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Approximation by p-Faber Polynomials in the
Weighted Smirnov ClassEp(G, ω) and the

Bieberbach Polynomials

D. M. Israfilov

Abstract. Let G ⊂ C be a finite domain with a regular Jordan boundaryL. In this
work, the approximation properties of ap-Faber polynomial series of functions in the
weighted Smirnov classEp(G, ω)are studied and the rate of polynomial approximation,
for f ∈ Ep(G, ω) by the weighted integral modulus of continuity, is estimated. Some
application of this result to the uniform convergence of the Bieberbach polynomialsπn

in a closed domainG with a smooth boundaryL is given.

1. Introduction

Let G be a finite domain in the complex plane bounded by a rectifiable Jordan curveL,
let ω be a weight function onL, and let 1< p <∞. We denote byL p(L) andEp(G)
the set of all measurable complex valued functions such that| f |p is Lebesgue integrable
with respect to arclength, and the Smirnov class of analytic functions inG, respectively.
Each functionf ∈ Ep(G) has a nontangential limit almost everywhere (a.e.) onL, and
if we use the same notation for the nontangential limit off , then f ∈ L p(L).

For p > 1, L p(L) andEp(G) are Banach spaces with respect to the norm

‖ f ‖Ep(G) = ‖ f ‖L p(L) :=
(∫

L
| f (z)|p|dz|

)1/p

.

For further properties, see [7, pp. 168–185] and [14, pp. 438–453].
Theorder of polynomial approximation inEp(G), p ≥ 1, has been studied by several

authors. In [27], Walsh and Russel give results whenL is an analytic curve. For domains
with sufficiently smooth boundary, namely whenL is a smooth Jordan curve, andθ(s),
the angle between the tangent and the positive real axis expressed as a function of
arclengths, has modulus of continuityÄ(θ, s) satisfying the Dini-smooth condition∫ δ

0

Ä(θ, s)

s
ds<∞, δ > 0,(1)

this problem, forp > 1, was studied by S. Y. Alper [1].
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These results were later extended to the domains with regular boundary, which we
define in Section 2, forp > 1 by V. M. Kokilashvili [21], and forp ≥ 1 by J. E. An-
dersson [2]. Similar problems were also investigated in [18]. Let us emphasize that in
these works, the Faber operator, Faber polynomials, andp-Faber polynomials were com-
monly used and the degree of polynomial approximation inEp(G) has been studied by
applying various methods of summation to the Faber series of functions inEp(G). More
extensive knowledge about them can be found in [11, pp. 40–57] and [26, pp. 52–236].

In [19] and [5], for domains with regular boundary we construct the approximants
directly as thenth-partial sums ofp-Faber polynomial series off ∈ Ep(G). In this
work, the approximation properties of thep-Faber polynomial series expansions in the
ω-weighted Smirnov classEp(G, ω) of analytic functions inG, whose boundary is a
regular Jordan curve, are studied. Under some restrictive conditions upon weighting
functions the approximant polynomials are obtained directly as thenth-partial sums
of p-Faber polynomial series off ∈ Ep(G, ω). The degree of this approximation is
estimated by a weighted integral modulus of continuity. The results to be obtained in
this work are also new in the nonweighted caseω = 1. Finally, applying this result we
give a result which improves Mergelyan’s estimation about the uniform convergence of
the Bieberbach polynomials in the closed domainG with a smooth boundaryL.

2. Some Definitions, Notations, and Auxiliary Results

Let G be a finite domain in the complex plane bounded by a rectifiable Jordan curveL,
letU be the unit disk,G− := Ext L, T := ∂U , U− := ExtT , 1< p <∞, and letω be a
weight function onL, that is, a nonnegative measurable function onL. We denote byϕ the
conformal mapping ofG− ontoU− normalized byϕ(∞) = ∞ and limz→∞ ϕ(z)/z> 0.
Letψ(w) be the inverse toϕ(z). The functionsϕ andψ have continuous extensions to
L andT , their derivativesϕ′(z) andψ ′(w) have definite nontangential limit values on
L andT a.e., and they are integrable with respect to the Lebesgue measure onL andT ,
respectively [14, pp. 419, 438].

We shall usec, c1, c2, . . . to denote constants (in general, different in different rela-
tions) depending only on numbers that are not important for the questions of interest.

Definition 1. L is called regular if there exists a numberc > 0 such that for every
r > 0, sup{|L ∩ D(z, r )| : z ∈ L} ≤ cr , whereD(z, r ) is an open disk with radiusr and
centered atz, and|L ∩ D(z, r )| is the length of the setL ∩ D(z, r ).

We denote byS the set of all regular Jordan curves in the complex plane.

Definition 2. Let ω be a weight function onL. ω is said to satisfy Muckenhoupt’s
Ap-conditions onL if

sup
z∈L

sup
r>0

(
1

r

∫
L∩D(z,r )

ω(ς)|dς |
)(

1

r

∫
L∩D(z,r )

[ω(ς)]−1/(p−1)|dς |
)p−1

<∞.

