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Approximation by p-Faber Polynomials in the
Weighted Smirnov ClasseP(G, w) and the
Bieberbach Polynomials

D. M. Israfilov

Abstract. Let G c C be a finite domain with a regular Jordan boundhryin this
work, the approximation properties offaFaber polynomial series of functions in the
weighted Smirnov clasgP (G, w) are studied and the rate of polynomial approximation,
for f € EP(G, w) by the weighted integral modulus of continuity, is estimated. Some
application of this result to the uniform convergence of the Bieberbach polynomijals
in a closed domaifs with a smooth boundary is given.

1. Introduction

Let G be a finite domain in the complex plane bounded by a rectifiable Jordan kurve
let w be a weight function o, and let 1< p < co. We denote by P(L) andEP(G)
the set of all measurable complex valued functions sucH th&is Lebesgue integrable
with respect to arclength, and the Smirnov class of analytic functio@s raspectively.
Each functionf € EP(G) has a nontangential limit almost everywhere (a.e.)Lpand
if we use the same notation for the nontangential limif opthenf € LP(L).

Forp > 1,LP(L) andEP(G) are Banach spaces with respect to the norm

1/p
I fller = I fllLew) == (/ |f(Z)|p|dZ|> .
L

For further properties, see [7, pp. 168-185] and [14, pp. 438—-453].

Theorder of polynomial approximation BP(G), p > 1, has been studied by several
authors. In [27], Walsh and Russel give results whésan analytic curve. For domains
with sufficiently smooth boundary, namely wheris a smooth Jordan curve, aé¢s),
the angle between the tangent and the positive real axis expressed as a function of
arclengths, has modulus of continuit§2 (9, s) satisfying the Dini-smooth condition

S QO
1) [ (S’S)ds<oo, 50,
0

this problem, forp > 1, was studied by S. Y. Alper [1].
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These results were later extended to the domains with regular boundary, which we
define in Section 2, fop > 1 by V. M. Kokilashvili [21], and forp > 1 by J. E. An-
dersson [2]. Similar problems were also investigated in [18]. Let us emphasize that in
these works, the Faber operator, Faber polynomialsparaber polynomials were com-
monly used and the degree of polynomial approximatioR fiiG) has been studied by
applying various methods of summation to the Faber series of functida®¥(i@). More
extensive knowledge about them can be found in [11, pp. 40-57] and [26, pp. 52—-236].

In [19] and [5], for domains with regular boundary we construct the approximants
directly as thenth-partial sums ofp-Faber polynomial series of € EP(G). In this
work, the approximation properties of tipeFaber polynomial series expansions in the
w-weighted Smirnov clasgP(G, w) of analytic functions inG, whose boundary is a
regular Jordan curve, are studied. Under some restrictive conditions upon weighting
functions the approximant polynomials are obtained directly amtheartial sums
of p-Faber polynomial series of € EP(G, w). The degree of this approximation is
estimated by a weighted integral modulus of continuity. The results to be obtained in
this work are also new in the nonweighted case- 1. Finally, applying this result we
give a result which improves Mergelyan’s estimation about the uniform convergence of
the Bieberbach polynomials in the closed dom@iwith a smooth boundary.

2. Some Definitions, Notations, and Auxiliary Results

Let G be a finite domain in the complex plane bounded by a rectifiable Jordan kurve
letU be the unitdiskG~ := ExtL, T :=0U, U~ ;= ExtT,1 < p < o0, and letw be a
weight function orl, thatis, a nonnegative measurable functiolh.owe denote by the
conformal mapping o6&~ ontoU ~ normalized byp(co) = oo and lim,_. o, ¢(2)/z > O.
Let v (w) be the inverse te@(z). The functionsy andy, have continuous extensions to
L andT, their derivativesy’(z) andy’(w) have definite nontangential limit values on
L andT a.e., and they are integrable with respect to the Lebesgue measuranai,
respectively [14, pp. 419, 438].

We shall use, ¢y, Cy, . .. to denote constants (in general, different in different rela-
tions) depending only on numbers that are not important for the questions of interest.

Definition 1. L is called regular if there exists a number- 0 such that for every
r > 0,sud|lLND(zr)|:ze L} <cr,whereD(z r) is an open disk with radiusand
centered at, and|L N D(z,r)| is the length of the sdt N D(z,r).

