omega(\theta, s)$ satisfying the Dini-smooth condition

(1)
$$\int_0^\delta \frac{\Omega(\theta,s)}{s} \, ds < \infty, \qquad \delta > 0$$

this problem, for p > 1, was studied by S. Y. Alper [1].

AMS classification: 41A10, 41A25, 41A58, 41A30, 30E10.

Date received: February 25, 1999. Date revised: October 20, 1999. Date accepted: May 26, 2000. Communicated by Ronald A. DeVore. Online publication: January 16, 2001.

Key words and phrases: Faber polynomials, Weighted Smirnov class, Bieberbach polynomials, Conformal mapping, Uniform convergence.

These results were later extended to the domains with regular boundary, which we define in Section 2, for p > 1 by V. M. Kokilashvili [21], and for $p \ge 1$ by J. E. Andersson [2]. Similar problems were also investigated in [18]. Let us emphasize that in these works, the Faber operator, Faber polynomials, and *p*-Faber polynomials were commonly used and the degree of polynomial approximation in $E^p(G)$ has been studied by applying various methods of summation to the Faber series of functions in $E^p(G)$. More extensive knowledge about them can be found in [11, pp. 40–57] and [26, pp. 52–236].

In [19] and [5], for domains with regular boundary we construct the approximants directly as the *n*th-partial sums of *p*-Faber polynomial series of $f \in E^p(G)$. In this work, the approximation properties of the *p*-Faber polynomial series expansions in the ω -weighted Smirnov class $E^p(G, \omega)$ of analytic functions in *G*, whose boundary is a regular Jordan curve, are studied. Under some restrictive conditions upon weighting functions the approximant polynomials are obtained directly as the *n*th-partial sums of *p*-Faber polynomial series of $f \in E^p(G, \omega)$. The degree of this approximation is estimated by a weighted integral modulus of continuity. The results to be obtained in this work are also new in the nonweighted case $\omega = 1$. Finally, applying this result we give a result which improves Mergelyan's estimation about the uniform convergence of the Bieberbach polynomials in the closed domain \overline{G} with a smooth boundary *L*.

2. Some Definitions, Notations, and Auxiliary Results

Let *G* be a finite domain in the complex plane bounded by a rectifiable Jordan curve *L*, let *U* be the unit disk, $G^- := \operatorname{Ext} L$, $T := \partial U$, $U^- := \operatorname{Ext} T$, $1 , and let <math>\omega$ be a weight function on *L*, that is, a nonnegative measurable function on *L*. We denote by φ the conformal mapping of G^- onto U^- normalized by $\varphi(\infty) = \infty$ and $\lim_{z\to\infty} \varphi(z)/z > 0$. Let $\psi(w)$ be the inverse to $\varphi(z)$. The functions φ and ψ have continuous extensions to *L* and *T*, their derivatives $\varphi'(z)$ and $\psi'(w)$ have definite nontangential limit values on *L* and *T* a.e., and they are integrable with respect to the Lebesgue measure on *L* and *T*, respectively [14, pp. 419, 438].

We shall use c, c_1, c_2, \ldots to denote constants (in general, different in different relations) depending only on numbers that are not important for the questions of interest.

Definition 1. *L* is called regular if there exists a number c > 0 such that for every r > 0, sup{ $|L \cap D(z, r)| : z \in L$ } $\leq cr$, where D(z, r) is an open disk with radius *r* and centered at *z*, and $|L \cap D(z, r)|$ is the length of the set $L \cap D(z, r)$.

We denote by *S* the set of all regular Jordan curves in the complex plane.

Definition 2. Let ω be a weight function on *L*. ω is said to satisfy Muckenhoupt's A_p -conditions on *L* if

$$\sup_{z \in L} \sup_{r>0} \left(\frac{1}{r} \int_{L \cap D(z,r)} \omega(\varsigma) |d\varsigma| \right) \left(\frac{1}{r} \int_{L \cap D(z,r)} [\omega(\varsigma)]^{-1/(p-1)} |d\varsigma| \right)^{p-1} < \infty$$

Let us denote by $A_p(L)$ the set of all weight functions satisfying Muckenhoupt's A_p -conditions on L.

337

It is obvious that if $\omega \in A_p(L)$ then $\omega^{-1/p} \in L^{p/(p-1)}(L)$. Let $f \in L^1(L)$. Then the functions f^+ and f^- defined by

$$f^+(z) = \frac{1}{2\pi i} \int_L \frac{f(\varsigma)}{\varsigma - z} d\varsigma, \qquad z \in G,$$

and

$$f^{-}(z) = \frac{1}{2\pi i} \int_{L} \frac{f(\varsigma)}{\varsigma - z} d\varsigma, \qquad z \in G^{-},$$

are analytic in G and G^- , respectively, and $f^-(\infty) = 0$. When $z_0 \in L$, if the limit of the integral

$$\frac{1}{2\pi i}\int_{L\cap\{\varsigma:|\varsigma-z_0|>\varepsilon\}}\frac{f(\varsigma)}{\varsigma-z_0}\,d\varsigma$$

exists as $\varepsilon \to 0$, this limit is called Cauchy's singular integral of

$$\frac{1}{2\pi i} \int_{L} \frac{f(\varsigma)}{\varsigma - z} \, d\varsigma$$

at $z_0 \in L$, and it is denoted by $S_L(f)(z_0)$. Namely,

$$S_L(f)(z_0) := (P.V.) \frac{1}{2\pi i} \int_L \frac{f(\varsigma)}{\varsigma - z_0} d\varsigma := \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{L \cap \{\varsigma: |\varsigma - z_0| > \epsilon\}} \frac{f(\varsigma)}{\varsigma - z_0} d\varsigma$$

According to the celebrated Privalov theorem [14, p. 431], if one of the functions $f^+(z)$ and $f^-(z)$ has a nontangential limit on L a.e., then $S_L(f)(z)$ exists a.e. on L, and also the other one of the functions $f^+(z)$ and $f^-(z)$ has a nontangential limit on L a.e. Conversely, if $S_L(f)(z)$ exists a.e. on L, then the functions $f^+(z)$ and $f^-(z)$ have nontangential limits a.e. on L. In both cases, the formulas

$$f^+(z) = S_L(f)(z) + \frac{1}{2}f(z)$$
 and $f^-(z) = S_L(f)(z) - \frac{1}{2}f(z)$

hold a.e. on L.