Let us denote byAp(L) the set of all weight functions satisfying Muckenhoupt’s
Ap-conditions onL.
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It is obvious that ifω ∈ Ap(L) thenω−1/p ∈ L p/(p−1)(L).
Let f ∈ L1(L). Then the functionsf + and f − defined by

f +(z) = 1

2π i

∫
L

f (ς)

ς − z
dς, z ∈ G,

and

f −(z) = 1

2π i

∫
L

f (ς)

ς − z
dς, z ∈ G−,

are analytic inG andG−, respectively, andf −(∞) = 0. Whenz0 ∈ L, if the limit of
the integral

1

2π i

∫
L∩{ς :|ς−z0|>ε}

f (ς)

ς − z0
dς

exists asε→ 0, this limit is called Cauchy’s singular integral of

1

2π i

∫
L

f (ς)

ς − z
dς

at z0 ∈ L, and it is denoted bySL( f )(z0). Namely,

SL( f )(z0) := (P.V.) 1

2π i

∫
L

f (ς)

ς − z0
dς := lim

ε→0

1

2π i

∫
L∩{ς :|ς−z0|>ε}

f (ς)

ς − z0
dς.

According to the celebrated Privalov theorem [14, p. 431], if one of the functions
f +(z) and f −(z) has a nontangential limit onL a.e., thenSL( f )(z) exists a.e. onL,
and also the other one of the functionsf +(z) and f −(z) has a nontangential limit onL
a.e. Conversely, ifSL( f )(z) exists a.e. onL, then the functionsf +(z) and f −(z) have
nontangential limits a.e. onL. In both cases, the formulas

f +(z) = SL( f )(z)+ 1
2 f (z) and f −(z) = SL( f )(z)− 1

2 f (z)

hold a.e. onL.

Definition 3. The setL p(L , ω) := { f ∈ L1(L) : | f |pω ∈ L1(L)} is called the
ω-weightedL p-space.

Definition 4. The setEp(G, ω) := { f ∈ E1(G) : f ∈ L p(L , ω)} is called theω-
weighted Smirnov class of orderp of analytic functions inG.

As was noted in [9, p. 89], the Cauchy singular integrals hold the following result,
which is analogously deduced from [6].

Theorem 1. Let L ∈ S, 1 < p < ∞, and letω be a weight function on L. The
inequality

‖SL( f )‖L p(L ,ω) ≤ c1‖ f ‖L p(L ,ω)

holds for every f∈ L p(L , ω) if and only ifω ∈ Ap(L).
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Lemma 2. If f ∈ L p(L , ω) andω ∈ Ap(L), then there exists a number r> 1 such
that f ∈ Lr (L).

Proof. Sinceω ∈ Ap(L), there exists a numberq ∈ (1, p) such thatω ∈ Aq(L)
[23] (see also [9, p. 49]). Letr := p/q. Since f ∈ L p(L , ω), we have| f |rω1/q ∈
Lq(L). On the other hand, sinceω−(1/q) ∈ Lq/(q−1)(L), Hölder’s inequality shows that
f ∈ Lr (L).

Lemma 3. If L ∈ S andω ∈ Ap(L), then f+ ∈ Ep(G, ω) and f− ∈ Ep(G−, ω) for
each f ∈ L p(L , ω).

Proof. Let f ∈ L p(L , ω). According to Theorem 1, we haveSL( f ) ∈ L p(L , ω). On
the other hand, by Lemma 1, there exists a numberr > 1 such thatf ∈ Lr (L). Since
1< r <∞andL ∈ S, SL : Lr (L)→ Lr (L) is a bounded linear operator [6]. Therefore,
owing to Havin’s work [16] (see also [6, p. 176]), the functionsf + and f − belong to
Er (G) andEr (G−), respectively. Furthermore, sincef +(z) = SL( f )(z) + 1

2 f (z) and
f −(z) = SL( f )(z) − 1

2 f (z) hold a.e. onL, it follows that f + and f − are members
of L p(L , ω). This yields the required result, becauseEr (G) ⊂ E1(G) andEr (G−) ⊂
E1(G−).

3. p-Faber Polynomials for G and p-Faber Polynomial
Series Expansions inEp(G, ω)

Let k be a nonnegative integer. Then the functionϕk(z)(ϕ′(z))1/p has a pole of orderk
at the point∞. So there exists a polynomialFk,p(z) of degreek and an analytic function
Ek,p(z) in G− such thatEk,p(∞) = 0 andϕk(z)(ϕ′(z))1/p = Fk,p(z)+Ek,p(z) for every
z ∈ G−. The polynomialsFk,p(z) (k = 0,1,2, . . .) are calledp-Faber polynomials for
G (see [2]). By means of Cauchy’s integral formula, it is easily seen that

Fk,p(z) = 1

2π i

∫
L R

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς = 1

2π i

∫
|w|=R

wk(ψ ′(w))1−1/p

ψ(w)− z
dw,

for R> 1 and everyz ∈ Int L R, whereL R := {z ∈ G− : |ϕ(z)| = R}.

Lemma 4. If z ∈ G andw ∈ U−, then

(ψ ′(w))1−1/p

ψ(w)− z
=
∞∑

k=0

Fk,p(z)

wk+1
.