We denote bySthe set of all regular Jordan curves in the complex plane.

Definition 2. Let w be a weight function on.. w is said to satisfy Muckenhoupt’s
Ap-conditions orL if
p—1

1 1
supsup(— f w(g>|dg|> (— / [w(g>]1/<“>|dg|) < o0,
zeL r>0 \I' JLAD@z ) I JLnp@n

Let us denote byA,(L) the set of all weight functions satisfying Muckenhoupt’s
Ap-conditions orl.
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It is obvious that ifw € Ap(L) thenw™Y/P e LP/(P=D (L),
Let f € LY(L). Then the functions + and f ~ defined by

1 f(s)

fr@=-—"— d G
@ == L o—z%% zeG,
and
_ 1 f(s) -
f = d 3 G 9
@ 2ni Ji¢c—2 s z€

are analytic inG andG™, respectively, and ~(co0) = 0. Whenz, € L, if the limit of

the integral
1 f
_/ (s) de
211 Jinicig-zol=e) S — 20

exists ag — 0, this limit is called Cauchy'’s singular integral of

i/ f(s‘)d
27i Ji ¢ —2 s

atzp € L, and it is denoted b (f)(zp). Namely,

1 [ f© im 1 fés)
£)(z0) = P.V.—,/ d :=Im—./ dg.
S (H)(z0) = ( )27.” Lc—12 s = 2ni LN{s:lc—zol>e} S — 20 °

According to the celebrated Privalov theorem [14, p. 431], if one of the functions
f*(z) and f ~(2) has a nontangential limit oh a.e., thenS_(f)(z) exists a.e. orlL,
and also the other one of the functiohs(z) and f ~(z) has a nontangential limit ol
a.e. Conversely, i (f)(z) exists a.e. or, then the functiond *(z) and f ~(z) have
nontangential limits a.e. oh. In both cases, the formulas

f*o=9(H@+3f@ and " @=S(H@D-3{®
hold a.e. orL.

Definition 3. The setLP(L,w) := {f € LY(L) : |f|Pw € L(L)} is called the
w-weightedL P-space.

Definition 4. The setEP(G, w) = {f € EXG) : f € LP(L, w)} is called thew-
weighted Smirnov class of ordgrof analytic functions irG.

As was noted in [9, p. 89], the Cauchy singular integrals hold the following result,
which is analogously deduced from [6].

Theorem1. LetL € S, 1 < p < o0, and letw be a weight function on LThe
inequality

ISL(P)llLe,w) < Call FllLe,w)
holds for every fe LP(L, w) if and only ifw € Ap(L).
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Lemma2. If f € LP(L,w) andw € Ap(L), then there exists a numberx 1 such
that f € L"(L).

Proof. Sincew € Ap(L), there exists a number € (1, p) such thatw € Aq(L)
[23] (see also [9, p. 49]). Lat := p/qg. Since f e LP(L,w), we have|f[ w9 ¢
L9(L). On the other hand, sinee" /9 ¢ L9/@-D (L), Holder’s inequality shows that
f el (L). [

Lemma3. IfL € Sandw € Ay(L), then f € EP(G, w) and f~ € EP(G™, w) for
each fe LP(L, w).

Proof. Let f € LP(L, w). According to Theorem 1, we havg (f) € LP(L, w). On
the other hand, by Lemma 1, there exists a humber1 such thatf € L"(L). Since
l<r<oandL € S :L"(L) — L"(L)isabounded linear operator [6]. Therefore,
owing to Havin's work [16] (see also [6, p. 176]), the functiohs and f ~ belong to
E'(G) andE" (G™), respectively. Furthermore, sinde (z2) = S (f)(2) + % f(z) and
f=(2 = S.(H)(2 — %f(z) hold a.e. onL, it follows that f+ and f — are members
of LP(L, w). This yields the required result, becal8gG) c E'(G) andE'(G™) C
ENG). [ |

3. p-Faber Polynomials for G and p-Faber Polynomial
Series Expansions irEP(G, w)