Definition 3. The set $L^p(L, \omega) := \{f \in L^1(L) : |f|^p \omega \in L^1(L)\}$ is called the ω -weighted L^p -space.

Definition 4. The set $E^p(G, \omega) := \{f \in E^1(G) : f \in L^p(L, \omega)\}$ is called the ω -weighted Smirnov class of order p of analytic functions in G.

As was noted in [9, p. 89], the Cauchy singular integrals hold the following result, which is analogously deduced from [6].

Theorem 1. Let $L \in S$, $1 , and let <math>\omega$ be a weight function on L. The inequality

$$\|S_L(f)\|_{L^p(L,\omega)} \le c_1 \|f\|_{L^p(L,\omega)}$$

holds for every $f \in L^p(L, \omega)$ if and only if $\omega \in A_p(L)$.

Lemma 2. If $f \in L^{p}(L, \omega)$ and $\omega \in A_{p}(L)$, then there exists a number r > 1 such that $f \in L^{r}(L)$.

Proof. Since $\omega \in A_p(L)$, there exists a number $q \in (1, p)$ such that $\omega \in A_q(L)$ [23] (see also [9, p. 49]). Let r := p/q. Since $f \in L^p(L, \omega)$, we have $|f|^r \omega^{1/q} \in L^q(L)$. On the other hand, since $\omega^{-(1/q)} \in L^{q/(q-1)}(L)$, Hölder's inequality shows that $f \in L^r(L)$.

Lemma 3. If $L \in S$ and $\omega \in A_p(L)$, then $f^+ \in E^p(G, \omega)$ and $f^- \in E^p(G^-, \omega)$ for each $f \in L^p(L, \omega)$.

Proof. Let $f \in L^p(L, \omega)$. According to Theorem 1, we have $S_L(f) \in L^p(L, \omega)$. On the other hand, by Lemma 1, there exists a number r > 1 such that $f \in L^r(L)$. Since $1 < r < \infty$ and $L \in S$, $S_L : L^r(L) \to L^r(L)$ is a bounded linear operator [6]. Therefore, owing to Havin's work [16] (see also [6, p. 176]), the functions f^+ and f^- belong to $E^r(G)$ and $E^r(G^-)$, respectively. Furthermore, since $f^+(z) = S_L(f)(z) + \frac{1}{2}f(z)$ and $f^-(z) = S_L(f)(z) - \frac{1}{2}f(z)$ hold a.e. on L, it follows that f^+ and f^- are members of $L^p(L, \omega)$. This yields the required result, because $E^r(G) \subset E^1(G)$ and $E^r(G^-) \subset$ $E^1(G^-)$.

3. *p*-Faber Polynomials for \overline{G} and *p*-Faber Polynomial Series Expansions in $E^p(G, \omega)$

Let *k* be a nonnegative integer. Then the function $\varphi^k(z)(\varphi'(z))^{1/p}$ has a pole of order *k* at the point ∞ . So there exists a polynomial $F_{k,p}(z)$ of degree *k* and an analytic function $E_{k,p}(z)$ in G^- such that $E_{k,p}(\infty) = 0$ and $\varphi^k(z)(\varphi'(z))^{1/p} = F_{k,p}(z) + E_{k,p}(z)$ for every $z \in G^-$. The polynomials $F_{k,p}(z)$ (k = 0, 1, 2, ...) are called *p*-Faber polynomials for \overline{G} (see [2]). By means of Cauchy's integral formula, it is easily seen that

$$F_{k,p}(z) = \frac{1}{2\pi i} \int_{L_R} \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} d\varsigma = \frac{1}{2\pi i} \int_{|w|=R} \frac{w^k (\psi'(w))^{1-1/p}}{\psi(w) - z} dw,$$

for R > 1 and every $z \in \text{Int } L_R$, where $L_R := \{z \in G^- : |\varphi(z)| = R\}$.

Lemma 4. If $z \in G$ and $w \in U^-$, then

$$\frac{(\psi'(w))^{1-1/p}}{\psi(w)-z} = \sum_{k=0}^{\infty} \frac{F_{k,p}(z)}{w^{k+1}}.$$

Proof. Let us take $z \in G$. Since the function

$$\frac{(\psi'(w))^{1-1/p}}{\psi(w)-z}$$

is analytic in U^- and it is normalized with $\psi(\infty) = \infty$ and $\lim_{w\to\infty} \psi(w)/w > 0$, its Laurent series expansion in U^- is of the form

$$\sum_{k=0}^{\infty} \frac{A_{k,p}(z)}{w^{k+1}}$$

and this series converges to

$$\frac{(\psi'(w))^{1-1/p}}{\psi(w)-z}$$

uniformly on compact subsets of U^- . So, for R > 1 and a nonnegative integer *n*, we obtain

$$\frac{1}{2\pi i} \int_{|w|=R} \frac{w^n (\psi'(w))^{1-1/p}}{\psi(w)-z} \, dw = \sum_{k=0}^\infty \left(\frac{1}{2\pi i} \int_{|w|=R} \frac{w^n}{w^{k+1}} \, dw\right) A_{k,p}(z) = A_{n,p}(z).$$

This shows that $F_{n,p}(z) = A_{n,p}(z)$ for n = 0, 1, 2, ..., and so the proof is completed.

Lemma 5. If $z \in G^-$, then

$$\lim_{n \to \infty} \int_{L_{1+1/n}} \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} \, d\varsigma = \int_L \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} \, d\varsigma,$$

for $k = 0, 1, 2, \ldots$

Proof. Let

$$\varphi_n(\theta) := \frac{i(1+1/n)^{k+1}e^{i(k+1)\theta}(\psi'((1+1/n)e^{i\theta}))^{1-1/p}}{\psi((1+1/n)e^{i\theta}) - z}.$$

It is obvious that the sequence $\{\varphi_n(\theta)\}$ converges a.e. to the function

$$\frac{ie^{i(k+1)\theta}(\psi'(e^{i\theta}))^{1-1/p}}{\psi(e^{i\theta})-z}$$

on the segment $[0, 2\pi]$, and

$$\int_{L_{1+1/n}} \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma-z} \, d\varsigma = \int_0^{2\pi} \varphi_n(\theta) \, d\theta.$$

On the other hand, it is easily proved that the sequence

$$\left\{\int_0^{2\pi} |\varphi_n(\theta)|^{p/(p-1)} \, d\theta\right\}$$

is bounded with respect to n. Thus, by the test for the possibility of taking the limit under the Lebesgue integral sign given in [14, p. 390] we obtain

$$\lim_{n\to\infty}\int_0^{2\pi}\varphi_n(\theta)\,d\theta=\int_0^{2\pi}\frac{ie^{i(k+1)\theta}(\psi'(e^{i\theta}))^{1-1/p}}{\psi(e^{i\theta})-z}\,d\theta.$$

This gives us

$$\lim_{n \to \infty} \int_{L_{1+1/n}} \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} \, d\varsigma = \int_L \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} \, d\varsigma.$$

Finally, we prove the following lemma for the integral representation of p-Faber polynomials in G^- .