Proof. Let us takez ∈ G. Since the function

(ψ ′(w))1−1/p

ψ(w)− z
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is analytic inU− and it is normalized withψ(∞) = ∞ and limw→∞ ψ(w)/w > 0, its
Laurent series expansion inU− is of the form

∞∑
k=0

Ak,p(z)

wk+1

and this series converges to

(ψ ′(w))1−1/p

ψ(w)− z

uniformly on compact subsets ofU−. So, for R > 1 and a nonnegative integern, we
obtain

1

2π i

∫
|w|=R

wn(ψ ′(w))1−1/p

ψ(w)− z
dw =

∞∑
k=0

(
1

2π i

∫
|w|=R

wn

wk+1
dw

)
Ak,p(z) = An,p(z).

This shows thatFn,p(z)= An,p(z) for n = 0,1,2, . . . ,and so the proof is completed.

Lemma 5. If z ∈ G−, then

lim
n→∞

∫
L1+1/n

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς =

∫
L

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς,

for k = 0,1,2, . . . .

Proof. Let

ϕn(θ) := i (1+ 1/n)k+1ei (k+1)θ (ψ ′((1+ 1/n)ei θ ))1−1/p

ψ((1+ 1/n)ei θ )− z
.

It is obvious that the sequence{ϕn(θ)} converges a.e. to the function

iei (k+1)θ (ψ ′(ei θ ))1−1/p

ψ(ei θ )− z

on the segment [0,2π ], and∫
L1+1/n

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς =

∫
0

2π

ϕn(θ)dθ.

On the other hand, it is easily proved that the sequence{∫ 2π

0
|ϕn(θ)|p/(p−1) dθ

}
is bounded with respect ton. Thus, by the test for the possibility of taking the limit under
the Lebesgue integral sign given in [14, p. 390] we obtain

lim
n→∞

∫ 2π

0
ϕn(θ)dθ =

∫ 2π

0

iei (k+1)θ (ψ ′(ei θ ))1−1/p

ψ(ei θ )− z
dθ.
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This gives us

lim
n→∞

∫
L1+1/n

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς =

∫
L

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς.

Finally, we prove the following lemma for the integral representation ofp-Faber
polynomials inG−.

Lemma 6. If z ∈ G−, then

Fk,p(z) = ϕk(z)(ϕ′(z))1/p + 1

2π i

∫
L

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς,

for k = 0,1,2, . . . .

Proof. The casez= ∞ is trivial. Let z ∈ G−\{∞}. If R> 1 and the natural numbers
n are chosen big enough,z becomes an interior point of the doubly connected domain
with the boundaryL R ∪ L1+1/n. So, by Cauchy’s integral formula we have

1

2π i

∫
L R

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς = ϕk(z)(ϕ′(z))1/p + 1

2π i

∫
L1+1/n

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς

and hence by Lemma 4 we obtain

Fk,p(z) = ϕk(z)(ϕ′(z))1/p + 1

2π i

∫
L

ϕk(ς)(ϕ′(ς))1/p

ς − z
dς.

The lemma is proved.

Let f ∈ Ep(G, ω). Since f ∈ E1(G), we have for everyz ∈ G:

f (z) = 1

2π i

∫
L

f (ς)

ς − z
dς = 1

2π i

∫
T

f (ψ(w))(ψ ′(w))1/p (ψ
′(w))1−1/p

ψ(w)− z
dw.

On the other hand, since

(ψ ′(w))1−1/p

ψ(w)− z
=
∞∑

k=0

Fk,p(z)

wk+1

for w ∈ U− andz ∈ G, if we define the coefficientsak( f ) by

ak( f ) := 1

2π i

∫
T

f (ψ(w))(ψ ′(w))1/p

wk+1
dw, k = 0,1,2, . . . ,

we can associate a formal series

∞∑
k=0

ak( f )Fk,p(z),
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in the particular case with the functionf ∈ Ep(G, ω), i.e.,

f (z) ∼
∞∑

k=0

ak( f )Fk,p(z).

This formal series is called thep-Faber polynomial series expansion off , and the
coefficientsak( f ) are said to be thep-Faber coefficients off .

4. Main Results

Let g ∈ L p(T, ω) andω ∈ Ap(T). SinceL p(T, ω) is noninvariant with respect to the
usual shift, we consider the following mean value function as a shift forg ∈ L p(T, ω):

gh(w) := 1

2h

∫ h

−h
g(weit )dt, 0< h < π, w ∈ T.

Using the relation (see, e.g., [9, p. 110]):

‖gh‖L p(T,ω) ≤ cp‖g‖L p(T,ω), 1< p <∞,
we get thatgh ∈ L p(T, ω).

Definition 5. If g∈ L p(T, ω) andω∈ Ap(T), then the functionÄp,ω(g, ·) : [0,∞)→
[0,∞), defined by

Äp,ω(g, δ) := sup{‖g− gh‖L p(T,ω), h ≤ δ}, 1< p <∞,
is called theω-weighted integral modulus of continuity of orderp for g.