Let k be a nonnegative integer. Then the functigiiz) (¢’(2))Y/P has a pole of ordek
at the pointo. So there exists a polynomikyk ,(z) of degreek and an analytic function
Ex,p(2) in G~ such thaEy p(c0) =0 andpX(2) (¢’ (2)YP = Fx.p(2) + Ex p(2) for every
z € G™. The polynomialsF ,(2) (k =0, 1,2, ...) are calledp-Faber polynomials for
G (see [2]). By means of Cauchy’s integral formula, it is easily seen that
k ’ 1/p K(ap.! 1-1
Fk,p@:i/ gl EN™ L LACAC)
21 Ji . c—z 27l Jjy=r  Y(w) -2

for R> 1andeveryg € IntLg, whereLr :={z€ G~ : |¢(2)| = R}.

Lemma4. Ifze G andw € U, then

(W (w)) =P _ i F.p(2
Y(w) — 2z — wk+l ’
Proof. Letustakez € G. Since the function

(' (w)-/p
Vv(w) -2
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is analytic inU ~ and it is normalized with) (c0) = oo and lim,_, o ¥ (w)/w > 0, its
Laurent series expansionth™ is of the form

Acp@
D i

k

0
=0

and this series converges to

(' (w)) /P
Vv(w) -2z
uniformly on compact subsets bf~. So, forR > 1 and a nonnegative integer we
obtain

N 1-1/ ) n
1 f W@ w) P 3 ( ! / d dw) A p(2) = Anp(2).
lw|=R

ﬁ I[/(U)) —-Z k=0 % lw|=R wk“

This shows thal, ,(z) = Ay p(2)forn =0, 1, 2, ..., and so the proofis completed

Lemmab5. Ifze G, then

k / 1/ k / 1/
"mf w@W@Dp%=/¢©@@Dpd
Livyn L

9
n—o0

s —Z ¢ —Z
fork=0,1,2,....

Proof. Let
i(1+ 1/n)k+1ei(k+1)0(w/((1+ 1/n)ei9))171/p
Y((1+1/me’) —z '

It is obvious that the sequen¢e, ()} converges a.e. to the function

on(0) =

jel k+De (w/(el 9))171/ p
y(Ee?) -z

on the segment [®@r], and

/ P*() (@ ()Y
Litvan

2
dg:/ @n(6) do.
g—Z 0

On the other hand, it is easily proved that the sequence

27
{ / lpn (0)[P/P~Y de}
0

is bounded with respect ta Thus, by the test for the possibility of taking the limit under
the Lebesgue integral sign given in [14, p. 390] we obtain

2 2 5 Al (k+1)0 (017 (@i 0V\1-1/p
jim f pn(0) dO =f W) T g,
n—o Jo 0 Y(e) -z
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This gives us

k ’ 1/ k / 1
im / 0 ()@ (5)) pdg _ / ()¢’ (5)) "dg'
Litvi/n g—1Z L ¢—Z

n—o0

Finally, we prove the following lemma for the integral representatiompdfaber
polynomials inG~.

Lemma6. Ifze G—,then

() (@' (o) P

dg,
§—-z2 °

1
_ 1/p
Fp(@ = o* @ (¢ @)YP + -— o /L
fork=0,1,2,....

Proof. The casa = oo is trivial. Letz € G™\{oo}. If R > 1 and the natural numbers
n are chosen big enoughbecomes an interior point of the doubly connected domain
with the boundary g U L111/n. SO, by Cauchy’s integral formula we have

X (@' (e)YP

i/ () (@' (e)YP
Lr (4

1
1/p
5 = @@+ oo I/Lwn dg

and hence by Lemma 4 we obtain

() (@' ()P d

1
1/p
Fip(@ = " @ (¢'(2)) t o |/L c—z

The lemma is proved. u

Let f € EP(G, w). Sincef € EX(G), we have for every € G:

1 (e, _ 1 1 (' ()P
=512 —zni/f(‘“ N )P du

On the other hand, since

W' )P i Fi.p(2

Y(w) —2z — wktl
forw € U~ andz € G, if we define the coefficients () by

i/ fy )’ (w))l/p

a(f) = k=012,...,

27i wk+1 ’

we can associate a formal series

> a(f)Fp(2),
k=0
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in the particular case with the functidhe EP(G, w), i.e.,
f(2)~ > adf)Fp@.
k=0

This formal series is called thp-Faber polynomial series expansion bf and the
coefficientsa ( f) are said to be the-Faber coefficients of .