Lemma 6. If $z \in G^-$, then

$$F_{k,p}(z) = \varphi^{k}(z)(\varphi'(z))^{1/p} + \frac{1}{2\pi i} \int_{L} \frac{\varphi^{k}(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} d\varsigma,$$

for $k = 0, 1, 2, \ldots$

Proof. The case $z = \infty$ is trivial. Let $z \in G^- \setminus \{\infty\}$. If R > 1 and the natural numbers *n* are chosen big enough, *z* becomes an interior point of the doubly connected domain with the boundary $L_R \cup L_{1+1/n}$. So, by Cauchy's integral formula we have

$$\frac{1}{2\pi i} \int_{L_R} \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} d\varsigma = \varphi^k(z)(\varphi'(z))^{1/p} + \frac{1}{2\pi i} \int_{L_{1+1/n}} \frac{\varphi^k(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} d\varsigma$$

and hence by Lemma 4 we obtain

$$F_{k,p}(z) = \varphi^{k}(z)(\varphi'(z))^{1/p} + \frac{1}{2\pi i} \int_{L} \frac{\varphi^{k}(\varsigma)(\varphi'(\varsigma))^{1/p}}{\varsigma - z} d\varsigma.$$

The lemma is proved.

Let $f \in E^p(G, \omega)$. Since $f \in E^1(G)$, we have for every $z \in G$:

$$f(z) = \frac{1}{2\pi i} \int_{L} \frac{f(\varsigma)}{\varsigma - z} d\varsigma = \frac{1}{2\pi i} \int_{T} f(\psi(w))(\psi'(w))^{1/p} \frac{(\psi'(w))^{1-1/p}}{\psi(w) - z} dw.$$

On the other hand, since

$$\frac{(\psi'(w))^{1-1/p}}{\psi(w) - z} = \sum_{k=0}^{\infty} \frac{F_{k,p}(z)}{w^{k+1}}$$

for $w \in U^-$ and $z \in G$, if we define the coefficients $a_k(f)$ by

$$a_k(f) := \frac{1}{2\pi i} \int_T \frac{f(\psi(w))(\psi'(w))^{1/p}}{w^{k+1}} \, dw, \qquad k = 0, 1, 2, \dots,$$

we can associate a formal series

$$\sum_{k=0}^{\infty} a_k(f) F_{k,p}(z),$$

in the particular case with the function $f \in E^p(G, \omega)$, i.e.,

$$f(z) \sim \sum_{k=0}^{\infty} a_k(f) F_{k,p}(z)$$

This formal series is called the *p*-Faber polynomial series expansion of f, and the coefficients $a_k(f)$ are said to be the *p*-Faber coefficients of f.

4. Main Results

Let $g \in L^p(T, \omega)$ and $\omega \in A_p(T)$. Since $L^p(T, \omega)$ is noninvariant with respect to the usual shift, we consider the following mean value function as a shift for $g \in L^p(T, \omega)$:

$$g_h(w) := \frac{1}{2h} \int_{-h}^{h} g(w e^{it}) dt, \qquad 0 < h < \pi, \qquad w \in T.$$

Using the relation (see, e.g., [9, p. 110]):

$$\|g_h\|_{L^p(T,\omega)} \le c_p \|g\|_{L^p(T,\omega)}, \qquad 1$$

we get that $g_h \in L^p(T, \omega)$.

Definition 5. If $g \in L^p(T, \omega)$ and $\omega \in A_p(T)$, then the function $\Omega_{p,\omega}(g, \cdot) : [0, \infty) \to [0, \infty)$, defined by

$$\Omega_{p,\omega}(g,\delta) := \sup\{ \|g - g_h\|_{L^p(T,\omega)}, h \le \delta \}, \qquad 1$$

is called the ω -weighted integral modulus of continuity of order p for g.

Note that the idea of defining such a modulus of continuity originates from [29]. It can be shown easily that $\Omega_{p,\omega}(g, \cdot)$ is a continuous nonnegative nondecreasing function satisfying the conditions

$$\lim_{\delta \to 0} \Omega_{p,\omega}(g,\delta) = 0, \qquad \Omega_{p,\omega}(g_1 + g_2, \cdot) \le \Omega_{p,\omega}(g_1, \cdot) + \Omega_{p,\omega}(g_2, \cdot).$$

Lemma 7. If $g \in L^p(T, \omega)$ and $\omega \in A_p(T)$, then

$$\Omega_{p,\omega}(S_T(g),\cdot) \leq c_2 \Omega_{p,\omega}(g,\cdot).$$

Proof. Let $\delta \in (0, \pi)$, $h < \delta$, and $w \in T$. Applying the Fubini theorem we have

$$[S_T(g)]_h(w) = \frac{1}{2h} \int_{-h}^{h} S_T(g(we^{i\theta})) d\theta$$

= $\frac{1}{2h} \int_{-h}^{h} \frac{1}{2\pi i} \left((P.V.) \int_T \frac{g(\tau) d\tau}{\tau - we^{i\theta}} \right) d\theta$
= $\frac{1}{2h} \int_{-h}^{h} \frac{1}{2\pi i} \left((P.V.) \int_T \frac{g(\tau e^{i\theta})e^{i\theta} d\tau}{\tau e^{i\theta} - we^{i\theta}} \right) d\theta$