Note that the idea of defining such a modulus of continuity originates from [29]. It
can be shown easily thatÄp,ω(g, ·) is a continuous nonnegative nondecreasing function
satisfying the conditions

lim
δ→0

Äp,ω(g, δ) = 0, Äp,ω(g1+ g2, ·) ≤ Äp,ω(g1, ·)+Äp,ω(g2, ·).

Lemma 7. If g ∈ L p(T, ω) andω ∈ Ap(T), then

Äp,ω(ST (g), ·) ≤ c2Äp,ω(g, ·).

Proof. Let δ ∈ (0, π), h < δ, andw ∈ T . Applying the Fubini theorem we have

[ST (g)]h(w) = 1

2h

∫ h

−h
ST (g(wei θ ))dθ

= 1

2h

.∫ h

−h

1

2π i

(
(P.V.)

∫
T

g(τ )dτ

τ − wei θ

)
dθ

= 1

2h

.∫ h

−h

1

2π i

(
(P.V.)

∫
T

g(τei θ )ei θ dτ

τei θ − wei θ

)
dθ
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= 1

2h

∫ h

−h

1

2π i

(
(P.V.)

∫
T

g(τei θ )dτ

τ − w
)

dθ

= 1

2π i
(P.V.)

∫
T

(1/2h)
∫ h
−h g(τei θ )dθ

τ − w dτ

= 1

2π i
(P.V.)

∫
T

gh(τ )

τ − w dτ = [ST (gh)](w).

Therefore,

[ST g)](w)− [ST (g)]h(w) = [ST (g− gh)](w),

and by virtue of Theorem 1 we obtain

‖ST (g)− [ST (g)]h‖L p(T,ω) = ‖ST (g− gh)‖L p(T,ω) ≤ c2‖g− gh‖L p(T,ω).

The last inequality shows that

Äp,ω(ST (g), ·) ≤ c2Äp,ω(g, ·),

and the proof is completed.

Lemma 8. If g ∈ L p(T, ω) andω ∈ Ap(T), then

Äp,ω(g
+, ·) ≤ (c2+ 1

2)Äp,ω(g, ·).

Proof. Sinceg+ = 1
2g+ ST (g) a.e. onT , by means of Lemma 6 we obtain

Äp,ω(g
+, ·) ≤ (c2+ 1

2)Äp,ω(g, ·).

Lemma 9. Let g∈ Ep(U, ω) andω ∈ Ap(T). If

n∑
k=0

αk(g)w
k

is the nth partial sum of the Taylor series of g at the origin, then there exists a constant
c3 > 0, such that ∥∥∥∥g(w)−

n∑
k=0

αk(g)w
k

∥∥∥∥
L p(T,ω)

≤ c3Äp,ω

(
g,

1

n

)
,

for every natural number n.

Proof. Let
∞∑

k=−∞
βkeikθ
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be the Fourier series ofg ∈ Ep(U, ω) and

Sn(g, θ) :=
n∑

k=−n

βkeikθ

be itsnth-partial sum. Sinceg ∈ E1(U ), we haveβk = 0 for k < 0, andβk = αk(g) for
k ≥ 0 [7, p. 38]. Hence∥∥∥∥g(w)−

n∑
k=0

αk(g)w
k

∥∥∥∥
L p(T,ω)

= ‖g(ei θ )− Sn(g, θ)‖L p([0,2π ],ω).(2)

Now, let T∗n (θ) be the best approximate trigonometric polynomial forg(ei θ ) in
L p([0,2π ], ω). That is,

‖g(ei θ )− T∗n (θ)‖L p([0,2π ],ω) = En,p(g, ω),(3)

whereEn,p(g, ω) := inf{‖g(ei θ ) − T(θ)‖L p([0,2π ],ω) : T ∈ 5n} denotes the minimal
error in approximatingg by trigonometric polynomials of degree at mostn. Then from
(2) we get∥∥∥∥g(w)−

n∑
k=0

αk(g)w
k

∥∥∥∥
L p(T,ω)

≤ ‖g(ei θ )− T∗n (θ)‖L p([0,2π ],ω)(4)

+ ‖Sn(g− T∗n , θ)‖L p([0,2π ],ω).

On the other hand, under the conditionω ∈ Ap(T) the result [17] (see also [9, p. 108])
states that, for everyg ∈ L p([0,2π ], ω):∥∥∥∥ sup

n≥0
|Sn(g, θ)|

∥∥∥∥
L p([0,2π ],ω)

≤ c4‖g‖L p ([0,2π ],ω).

By applying this inequality to the functiong− T∗n and taking into account the relation
(3), from (4) we get∥∥∥∥g(w)−

n∑
k=0

αk(g)w
k

∥∥∥∥
L p(T,ω)

≤ (c4+ 1)En,p(g, ω).(5)

Further, using the estimation

En,p(g, ω) ≤ c5Äp,ω

(
g,

1

n

)
,

which was proved in [15, Theorem 1.4], from ( 5) we obtain∥∥∥∥g(w)−
n∑

k=0

αk(g)w
k

∥∥∥∥
L p(T,ω)

≤ c3Äp,ω

(
g,

1

n

)
.