4. Main Results

Letg € LP(T, w) andw € Ay(T). SinceL P(T, w) is noninvariant with respect to the
usual shift, we consider the following mean value function as a shify forL (T, w):

1 /" :
oh(w) = —f g(wet)dt, O<h<m, weT.
on ),

Using the relation (see, e.g., [9, p. 110]):
lOnllLeTw) < CpllIllLr(T w)s l<p<oo,

we get thag, € LP(T, w).

Definition 5. If ge LP(T, w) andw € Ap(T), then the functior2, (g, -) : [0, c0) —
[0, 00), defined by

Qp.0(9,8) :=supllg — OhllLe(T.w), h <6}, l<p<oo,

is called thew-weighted integral modulus of continuity of ordprfor g.

Note that the idea of defining such a modulus of continuity originates from [29]. It
can be shown easily th&, (g, -) is a continuous nonnegative nondecreasing function
satisfying the conditions

g@ogp,w(gs 5) = O, Qp,w(gl + 02, ) = Qp,a)(glv ) + Qp,w(QZv )

Lemma7. Ifge LP(T,w)andw € Ap(T), then
Qp.o(Sr(9), ) < C2R2p(g, ).

Proof. Leté € (0, ), h < 8, andw € T. Applying the Fubini theorem we have

[Sr(@]n(w)

! hsr<< é)) do
%/_h g
1 [ g(mdr

1 Mo [ g(zé®)é’ dr
= /mﬁ <(P.V.) T ) do
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1 o1 g(r€?)dr
= — — [ (P.V. = - ) do
2h /;h 27i <( ) T T—w )

1/2h) (M g(ze?)do
_ i_(P.v.)/ 2m [ 9endo
2| T

T—w

1
- 2—.<P.v.>/ ) g [Sr (g w).
7Tl T

T—Ww
Therefore,

[STP](w) — [Sr(@]n(w) = [Sr(g — gn)](w),

and by virtue of Theorem 1 we obtain

IS (@ = [ST@D]nllLem.ey = 1ST(@— ) llLemw) < C2ll9 — GhllLeT,w)-

The last inequality shows that

Qp,w(sl'(g)v ) < CZQp,w(gs ')s

and the proof is completed. ]
Lemma8. Ifge LP(T,w)andw € Ap(T), then
Q0@ ) < (€24 $Qu(Q, ).
Proof. Sincegt = %g + Sr(g) a.e. onT, by means of Lemma 6 we obtain
Q@) = (C2+ 3w, ). u

Lemma9. Letge EP(U,w)andw € Ap(T). If

> an(@u*
k=0

is the nth partial sum of the Taylor series of g at the orjghen there exists a constant
c3 > 0, such that

f 1
Hg(w) — > a(@u* < C3Qpo (g, —) :
k=0 LP(T.0) n

for every natural number.n

Proof. Let

i ﬁkeikg

k=—o00
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be the Fourier series gf € EP(U, w) and

n

Si(g.0) =) B

k=-n

be itsnth-partial sum. Sincg € E*(U), we havesx = 0 fork < 0, andgx = ax(g) for
k> 0[7, p. 38]. Hence

= [19(€?) — $(9, O Lr(0.20].00.

LP(T,w)

(2) ”g(w) - a(@u*
k=0

Now, let T*(0) be the best approximate trigonometric polynomial ge'?) in
LP([0, 2], w). That is,

®3) I9(€7) — T O)lLr0.2e].00 = En.p(Q, @),

whereE, (9, ) = inf{|lg(e?) — T@)lLrqo.27],0) - T € In} denotes the minimal
error in approximatingy by trigopnometric polynomials of degree at mastrhen from
(2) we get

< 19€%) = T¥O)ILr(0.201.00
LP(T,w)

4 Hg(w) — ) a(@ut
k=0
+ 1S9 = T, O llLeqo,20],)-

On the other hand, under the conditiore Ap(T) the result[17] (see also [9, p. 108])
states that, for evergy € LP([0, 2r], w):

sup|S(9, )|

n>0

< Call9llLe (0,27],0).
LP([0,27],w)