D. M. Israfilov

$$= \frac{1}{2h} \int_{-h}^{h} \frac{1}{2\pi i} \left((P.V.) \int_{T} \frac{g(\tau e^{i\theta}) d\tau}{\tau - w} \right) d\theta$$

$$= \frac{1}{2\pi i} (P.V.) \int_{T} \frac{(1/2h) \int_{-h}^{h} g(\tau e^{i\theta}) d\theta}{\tau - w} d\tau$$

$$= \frac{1}{2\pi i} (P.V.) \int_{T} \frac{g_{h}(\tau)}{\tau - w} d\tau = [S_{T}(g_{h})](w).$$

Therefore,

$$[S_T g](w) - [S_T (g)]_h(w) = [S_T (g - g_h)](w),$$

and by virtue of Theorem 1 we obtain

$$\|S_T(g) - [S_T(g)]_h\|_{L^p(T,\omega)} = \|S_T(g - g_h)\|_{L^p(T,\omega)} \le c_2 \|g - g_h\|_{L^p(T,\omega)}.$$

The last inequality shows that

$$\Omega_{p,\omega}(S_T(g),\cdot) \leq c_2 \Omega_{p,\omega}(g,\cdot),$$

and the proof is completed.

Lemma 8. If $g \in L^p(T, \omega)$ and $\omega \in A_p(T)$, then

$$\Omega_{p,\omega}(g^+,\cdot) \le (c_2 + \frac{1}{2})\Omega_{p,\omega}(g,\cdot).$$

Proof. Since $g^+ = \frac{1}{2}g + S_T(g)$ a.e. on *T*, by means of Lemma 6 we obtain

$$\Omega_{p,\omega}(g^+,\cdot) \leq (c_2 + \frac{1}{2})\Omega_{p,\omega}(g,\cdot).$$

Lemma 9. Let $g \in E^p(U, \omega)$ and $\omega \in A_p(T)$. If

$$\sum_{k=0}^n \alpha_k(g) w^k$$

is the nth partial sum of the Taylor series of g at the origin, then there exists a constant $c_3 > 0$, such that

$$\left\|g(w)-\sum_{k=0}^{n}\alpha_{k}(g)w^{k}\right\|_{L^{p}(T,\omega)}\leq c_{3}\Omega_{p,\omega}\left(g,\frac{1}{n}\right),$$

for every natural number n.

Proof. Let

$$\sum_{k=-\infty}^{\infty}\beta_k e^{ik\theta}$$

p-Faber Polynomials in the Weighted Smirnov Class $E^p(G, \omega)$ and the Bieberbach Polynomials

343

be the Fourier series of $g \in E^p(U, \omega)$ and

$$S_n(g,\theta) := \sum_{k=-n}^n \beta_k e^{ik\theta}$$

be its *n*th-partial sum. Since $g \in E^1(U)$, we have $\beta_k = 0$ for k < 0, and $\beta_k = \alpha_k(g)$ for $k \ge 0$ [7, p. 38]. Hence

(2)
$$\left\| g(w) - \sum_{k=0}^{n} \alpha_{k}(g) w^{k} \right\|_{L^{p}(T,\omega)} = \| g(e^{i\theta}) - S_{n}(g,\theta) \|_{L^{p}([0,2\pi],\omega)}$$

Now, let $T_n^*(\theta)$ be the best approximate trigonometric polynomial for $g(e^{i\theta})$ in $L^p([0, 2\pi], \omega)$. That is,

(3)
$$\|g(e^{i\theta}) - T_n^*(\theta)\|_{L^p([0,2\pi],\omega)} = E_{n,p}(g,\omega),$$

where $E_{n,p}(g, \omega) := \inf\{\|g(e^{i\theta}) - T(\theta)\|_{L^p([0,2\pi],\omega)} : T \in \Pi_n\}$ denotes the minimal error in approximating *g* by trigonometric polynomials of degree at most *n*. Then from (2) we get

(4)
$$\left\| g(w) - \sum_{k=0}^{n} \alpha_{k}(g) w^{k} \right\|_{L^{p}(T,\omega)} \leq \| g(e^{i\theta}) - T_{n}^{*}(\theta) \|_{L^{p}([0,2\pi],\omega)} + \| S_{n}(g - T_{n}^{*},\theta) \|_{L^{p}([0,2\pi],\omega)}$$

On the other hand, under the condition $\omega \in A_p(T)$ the result [17] (see also [9, p. 108]) states that, for every $g \in L^p([0, 2\pi], \omega)$:

$$\sup_{n\geq 0} |S_n(g,\theta)| \Big\|_{L^p([0,2\pi],\omega)} \leq c_4 \|g\|_{L^p([0,2\pi],\omega)}.$$

By applying this inequality to the function $g - T_n^*$ and taking into account the relation (3), from (4) we get

(5)
$$\left\|g(w) - \sum_{k=0}^{n} \alpha_{k}(g)w^{k}\right\|_{L^{p}(T,\omega)} \leq (c_{4}+1)E_{n,p}(g,\omega).$$

Further, using the estimation

$$E_{n,p}(g,\omega) \leq c_5 \Omega_{p,\omega}\left(g,\frac{1}{n}\right),$$

which was proved in [15, Theorem 1.4], from (5) we obtain

$$\left\|g(w)-\sum_{k=0}^{n}\alpha_{k}(g)w^{k}\right\|_{L^{p}(T,\omega)}\leq c_{3}\Omega_{p,\omega}\left(g,\frac{1}{n}\right).$$

The lemma is proved.

D. M. Israfilov

Now, for $w \in T$, we set

$$\omega_0(w) := \omega(\psi(w)), \qquad f_0(w) := f(\psi(w))(\psi'(w))^{1/p},$$

and state the main theorem in our work.

Theorem 10. Let $f \in E^p(G, \omega)$ and let

$$S_n(f, z) := \sum_{k=0}^n a_k(f) F_{k,p}(z)$$

be the nth partial sums of its p-Faber polynomial series expansion. If $L \in S$, $\omega \in A_p(L)$, and $\omega_0 \in A_p(T)$, then there exists a constant $c_6 > 0$ such that

$$\|f - S_n(f, \cdot)\|_{L^p(L,\omega)} \le c_6 \Omega_{p,\omega_0}\left(f_0, \frac{1}{n}\right)$$

for every natural number n.