The lemma is proved.
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Now, forw ∈ T , we set

ω0(w) := ω(ψ(w)), f0(w) := f (ψ(w))(ψ ′(w))1/p,

and state the main theorem in our work.

Theorem 10. Let f ∈ Ep(G, ω) and let

Sn( f, z) :=
n∑

k=0

ak( f )Fk,p(z)

be the nth partial sums of its p-Faber polynomial series expansion. If L ∈ S,ω ∈ Ap(L),
andω0 ∈ Ap(T), then there exists a constant c6 > 0 such that

‖ f − Sn( f, ·)‖L p(L ,ω) ≤ c6Äp,ω0

(
f0,

1

n

)
for every natural number n.

Proof. It is obvious that f0 ∈ L p(T, ω0). Let us consider the functionsf +0 and f −0
defined by

f +0 (w) := 1

2π i

∫
T

f0(τ )

τ − w dτ, w ∈ U,

and

f −0 (w) := 1

2π i

∫
T

f0(τ )

τ − w dτ, w ∈ U−.

Let ak( f ) be thekth p-Faber coefficient off ∈ Ep(G, ω). Since by Lemma 2,f +0 ∈
Ep(U, ω0) and f −0 ∈ Ep(U−, ω0), moreover,f −0 (∞) = 0 and f0 = f +0 − f −0 a.e. on
T , and

ak( f ) := 1

2π i

∫
T

f0(τ )

τ k+1
dτ,

we obtain

ak( f ) = 1

2π i

∫
T

f +0 (τ )
τ k+1

dτ.

It is seen that thekth p-Faber coefficient off ∈ Ep(G, ω) is thekth Taylor coefficient
of f +0 ∈ Ep(U, ω0) at the origin. On the other hand, the assumptionf ∈ Ep(G, ω)
implies ∫

L

f (ς)

ς − z′
dς = 0, z′ ∈ G−,

and consideringf0 = f +0 − f −0 a.e. onT :

f (ς) = ( f +0 (ϕ(ς))− f −0 (ϕ(ς)))(ϕ
′(ς))1/p(6)

holds a.e. onL.
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Let us take az′ ∈ G−. By means of Lemma 5 we obtain

n∑
k=0

ak( f )Fk,p(z
′) = (ϕ′(z′))1/p

n∑
k=0

ak( f )ϕk(z′)

+ 1

2π i

∫
L

(ϕ′(ς))1/p
∑n

k=0 ak( f )ϕk(ς)

ς − z′
dς,

− 1

2π i

∫
L

f (ς)

ς − z′
dς = (ϕ′(z′))1/p

n∑
k=0

ak( f )ϕk(z′)

+ 1

2π i

∫
L

(ϕ′(ς))1/p
∑n

k=0 ak( f )ϕk(ς)

ς − z′
dς

− 1

2π i

∫
L

(ϕ′(ς))1/p f +0 (ϕ(ς))
ς − z′

dς

+ 1

2π i

∫
L

(ϕ′(ς))1/p f −0 (ϕ(ς))
ς − z′

dς.

Since

1

2π i

∫
L

(ϕ′(ς))1/p f −0 (ϕ(ς))
ς − z′

dς = −(ϕ′(z′))1/p f −0 (ϕ(z
′))

we get

n∑
k=0

ak( f )Fk,p(z
′) = (ϕ′(z′))1/p

n∑
k=0

ak( f )ϕk(z′)

+ 1

2π i

∫
L

(ϕ′(ς))1/p[
∑n

k=0 ak( f )ϕk(ς)− f +0 (ϕ(ς))]
ς − z′

dς

− (ϕ′(z′))1/p f −0 (ϕ(z
′)).

Taking the limit asz′ → z along all nontangential paths outsideL, it appears that

n∑
k=0

ak( f )Fk,p(z) = 1
2(ϕ
′(z))1/p

[
n∑

k=0

ak( f )ϕk(z)− f +0 (ϕ(z))

]
+ [ f +0 (ϕ(z))− f −0 (ϕ(z))](ϕ

′(z))1/p

+ SL

[
(ϕ′)1/p

(
n∑

k=0

ak( f )ϕk − f +0 ◦ ϕ
)]

(z)

holds onL a.e. Further, taking relation (6) into account, and applying Minkowski’s
inequality and Theorem 1, from the last equality we obtain

‖ f − Sn( f, ·)‖L p(L ,ω) ≤ (c1+ 1
2)

∥∥∥∥ f +0 (w)−
n∑

k=0

αk( f )wk

∥∥∥∥
L p(T,ω0).

Now, the proof follows from Lemmas 8 and 7.
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Note that ifL is a sufficiently smooth curve then one out of the conditionsω ∈ Ap(L)
andω0 ∈ Ap(T) may be omitted in the above Theorem 2. In particular, the following
theorem holds.