By applying this inequality to the functiog — T, and taking into account the relation
(3), from (4) we get

< (C4+DEp p(9, ®).
LP(T,w)

n
(5) Hg(w) =Y (@t
k=0
Further, using the estimation

1
En,p(g, (U) S CSQp,a) <97 ﬁ) )

which was proved in [15, Theorem 1.4], from ( 5) we obtain

1
S C3Qp,u) g5 - .
LP(T, o) n

The lemma is proved. ]

”g(w) - a(@u*
k=0
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Now, forw € T, we set

wo(w) = w (¥ (w)), fo(w) := (¥ W)W )P,

and state the main theorem in our work.
Theorem 10. Let f € EP(G, w) and let
n
Si(f.2) =) a(f)Fp(2)
k=0

be the nth partial sums of its p-Faber polynomial series expanHibne S, w € Ap(L),
andwg € Ap(T), then there exists a constary s 0 such that

1
[ —S(f, ) llLe.e) < C682p.wp <f0, ﬁ)
for every natural number.n

Proof. It is obvious thatfy € LP(T, wp). Let us consider the functionii,+ and fy
defined by

1 f
fo+(w) = ng ttfrj) dr, weU,

and
1 fo(‘L’)

fo (W) = —

- dr, welU™.
27 JrT—w

Let ax( ) be thekth p-Faber coefficient off € EP(G, w). Since by Lemma 2;‘5r €
EP(U, wp) and f; € EP(U™, wg), moreover,f; (co) = 0andfy = fy — f; a.e. on

T,and
1 [ fo()
= 5 [ o

we obtain

27i Tkl

Itis seen that thieth p-Faber coefficient of € EP(G, w) is thekth Taylor coefficient
of f;" € EP(U, wp) at the origin. On the other hand, the assumptfor EP(G, )

+
ak(f)zi/ AN
T

implies
f ') 4e—0  zeo,
LS —Z
and considerindo = f;” — f; a.e.onT:
(6) f(s) = (f (0(6) — f5 (@) (g (NP

holds a.e. orL.
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Let us take & € G~. By means of Lemma 5 we obtain

Y a(HFp@) = @@NYPY a(f)e @)
k=0 k=0

1 [ @ NYPY R ga(Fek(s)
+ % /L c—7 dg

ds = (¥ @NYP) a(fe*@)
k=0

9

NI
2ni JL ¢ -7

1 [ @E)YP YR sa(Hek(s) dc

2ri L S — z
L[ WP
27l J| s—7 °
1 [ (@ NPy (9(5)
t o /L s—7 de:
Since
1 / pf-
2—/ (@' () 0/ (p(5)) dg — _(w/(i))l/DfO*(w(Z/))
Tl JL g—Z
we get

D a(HFp@) = @@NYPY a(f)e @)
k=0 k=0

L f (@' (NYPL k0 A (NP (s) = T (o]
2 Ji 4 o
— (@ @NP 1t (p(2)).

Taking the limit asz — z along all nontangential paths outsitleit appears that
> adHFp@ = 3@/ (2)"P [Z a( ek — fJ(w(z))]
k=0 k=0
+[fs (0(@) — Ty (0@](@ @)YP

+S [(w’)l”’ (Z a(fe* — f o w)} 2
k=0

holds onL a.e. Further, taking relation (6) into account, and applying Minkowski's
inequality and Theorem 1, from the last equality we obtain

I =S, )llLew < €14 3)

fo (w) — ) " anc(Fuk
k=0

LP(T,wo).

Now, the proof follows from Lemmas 8 and 7. ]
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Note that ifL is a sufficiently smooth curve then one out of the conditiors Ap(L)
andwo € Ap(T) may be omitted in the above Theorem 2. In particular, the following
theorem holds.