Proof. It is obvious that $f_0 \in L^p(T, \omega_0)$. Let us consider the functions f_0^+ and f_0^- defined by

$$f_0^+(w) := \frac{1}{2\pi i} \int_T \frac{f_0(\tau)}{\tau - w} d\tau, \qquad w \in U,$$

and

$$f_0^-(w) := \frac{1}{2\pi i} \int_T \frac{f_0(\tau)}{\tau - w} d\tau, \qquad w \in U^-.$$

Let $a_k(f)$ be the *k*th *p*-Faber coefficient of $f \in E^p(G, \omega)$. Since by Lemma 2, $f_0^+ \in E^p(U, \omega_0)$ and $f_0^- \in E^p(U^-, \omega_0)$, moreover, $f_0^-(\infty) = 0$ and $f_0 = f_0^+ - f_0^-$ a.e. on *T*, and

$$a_k(f) := \frac{1}{2\pi i} \int_T \frac{f_0(\tau)}{\tau^{k+1}} d\tau,$$

we obtain

$$a_k(f) = \frac{1}{2\pi i} \int_T \frac{f_0^+(\tau)}{\tau^{k+1}} d\tau$$

It is seen that the *k*th *p*-Faber coefficient of $f \in E^p(G, \omega)$ is the *k*th Taylor coefficient of $f_0^+ \in E^p(U, \omega_0)$ at the origin. On the other hand, the assumption $f \in E^p(G, \omega)$ implies

$$\int_{L} \frac{f(\varsigma)}{\varsigma - z'} d\varsigma = 0, \qquad z' \in G^{-},$$

and considering $f_0 = f_0^+ - f_0^-$ a.e. on T:

(6)
$$f(\varsigma) = (f_0^+(\varphi(\varsigma)) - f_0^-(\varphi(\varsigma)))(\varphi'(\varsigma))^{1/p}$$

holds a.e. on L.

Let us take a $z' \in G^-$. By means of Lemma 5 we obtain

$$\begin{split} \sum_{k=0}^{n} a_{k}(f) F_{k,p}(z') &= (\varphi'(z'))^{1/p} \sum_{k=0}^{n} a_{k}(f) \varphi^{k}(z') \\ &+ \frac{1}{2\pi i} \int_{L} \frac{(\varphi'(\varsigma))^{1/p} \sum_{k=0}^{n} a_{k}(f) \varphi^{k}(\varsigma)}{\varsigma - z'} \, d\varsigma, \\ -\frac{1}{2\pi i} \int_{L} \frac{f(\varsigma)}{\varsigma - z'} \, d\varsigma &= (\varphi'(z'))^{1/p} \sum_{k=0}^{n} a_{k}(f) \varphi^{k}(z') \\ &+ \frac{1}{2\pi i} \int_{L} \frac{(\varphi'(\varsigma))^{1/p} \sum_{k=0}^{n} a_{k}(f) \varphi^{k}(\varsigma)}{\varsigma - z'} \, d\varsigma \\ &- \frac{1}{2\pi i} \int_{L} \frac{(\varphi'(\varsigma))^{1/p} f_{0}^{+}(\varphi(\varsigma))}{\varsigma - z'} \, d\varsigma \\ &+ \frac{1}{2\pi i} \int_{L} \frac{(\varphi'(\varsigma))^{1/p} f_{0}^{-}(\varphi(\varsigma))}{\varsigma - z'} \, d\varsigma. \end{split}$$

Since

$$\frac{1}{2\pi i} \int_{L} \frac{(\varphi'(\varsigma))^{1/p} f_0^{-}(\varphi(\varsigma))}{\varsigma - z'} d\varsigma = -(\varphi'(z'))^{1/p} f_0^{-}(\varphi(z'))$$

we get

$$\begin{split} \sum_{k=0}^{n} a_{k}(f) F_{k,p}(z') &= (\varphi'(z'))^{1/p} \sum_{k=0}^{n} a_{k}(f) \varphi^{k}(z') \\ &+ \frac{1}{2\pi i} \int_{L} \frac{(\varphi'(\varsigma))^{1/p} [\sum_{k=0}^{n} a_{k}(f) \varphi^{k}(\varsigma) - f_{0}^{+}(\varphi(\varsigma))]}{\varsigma - z'} d\varsigma \\ &- (\varphi'(z'))^{1/p} f_{0}^{-}(\varphi(z')). \end{split}$$

Taking the limit as $z' \rightarrow z$ along all nontangential paths outside L, it appears that

$$\sum_{k=0}^{n} a_{k}(f)F_{k,p}(z) = \frac{1}{2}(\varphi'(z))^{1/p} \left[\sum_{k=0}^{n} a_{k}(f)\varphi^{k}(z) - f_{0}^{+}(\varphi(z)) \right] \\ + [f_{0}^{+}(\varphi(z)) - f_{0}^{-}(\varphi(z))](\varphi'(z))^{1/p} \\ + S_{L} \left[(\varphi')^{1/p} \left(\sum_{k=0}^{n} a_{k}(f)\varphi^{k} - f_{0}^{+} \circ \varphi \right) \right](z)$$

holds on L a.e. Further, taking relation (6) into account, and applying Minkowski's inequality and Theorem 1, from the last equality we obtain

$$\|f - S_n(f, \cdot)\|_{L^p(L,\omega)} \le (c_1 + \frac{1}{2}) \left\| f_0^+(w) - \sum_{k=0}^n \alpha_k(f) w^k \right\|_{L^p(T,\omega_0)}.$$

Now, the proof follows from Lemmas 8 and 7.

Note that if *L* is a sufficiently smooth curve then one out of the conditions $\omega \in A_p(L)$ and $\omega_0 \in A_p(T)$ may be omitted in the above Theorem 2. In particular, the following theorem holds.