Theorem 11. Let L be the smooth boundary satisfying condition(1). If f ∈ Ep(G, ω),
and one out of the conditionsω ∈ Ap(L) andω0 ∈ Ap(T) holds, then there exists a
constant c7 > 0 such that

‖ f − Sn( f, ·)‖L p(L ,ω) ≤ c7Äp,ω0

(
f0,

1

n

)
.

Proof. According to Theorem 2 it is sufficient to prove the equivalence of the conditions
ω ∈ Ap(L) andω0 ∈ Ap(T). Since the boundaryL is smooth, it can be shown easily
that the conditionω ∈ Ap(L) is equivalent to the inequality(

1

|I |
∫

I
ω(ς)|dς |

)/(
1

|I |
∫

I
[ω(ς)]−1/(p−1)|dς |

)p−1

≤ c <∞(7)

for every arc I ⊂ L ,

On the other hand, under the restrictive conditions uponL, by the result [28]:

0< c8 ≤ |ψ ′(w)| ≤ c9 <∞ for every |w| ≥ 1,

and from this we have

|ψ(I )| =
∫

I
|ψ ′(w)||dw| ≤ c9|I |,

|I | =
∫
ψ(I )
|ϕ′(z)||dz| ≤ |ψ(I )|

c8
,

for every arcI ⊂ T .
Substitutingς = ψ(w) in (7) and using the last three relations, as result of simple

computations we obtain the desired equivalence.

5. Application to the Uniform Convergence of the Bieberbach Polynomials
in Closed Domains with Smooth Boundary

Let G be a finite simply connected domain of the complex planeC and letz0 ∈ G. By
the Riemann mapping theorem, there exists a unique conformal mappingw = ϕ0(z) of
G onto D(0, r0) := {w : |w| < r0} with the normalizationϕ0(z0) = 0,ϕ′0(z0) = 1. The
radiusr0 of this disk is called the conformal radius ofG with respect toz0. Letψ0(w)

be the inverse toϕ0(z).
For an arbitrary functionf given onG and p > 0 we set

‖ f ‖G := sup{| f (z)|, z ∈ G}, ‖ f ‖2L2(G) :=
∫∫

G
| f (z)|2 dσz,

‖ f ‖2L1
2(G)

:=
∫∫

G
| f ′(z)|2 dσz, dσz = dx dy.
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It is well known that the functionϕ0(z) minimizes the integral‖ f ‖2
L1

2(G)
in the class

of all functions analytic inG with the normalizationf (z0) = 0, f ′(z0) = 1. On the
other hand, let5n be the class of all polynomialspn of degree at mostn satisfying the
conditionspn(z0) = 0, p′n(z0) = 1. Then the integral‖pn‖2L1

2(G)
is minimized in5n

by a unique polynomialπn which is called thenth Bieberbach polynomial for the pair
(G, z0).

If G is a Carath´eodory domain, then‖ϕ0 − πn‖L1
2(G)
→ 0 (n→∞) and from this it

follows thatπn(z)→ ϕ0(z) (n→∞) for z ∈ G, uniformly on compact subsets ofG.
First of all, the uniform convergence of the sequence{πn}∞n=1 in G was investigated

by M. V. Keldych. He showed [20] that if the boundaryL of G is a smooth Jordan curve
with bounded curvature then the following estimate holds for everyε > 0:

‖ϕ0− πn‖G ≤
c10

n1−ε .

In [20] the author also gives an example of domainsG with a Jordan rectifiable
boundaryL for which the appropriate sequence of the Bieberbach polynomials diverges
on a set which is everywhere dense inL.

Furthermore, S. N. Mergelyan [22] has shown that the Bieberbach polynomials satisfy

‖ϕ0− πn‖G ≤
c11

n1/2−ε(8)

for everyε > 0, wheneverL is a smooth Jordan curve.
In addition to this the author [22] noted it is possible to replace the exponent1

2 − ε in
(8) by 1− ε.

Therefore the uniform convergence of the sequence{πn}∞n=1 in G and the estimate
of the error‖ϕ0 − πn‖G depend on the geometric properties of boundaryL. If L has
a certain degree of smoothness, this error tends to zero with a certain speed. In several
papers (see, e.g., [25], [24], [3], [4], [12], [13]) various estimates of the error‖ϕ0−πn‖G
and sufficient conditions on the geometry of the boundaryL are given to guarantee the
uniform convergence of the Bieberbach polynomials onG. More extensive knowledge
about them can be found in [4], [12].

To the best of the author’s knowledge in the literature there are no results improving
the above cited Mergelyan’s result yet. In this section, applying Theorem 2, we give a
result which improves estimate (8).

For the mappingϕ0 and a weight functionω we set

εn(ϕ
′
0)2 := inf

pn

‖ϕ′0− pn‖L2(G), E◦n(ϕ
′
0, ω)2 := inf

pn

‖ϕ′0− pn‖L2(L ,ω),

where inf is taken over all polynomialspn of degree at mostn.
At first we prove the following result, about theAp-properties of the conformal maps

ϕ0 andϕ.