Theorem 11. Let L be the smooth boundary satisfying condi{ibhlif f € EP(G, w),
and one out of the conditions € Ay(L) andwo € Ap(T) holds then there exists a
constant ¢ > 0 such that

1
If —S(f, )llLe,w) < C72p.00 (fo, ﬁ) .

Proof. Accordingto Theorem 2itis sufficient to prove the equivalence of the conditions
w € Ap(L) andwo € Ay(T). Since the boundark is smooth, it can be shown easily
that the condition € Ap(L) is equivalent to the inequality

7) <||—1|/Iw<g>|dg|)/<“—l| /I[w<g>]—1/<p—l>|dg|)p_lsc< o0

foreveryarc | C L,
On the other hand, under the restrictive conditions ulppby the result [28]:
O<cg<|y(w)|<cg<oo forevery |w|>1,
and from this we have
[y (Dl = /|1/f/(w)||dw| < Colll,
|
/ [y (D]
R
v() Cs
foreveryarcl C T.

Substitutinge = ¥ (w) in (7) and using the last three relations, as result of simple
computations we obtain the desired equivalence. [ ]

5. Application to the Uniform Convergence of the Bieberbach Polynomials
in Closed Domains with Smooth Boundary

Let G be a finite simply connected domain of the complex pl@rend letzg € G. By
the Riemann mapping theorem, there exists a unique conformal mappigy(z) of
GontoD(0, rg) := {w : |w| < ro} with the normalizatiorp(zo) = 0, ¢4(z0) = 1. The
radiusrq of this disk is called the conformal radius Gfwith respect ta,. Let yo(w)
be the inverse tgy(2).

For an arbitrary functiorf given onG andp > 0 we set

Ifls = suplf@1,ze G},  IIfIZ,q, :=//|f(z>|2doz,
G

1Tl = f/6|f/<z)|2doz, doz = dx dy.
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It is well known that the functiog(z) minimizes the integral f ||f1(G) in the class
2

of all functions analytic inG with the normalizationf (zp) = 0, f'(zg) = 1. On the
other hand, lefl,, be the class of all polynomials, of degree at most satisfying the
conditionspn(Zg) = 0O, p,(z0) = 1. Then the integraj pn||ﬁ1(G) is minimized inII,
2
by a unigue polynomiat, which is called thenth Bieberbach polynomial for the pair
(G, 29).

If G is a Caratbodory domain, thetigg — nn||L%(G) — 0 (n — o0) and from this it
follows thatm,(2) — ¢o(2) (N — oo) for z € G, uniformly on compact subsets Gf.

First of all, the uniform convergence of the sequefieg’>, in G was investigated
by M. V. Keldych. He showed [20] that if the bounddryof G is a smooth Jordan curve

with bounded curvature then the following estimate holds for evefyO:

Cio
llpo — mnllg < e

In [20] the author also gives an example of domaihsvith a Jordan rectifiable
boundaryL for which the appropriate sequence of the Bieberbach polynomials diverges
on a set which is everywhere densd.in

Furthermore, S. N. Mergelyan [22] has shown that the Bieberbach polynomials satisfy

C11
8 lgo — mnllg < Nz

for everye > 0, whenevel is a smooth Jordan curve.

In addition to this the author [22] noted it is possible to replace the exp@emin
(8) by 1—&.

Therefore the uniform convergence of the sequengg™ ; in G and the estimate
of the error|l¢o — mn|lg depend on the geometric properties of boundaryf L has
a certain degree of smoothness, this error tends to zero with a certain speed. In several
papers (see, e.g., [25], [24], [3], [4], [12], [13]) various estimates of the ¢p®F (|5
and sufficient conditions on the geometry of the boundagre given to guarantee the
uniform convergence of the Bieberbach polynomialsRrMore extensive knowledge
about them can be found in [4], [12].

To the best of the author’s knowledge in the literature there are no results improving
the above cited Mergelyan’s result yet. In this section, applying Theorem 2, we give a
result which improves estimate (8).

For the mapping, and a weight functiom we set

en(gp)2 = igf oo — PallLaG)s En(vo, ©)2 i= igf oo — PallLac o),
where inf is taken over all polynomials, of degree at mosi.
At first we prove the following result, about ti#,-properties of the conformal maps

@o ando.

Lemma 12. Let G be a finite domain with a smooth boundaryThen the functions
1/lppl and1/|¢’| belong to A(L) for every pe (1, co).
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Proof. We prove only the relation/lg;| € Ap(L). The other relation is proved sim-
ilarly. Moreover, taking into account the propemy, (L) C Ap,(L) for py < po, itis
sufficient to consider the cased p < 2.