Theorem 11. Let *L* be the smooth boundary satisfying condition (1). If $f \in E^p(G, \omega)$, and one out of the conditions $\omega \in A_p(L)$ and $\omega_0 \in A_p(T)$ holds, then there exists a constant $c_7 > 0$ such that

$$\|f-S_n(f,\cdot)\|_{L^p(L,\omega)} \leq c_7 \Omega_{p,\omega_0}\left(f_0,\frac{1}{n}\right).$$

Proof. According to Theorem 2 it is sufficient to prove the equivalence of the conditions $\omega \in A_p(L)$ and $\omega_0 \in A_p(T)$. Since the boundary *L* is smooth, it can be shown easily that the condition $\omega \in A_p(L)$ is equivalent to the inequality

(7)
$$\left(\frac{1}{|I|} \int_{I} \omega(\varsigma) |d\varsigma|\right) / \left(\frac{1}{|I|} \int_{I} [\omega(\varsigma)]^{-1/(p-1)} |d\varsigma|\right)^{p-1} \le c < \infty$$
 for every arc $I \subset L$,

On the other hand, under the restrictive conditions upon L, by the result [28]:

$$0 < c_8 \le |\psi'(w)| \le c_9 < \infty$$
 for every $|w| \ge 1$,

and from this we have

$$\begin{aligned} |\psi(I)| &= \int_{I} |\psi'(w)| |d_{w}| \le c_{9} |I|, \\ |I| &= \int_{\psi(I)} |\varphi'(z)| |d_{z}| \le \frac{|\psi(I)|}{c_{8}}, \end{aligned}$$

for every arc $I \subset T$.

Substituting $\zeta = \psi(w)$ in (7) and using the last three relations, as result of simple computations we obtain the desired equivalence.

5. Application to the Uniform Convergence of the Bieberbach Polynomials in Closed Domains with Smooth Boundary

Let *G* be a finite simply connected domain of the complex plane *C* and let $z_0 \in G$. By the Riemann mapping theorem, there exists a unique conformal mapping $w = \varphi_0(z)$ of *G* onto $D(0, r_0) := \{w : |w| < r_0\}$ with the normalization $\varphi_0(z_0) = 0$, $\varphi'_0(z_0) = 1$. The radius r_0 of this disk is called the conformal radius of *G* with respect to z_0 . Let $\psi_0(w)$ be the inverse to $\varphi_0(z)$.

For an arbitrary function f given on G and p > 0 we set

$$\|f\|_{\overline{G}} := \sup\{|f(z)|, z \in \overline{G}\}, \qquad \|f\|_{L_{2}(G)}^{2} := \iint_{G} |f(z)|^{2} d\sigma_{z},$$
$$\|f\|_{L_{2}^{1}(G)}^{2} := \iint_{G} |f'(z)|^{2} d\sigma_{z}, \qquad d\sigma_{z} = dx \, dy.$$

It is well known that the function $\varphi_0(z)$ minimizes the integral $||f||^2_{L^1_1(G)}$ in the class of all functions analytic in G with the normalization $f(z_0) = 0$, $f'(z_0) = 1$. On the other hand, let Π_n be the class of all polynomials p_n of degree at most n satisfying the conditions $p_n(z_0) = 0$, $p'_n(z_0) = 1$. Then the integral $||p_n||^2_{L^1_n(G)}$ is minimized in Π_n by a unique polynomial π_n which is called the *n*th Bieberbach polynomial for the pair $(G, z_0).$

If G is a Carathéodory domain, then $\|\varphi_0 - \pi_n\|_{L^1(G)} \to 0 \ (n \to \infty)$ and from this it follows that $\pi_n(z) \to \varphi_0(z)$ $(n \to \infty)$ for $z \in G$, uniformly on compact subsets of G.

First of all, the uniform convergence of the sequence $\{\pi_n\}_{n=1}^{\infty}$ in \overline{G} was investigated by M. V. Keldych. He showed [20] that if the boundary L of G is a smooth Jordan curve with bounded curvature then the following estimate holds for every $\varepsilon > 0$:

$$\|\varphi_0-\pi_n\|_{\overline{G}}\leq \frac{c_{10}}{n^{1-\varepsilon}}.$$

In [20] the author also gives an example of domains G with a Jordan rectifiable boundary L for which the appropriate sequence of the Bieberbach polynomials diverges on a set which is everywhere dense in L.

Furthermore, S. N. Mergelyan [22] has shown that the Bieberbach polynomials satisfy

(8)
$$\|\varphi_0 - \pi_n\|_{\overline{G}} \le \frac{c_{11}}{n^{1/2-\varepsilon}}$$

for every $\varepsilon > 0$, whenever L is a smooth Jordan curve.

In addition to this the author [22] noted it is possible to replace the exponent $\frac{1}{2} - \varepsilon$ in (8) by $1 - \varepsilon$.

Therefore the uniform convergence of the sequence $\{\pi_n\}_{n=1}^{\infty}$ in \overline{G} and the estimate of the error $\|\varphi_0 - \pi_n\|_{\overline{G}}$ depend on the geometric properties of boundary L. If L has a certain degree of smoothness, this error tends to zero with a certain speed. In several papers (see, e.g., [25], [24], [3], [4], [12], [13]) various estimates of the error $\|\varphi_0 - \pi_n\|_{\overline{G}}$ and sufficient conditions on the geometry of the boundary L are given to guarantee the uniform convergence of the Bieberbach polynomials on \overline{G} . More extensive knowledge about them can be found in [4], [12].

To the best of the author's knowledge in the literature there are no results improving the above cited Mergelyan's result yet. In this section, applying Theorem 2, we give a result which improves estimate (8).

For the mapping φ_0 and a weight function ω we set

$$\varepsilon_n(\varphi'_0)_2 := \inf_{p_n} \|\varphi'_0 - p_n\|_{L_2(G)}, \qquad E_n^{\circ}(\varphi'_0, \omega)_2 := \inf_{p_n} \|\varphi'_0 - p_n\|_{L^2(L, \omega)},$$

where inf is taken over all polynomials p_n of degree at most n.

At first we prove the following result, about the A_p -properties of the conformal maps φ_0 and φ .

Lemma 12. Let G be a finite domain with a smooth boundary L. Then the functions $1/|\varphi'_0|$ and $1/|\varphi'|$ belong to $A_p(L)$ for every $p \in (1, \infty)$.

Proof. We prove only the relation $1/|\varphi'_0| \in A_p(L)$. The other relation is proved similarly. Moreover, taking into account the property $A_{p_1}(L) \subset A_{p_2}(L)$ for $p_1 < p_2$, it is sufficient to consider the case 1 .