Lemma 12. Let G be a finite domain with a smooth boundary L. Then the functions
1/|ϕ′0| and1/|ϕ′| belong to Ap(L) for every p∈ (1,∞).
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Proof. We prove only the relation 1/|ϕ′0| ∈ Ap(L). The other relation is proved sim-
ilarly. Moreover, taking into account the propertyAp1(L) ⊂ Ap2(L) for p1 < p2, it is
sufficient to consider the case 1< p < 2.

SinceL is smooth, Theorem 3 of [10] states that, for everyp > 1:

|ϕ′|, |ϕ′0| ∈ Ap(L) and |ψ ′0| ∈ Ap(∂D(0, r0)).(9)

It is easy to verify that the relation|ψ ′0| ∈ Ap(∂D(0, r0)) is equivalent to the inequality(
1

|I |
∫

I
|ϕ′0|q|dz|

)1/q/(
1

|I |
∫

I
|ϕ′0||dz|

)
≤ c <∞,(10)

for every arcI ⊂ L ,

whereq := p/(p− 1). If we write(
1

|I |
∫

I
|ϕ′0|−1|dz|

)(
1

|I |
∫

I
|ϕ′0|1/(p−1)|dz|

)p−1

=
[(

1

|I |
∫

I
|ϕ′0||dz|

)(
1

|I |
∫

I
|ϕ′0|−1|dz|

)]
×
[(

1

|I |
∫

I
|ϕ′0|1/(p−1)|dz|

)p−1/(
1

|I |
∫

I
|ϕ′0||dz|

)]
,

then the first factor is bounded because|ϕ′0| ∈ A2(L). Further, applying inequality (10)
for q = 1/(p− 1) we obtain the boundedness of the second factor. This completes the
proof.

Now we can formulate the main result of this section.

Theorem 13. Let G be a finite domain with a smooth Jordan boundary L. Then the
Bieberbach polynomialsπn, for the pair(G, z0), satisfy

‖ϕ0− πn‖G ≤ c12

(
ln n

n

)1/2

Ä2,ω0

(
ϕ′0 [ψ(w)]

(
ψ ′ (w)

)1/2
,

1

n

)
, n ≥ 2,(11)

whereω := 1/|ϕ′|, ω0 := |ψ ′|, andÄ2,ω0(·,1/n) is theω0-weighted integral modulus
of continuity of order2 for ϕ′0[ψ(w)](ψ ′(w))1/2.

Proof. SinceG is a finite domain with a smooth boundary, the functions|ϕ′| and 1/|ϕ′0|
belong toAp(L) for every p > 1, by (9) and Lemma 9, respectively. Then by means of
Hölder’s inequality we getϕ′0 ∈ L2(L ,1/|ϕ′|). On the other handϕ′0 ∈ E1(G). Hence, by
definition, we haveϕ′0 ∈ E2(G,1/|ϕ′|). Then the result [8, (Theorem 11, Remark (ii))]
states that, forϕ′0, ω := 1/|ϕ′| and p = 2:

εn(ϕ
′
0)2 ≤ c13n

−1/2E◦n

(
ϕ′0,

1

|ϕ′|
)

2

.(12)
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For the polynomialsqn(z), best approximatingϕ′0 in the norm‖·‖L2(G), we set

Qn(z) :=
∫ z

z0

qn(t)dt, tn(z) := Qn(z)+ [1− qn(z0)](z− z0).

Thentn (z0) = 0, t ′n (z0) = 1 and from (12) we obtain

‖ϕ′0− t ′n‖L2(G) = ‖ϕ′0− qn − 1+ qn(z0)‖L2(G)(13)

≤ ‖ϕ′0− qn‖L2(G) + ‖1− qn(z0)‖L2(G)

≤ c13n
−1/2E◦n

(
ϕ′0,

1

|ϕ′|
)

2

+ ‖ϕ′0(z0)− qn(z0)‖L2(G).

On the other hand, by the inequality

| f (z0)| ≤ ‖ f ‖L2(G)

dist(z0, L)
,

which holds for every analytic functionf with ‖ f ‖L2(G) < ∞, from (13) and (12) we
get

‖ϕ′0− t ′n‖L2(G) ≤ c13n
−1/2E◦n

(
ϕ′0,

1

|ϕ′|
)

2

+ εn(ϕ
′
0)2

dist(z0, L)
≤ c14n

−1/2E◦n

(
ϕ′0,

1

|ϕ′|
)

2

.

So, according to the extremal property of the polynomialsπn, we have

‖ϕ0− πn‖L1
2(G)
≤ c14n

−1/2E◦n

(
ϕ′0,

1

|ϕ′|
)

2

.(14)

Further applying Andrievskii’s [3] polynomial lemma

‖pn‖G ≤ c(ln n)1/2‖pn‖L1
2(G)

,

which holds for every polynomialpn of degree≤ n with pn(z0) = 0, and using the
familiar method of Simonenko [24] and Andrievskii [4], from (14) we get

‖ϕ0− πn‖G ≤ c15

(
ln n

n

)1/2

E◦n

(
ϕ′0,

1

|ϕ′|
)

2

, n ≥ 2.(15)

On the other hand, as is shown above,ϕ′0 ∈ E2(G,1/|ϕ′|), and by Lemma 9 the
functionω = 1/|ϕ′| belongs toA2(L). In addition, by [8, Lemma 3]ω0 = |ψ ′| ∈ A2(T).
Since every smooth Jordan boundaryL belongs toS, finally we see that, the conditions
of Theorem 2 are satisfied. Then relation (15) and Theorem 2 complete the proof.