Since *L* is smooth, Theorem 3 of [10] states that, for every p > 1:

(9)
$$|\varphi'|, |\varphi'_0| \in A_p(L)$$
 and $|\psi'_0| \in A_p(\partial D(0, r_0)).$

It is easy to verify that the relation $|\psi'_0| \in A_p(\partial D(0, r_0))$ is equivalent to the inequality

(10)
$$\left(\frac{1}{|I|} \int_{I} |\varphi'_{0}|^{q} |dz|\right)^{1/q} / \left(\frac{1}{|I|} \int_{I} |\varphi'_{0}| |dz|\right) \le c < \infty,$$
for every arc $I \subset L$,

where q := p/(p-1). If we write

$$\left(\frac{1}{|I|} \int_{I} |\varphi'_{0}|^{-1} |dz|\right) \left(\frac{1}{|I|} \int_{I} |\varphi'_{0}|^{1/(p-1)} |dz|\right)^{p-1}$$

$$= \left[\left(\frac{1}{|I|} \int_{I} |\varphi'_{0}| |dz|\right) \left(\frac{1}{|I|} \int_{I} |\varphi'_{0}|^{-1} |dz|\right) \right]$$

$$\times \left[\left(\frac{1}{|I|} \int_{I} |\varphi'_{0}|^{1/(p-1)} |dz|\right)^{p-1} / \left(\frac{1}{|I|} \int_{I} |\varphi'_{0}| |dz|\right) \right],$$

then the first factor is bounded because $|\varphi'_0| \in A_2(L)$. Further, applying inequality (10) for q = 1/(p-1) we obtain the boundedness of the second factor. This completes the proof.

Now we can formulate the main result of this section.

Theorem 13. Let G be a finite domain with a smooth Jordan boundary L. Then the Bieberbach polynomials π_n , for the pair (G, z_0) , satisfy

(11)
$$\|\varphi_0 - \pi_n\|_{\overline{G}} \le c_{12} \left(\frac{\ln n}{n}\right)^{1/2} \Omega_{2,\omega_0} \left(\varphi_0' [\psi(w)] (\psi'(w))^{1/2}, \frac{1}{n}\right), \quad n \ge 2,$$

where $\omega := 1/|\varphi'|$, $\omega_0 := |\psi'|$, and $\Omega_{2,\omega_0}(\cdot, 1/n)$ is the ω_0 -weighted integral modulus of continuity of order 2 for $\varphi'_0[\psi(w)](\psi'(w))^{1/2}$.

Proof. Since *G* is a finite domain with a smooth boundary, the functions $|\varphi'|$ and $1/|\varphi'_0|$ belong to $A_p(L)$ for every p > 1, by (9) and Lemma 9, respectively. Then by means of Hölder's inequality we get $\varphi'_0 \in L^2(L, 1/|\varphi'|)$. On the other hand $\varphi'_0 \in E^1(G)$. Hence, by definition, we have $\varphi'_0 \in E^2(G, 1/|\varphi'|)$. Then the result [8, (Theorem 11, Remark (ii))] states that, for $\varphi'_0, \omega := 1/|\varphi'|$ and p = 2:

(12)
$$\varepsilon_n(\varphi'_0)_2 \le c_{13} n^{-1/2} E_n^{\circ} \left(\varphi'_0, \frac{1}{|\varphi'|} \right)_2.$$

p-Faber Polynomials in the Weighted Smirnov Class $E^p(G, \omega)$ and the Bieberbach Polynomials

For the polynomials $q_n(z)$, best approximating φ'_0 in the norm $\|\cdot\|_{L_2(G)}$, we set

$$Q_n(z) := \int_{z_0}^z q_n(t) dt, \qquad t_n(z) := Q_n(z) + [1 - q_n(z_0)](z - z_0).$$

Then $t_n(z_0) = 0$, $t'_n(z_0) = 1$ and from (12) we obtain

(13)
$$\|\varphi'_{0} - t'_{n}\|_{L_{2}(G)} = \|\varphi'_{0} - q_{n} - 1 + q_{n}(z_{0})\|_{L_{2}(G)}$$

$$\leq \|\varphi'_{0} - q_{n}\|_{L_{2}(G)} + \|1 - q_{n}(z_{0})\|_{L_{2}(G)}$$

$$\leq c_{13}n^{-1/2}E_{n}^{\circ}\left(\varphi'_{0}, \frac{1}{|\varphi'|}\right)_{2} + \|\varphi'_{0}(z_{0}) - q_{n}(z_{0})\|_{L_{2}(G)}$$

On the other hand, by the inequality

$$|f(z_0)| \le \frac{\|f\|_{L_2(G)}}{\operatorname{dist}(z_0, L)},$$

which holds for every analytic function f with $||f||_{L_2(G)} < \infty$, from (13) and (12) we get

$$\|\varphi_0'-t_n'\|_{L_2(G)} \le c_{13}n^{-1/2}E_n^{\circ}\left(\varphi_0',\frac{1}{|\varphi'|}\right)_2 + \frac{\varepsilon_n(\varphi_0')_2}{\operatorname{dist}(z_0,L)} \le c_{14}n^{-1/2}E_n^{\circ}\left(\varphi_0',\frac{1}{|\varphi'|}\right)_2.$$

So, according to the extremal property of the polynomials π_n , we have

(14)
$$\|\varphi_0 - \pi_n\|_{L^1_2(G)} \le c_{14} n^{-1/2} E_n^{\circ} \left(\varphi_0', \frac{1}{|\varphi'|}\right)_2.$$

Further applying Andrievskii's [3] polynomial lemma

$$||p_n||_{\overline{G}} \le c(\ln n)^{1/2} ||p_n||_{L^1_2(G)},$$

which holds for every polynomial p_n of degree $\leq n$ with $p_n(z_0) = 0$, and using the familiar method of Simonenko [24] and Andrievskii [4], from (14) we get

(15)
$$\|\varphi_0 - \pi_n\|_{\overline{G}} \le c_{15} \left(\frac{\ln n}{n}\right)^{1/2} E_n^{\circ} \left(\varphi_0', \frac{1}{|\varphi'|}\right)_2, \qquad n \ge 2.$$

On the other hand, as is shown above, $\varphi'_0 \in E^2(G, 1/|\varphi'|)$, and by Lemma 9 the function $\omega = 1/|\varphi'|$ belongs to $A_2(L)$. In addition, by [8, Lemma 3] $\omega_0 = |\psi'| \in A_2(T)$. Since every smooth Jordan boundary *L* belongs to *S*, finally we see that, the conditions of Theorem 2 are satisfied. Then relation (15) and Theorem 2 complete the proof.