The following improvement of Mergelyan’s estimation (8) immediately follows from
Theorem 4.

Corollary 14. Let G be a finite domain with a smooth Jordan boundary L. Then the
Bieberbach polynomialsπn, for the pair(G, z0), satisfy

‖ϕ0− πn‖G ≤ c16

(
ln n

n

)1/2

, n ≥ 2.(16)

In fact, estimation (11) is better than (16), because it contains the factorÄ2,ω0(ϕ
′
0[ψ(w)]

(ψ ′(w))1/2,1/n) which also tends to zero with a certain speed.
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5. A. ÇAVUŞ, D. M. ISRAFILOV (1995):Approximation by Faber–Laurent rational functions in the mean of
functions of the class Lp(0) with 1< p <∞. Approx. Theory Appl.,11:105–118.

6. G. DAVID (1984):Operateurs integraux singulers sur certaines courbes du plan complexe. Ann. Sci.
Ecole Norm. Sup. (4),17:157–189.

7. P. L. DUREN (1970): Theory ofH p-Spaces. New York: Academic Press.
8. E. M. DYN’KIN (1981): The rate of polynomial approximation in the complex domain. In: Complex

Analysis and Spectral Theory (Leningrad, 1979/1980). Berlin: Springer-Verlag, pp. 90–142.
9. E. M. DYN’KIN, B. P. OSILENKER(1983):Weighted estimates for singular integrals and their applications.

In: Mathematical Analysis, Vol. 21. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn.
Inform., pp. 42–129.

10. E. M. DYN’KIN (1977):Estimates for analytic functions in Jordan domains. Zap. Nauch. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI),73:70–90, 231 (1978). Investigations on Linear Operators and the
Theory of Functions, VIII.

11. D. GAIER (1987): Lectures on Complex Approximation. Boston: Birkh¨auser.
12. D. GAIER (1988):On the convergence of the Bieberbach polynomials in region with corners. Constr.

Approx.,4:289–305.
13. D. GAIER (1998):Polynomial approximation of conformal maps. Constr. Approx.,14:27–40.
14. G. M. GOLUSIN (1969): Geometric Theory of Functions of a Complex Variable. Translation of Mathe-

matical Monographs, Vol. 26. Providence, RI: American Mathematical Society.
15. E. A. HACIYEVA (1986): Investigation the properties of functions with quasimonotone Fourier coefficients

in generalized Nikolsky–Besov spaces (Russian). Author’s summary of candidates dissertation, Tbilisi.
16. V. P. HAVIN (1965):Boundary properties of integrals of Cauchy type and conjugate harmonic functions

in regions with rectifiable boundary(Russian). Math. Sb. (N.S.),68:(110): 499–517.
17. R. A. HUNT, W. S. YOUNG (1974):A weighted norm inequalities for Fourier series. Bull. Amer. Math.

Soc.,80:274–277.
18. I. I. IBRAGIMOV, D. I. MAMEDHANOV (1975): A constructive characterization of a certain class of

functions. Dokl. Akad. Nauk SSSR,223:35–37; Soviet Math. Dokl.,4(1976):820–823.
19. D. M. ISRAFILOV (1987):Approximate properties of the generalized Faber series in an integral metric

(Russian). Izv. Akad. Nauk Az. SSR, Ser Fiz.-Tekh. Math. Nauk,2:10–14.
20. M. V. KELDYCH (1939):Sur l’approximation en moyenne quadratique des fonctions analytiques. Math.

Sb.,5(47):391–401.
21. V. M. KOKILASHVILI (1969):A direct theorem on mean approximation of analytic functions by polyno-

mials. Soviet Math. Dokl.,10:411–414.
22. S. N. MERGELYAN (1951):Certain questions of the constructive theory of functions(Russian). Trudy

Math. Inst. Steklov,37:1–91.
23. B. MUCKENHOUPT(1972):Weighted norm inequalities for the Hardy maximal functions. Trans. Amer.

Math. Soc.,165:207–226.
24. I. B. SIMONENKO (1978): On the convergence of Bieberbach polynomials in the case of a Lipschitz

domain. Math. USSR-Izv.,13:166–174.
25. P. K. SUETIN (1974):Polynomials orthogonal over a region and Bieberbach polynomials. Proc. Steklov

Inst. Math., Vol. 100. Providence, RI: American Mathematical Society.



p-Faber Polynomials in the Weighted Smirnov ClassEp(G, ω) and the Bieberbach Polynomials 351

26. P. K. SUETIN (1984): Series of Faber Polynomials. Moscow: Nauka; New York: Gordon and Breach
(1998).

27. J. L. WALSH, H. G. RUSSEL (1959): Integrated continuity conditions and degree of approximation by
polynomials or by bounded analytic functions. Trans. Amer. Math. Soc.,92:355–370.
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