The following improvement of Mergelyan's estimation (8) immediately follows from Theorem 4.

Corollary 14. Let G be a finite domain with a smooth Jordan boundary L. Then the Bieberbach polynomials π_n , for the pair (G, z_0) , satisfy

(16)
$$\|\varphi_0 - \pi_n\|_{\overline{G}} \le c_{16} \left(\frac{\ln n}{n}\right)^{1/2}, \qquad n \ge 2.$$

In fact, estimation (11) is better than (16), because it contains the factor $\Omega_{2,\omega_0}(\varphi'_0[\psi(w)] (\psi'(w))^{1/2}, 1/n)$ which also tends to zero with a certain speed.

Acknowledgment. The author is indebted to the referees for valuable suggestions.

References

- L. Y. ALPER (1960): Approximation in the mean of analytic functions of class E^p (Russian). Moscow: Gos. Izdat. Fiz.-Mat. Lit., pp. 272–286.
- 2. J. E. ANDERSSON (1977): On the degree of polynomial approximation in $E^p(D)$. J. Approx. Theory, **19**:61–68.
- 3. V. V. ANDRIEVSKII (1983): Convergence of Bieberbach polynomials in domains with quasiconformal boundary. Ukrainian Math. J., **35**:233–236.
- V. V. ANDRIEVSKII (1983): Uniform convergence of Bieberbach polynomials in domains with piecewisequasiconformal boundary (Russian). In: Theory of Mappings and Approximation of Functions. Kiev: Naukova Dumka, pp. 3–18.
- 5. A. ÇAVUŞ, D. M. ISRAFILOV (1995): Approximation by Faber–Laurent rational functions in the mean of functions of the class $L_p(\Gamma)$ with 1 . Approx. Theory Appl.,**11**:105–118.
- G. DAVID (1984): Operateurs integraux singulers sur certaines courbes du plan complexe. Ann. Sci. Ecole Norm. Sup. (4), 17:157–189.
- 7. P. L. DUREN (1970): Theory of H^p-Spaces. New York: Academic Press.
- E. M. DYN'KIN (1981): The rate of polynomial approximation in the complex domain. In: Complex Analysis and Spectral Theory (Leningrad, 1979/1980). Berlin: Springer-Verlag, pp. 90–142.
- E. M. DYN'KIN, B. P. OSILENKER (1983): Weighted estimates for singular integrals and their applications. In: Mathematical Analysis, Vol. 21. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., pp. 42–129.
- E. M. DYN'KIN (1977): *Estimates for analytic functions in Jordan domains*. Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), **73**:70–90, 231 (1978). Investigations on Linear Operators and the Theory of Functions, VIII.
- 11. D. GAIER (1987): Lectures on Complex Approximation. Boston: Birkhäuser.
- D. GAIER (1988): On the convergence of the Bieberbach polynomials in region with corners. Constr. Approx., 4:289–305.
- 13. D. GAIER (1998): Polynomial approximation of conformal maps. Constr. Approx., 14:27-40.
- 14. G. M. GOLUSIN (1969): Geometric Theory of Functions of a Complex Variable. Translation of Mathematical Monographs, Vol. 26. Providence, RI: American Mathematical Society.
- E. A. HACIYEVA (1986): Investigation the properties of functions with quasimonotone Fourier coefficients in generalized Nikolsky–Besov spaces (Russian). Author's summary of candidates dissertation, Tbilisi.
- 16. V. P. HAVIN (1965): Boundary properties of integrals of Cauchy type and conjugate harmonic functions in regions with rectifiable boundary (Russian). Math. Sb. (N.S.), **68**:(110): 499–517.
- 17. R. A. HUNT, W. S. YOUNG (1974): A weighted norm inequalities for Fourier series. Bull. Amer. Math. Soc., 80:274–277.
- I. I. IBRAGIMOV, D. I. MAMEDHANOV (1975): A constructive characterization of a certain class of functions. Dokl. Akad. Nauk SSSR, 223:35–37; Soviet Math. Dokl., 4(1976):820–823.
- D. M. ISRAFILOV (1987): Approximate properties of the generalized Faber series in an integral metric (Russian). Izv. Akad. Nauk Az. SSR, Ser Fiz.-Tekh. Math. Nauk, 2:10–14.
- M. V. KELDYCH (1939): Sur l'approximation en moyenne quadratique des fonctions analytiques. Math. Sb., 5(47):391–401.
- V. M. KOKILASHVILI (1969): A direct theorem on mean approximation of analytic functions by polynomials. Soviet Math. Dokl., 10:411–414.
- 22. S. N. MERGELYAN (1951): Certain questions of the constructive theory of functions (Russian). Trudy Math. Inst. Steklov, **37**:1–91.
- 23. B. MUCKENHOUPT (1972): Weighted norm inequalities for the Hardy maximal functions. Trans. Amer. Math. Soc., 165:207–226.
- I. B. SIMONENKO (1978): On the convergence of Bieberbach polynomials in the case of a Lipschitz domain. Math. USSR-Izv., 13:166–174.
- P. K. SUETIN (1974): Polynomials orthogonal over a region and Bieberbach polynomials. Proc. Steklov Inst. Math., Vol. 100. Providence, RI: American Mathematical Society.

p-Faber Polynomials in the Weighted Smirnov Class $E^{p}(G, \omega)$ and the Bieberbach Polynomials 351

- 26. P. K. SUETIN (1984): Series of Faber Polynomials. Moscow: Nauka; New York: Gordon and Breach (1998).
- 27. J. L. WALSH, H. G. RUSSEL (1959): Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions. Trans. Amer. Math. Soc., **92**:355–370.
- S. WARSCHAWSKI (1932): Über das Randverhalten der Ableitung der Abbildungsfunktionen bei konformer Abbildung. Math. Z., 35:321–456.
- 29. M. WEHRENS (1981): *Best approximation on the unit sphere in Rⁿ*. Proc. Conf. Oberwolfach. August 9–16, 1980, Basel e.a. pp. 233–245. Funct. Anal. Approx.

D. M. Israfilov Department of Mathematics Faculty of Arts and Sciences Balikesir University 10100 Balikesir Turkey mdaniyal@mail.balikesir.edu.tr Copyright © 2003 EBSCO Publishing

Copyright of Constructive Approximation is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.