SincelL is smooth, Theorem 3 of [10] states that, for evpry 1:

9) ¢’ lool € Ap(L)  and [yl € Ap(3D(0,10)).

Itis easy to verify that the relatid| € A,(dD(0, ro)) is equivalent to the inequality

i o)/ 3 o)
(10 (i [rebewea) /(- [1wblaz) < < .

for every arcl C L,

whereq := p/(p — 1). If we write

(i foo10) (o |<p()|1/“’-1>|dz|)p_1
(o) )
| (i [ b1aa) /(5 [waie) |

then the first factor is bounded becauyg§l € Ax(L). Further, applying inequality (10)
forq = 1/(p — 1) we obtain the boundedness of the second factor. This completes the
proof. [ ]

Now we can formulate the main result of this section.

Theorem 13. Let G be a finite domain with a smooth Jordan boundaryThen the
Bieberbach polynomials,, for the pair (G, zy), satisfy

Inn\ Y2 1
(11) llgo — mmllg < C12 <%) Q22 0, (@6 [y (w)] (v (w))l/z, ﬁ) ) n=>2,

wherew = 1/|¢'|, wo 1= |¥'], and Q2,,, (-, 1/n) is thewp-weighted integral modulus
of continuity of order2 for [y (w)] (¥ (w))¥/2.

Proof. SinceG is a finite domain with a smooth boundary, the functifwisand I/ |¢;|
belong toA,(L) for everyp > 1, by (9) and Lemma 9, respectively. Then by means of
Holder's inequality we get) € L%(L, 1/|¢’|). Onthe other hang), € EX(G). Hence, by
definition, we havey, € E%(G, 1/|¢'|). Then the result [8, (Theorem 11, Remark (ii))]
states that, fopy, 0 1= 1/|¢’| andp = 2:

’ — o / 1
(12) en(gp)2 < C1an2E, (‘Po’ |<p’|> :
2
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For the polynomials},(z), best approximatingg in the norm||-||,), we set
z
Qn(2) = f (1) dt, th(2) == Qn(2 +[1 — Oh(20)](z — 20).
20

Thent, (z0) = 0,t/, (zp) = 1 and from (12) we obtain

(13) lloo — tallL.e) = llgo — dn — 1+ th(20) lIL,6)
9o — OnllLyG) + 11— dn(20) L)

IA

IA

, 1 ,
C13n71/2E§ (%a W) + lop(Zo) — An(20) lILs(G)-
2

On the other hand, by the inequality
Il
dist(zg, L)’
which holds for every analytic functiof with || f || ,) < oo, from (13) and (12) we
get

/ - 1 €n((/)(/))2 —1/2 1
o — thllLye) < Cisn Y2ES ((,0/,—> + 0= <cun PE; (0 — ) .
0 mik® "\ g1/, dist(zo, L) "\ e/,

So, according to the extremal property of the polynomiglswe have

|f(20)] <

1
(14) lleo = nllLye) =< cuan V2E;, <§00» _|<p’|> :
2
Further applying Andrievskii’s [3] polynomial lemma

1/2
Ipnlls < N[ pallLi)»

which holds for every polynomiap, of degree< n with pn(zg) = 0, and using the
familiar method of Simonenko [24] and Andrievskii [4], from (14) we get

Inn\*?__/ 1
(15) lgo — 7nllg < Cis | — Enlvo — ) > n>2
n 'l /),

On the other hand, as is shown aboyg, € E?(G, 1/|¢'|), and by Lemma 9 the
functionw = 1/|¢’| belongs toA,(L). In addition, by [8, Lemma 3 = |¢'| € Ax(T).
Since every smooth Jordan boundarpelongs taS, finally we see that, the conditions
of Theorem 2 are satisfied. Then relation (15) and Theorem 2 complete the pramf.

The following improvement of Mergelyan’s estimation (8) immediately follows from
Theorem 4.

Corollary 14. Let G be a finite domain with a smooth Jordan boundaryrhen the
Bieberbach polynomials,, for the pair (G, z), satisfy

Inn\?2
(16) lpo — mallg < Ci6 (7) , n=>2

Infact, estimation (11) is better than (16), because it contains the fagtgfpy[ v (w)]
(¥’ (w))¥?, 1/n) which also tends to zero with a certain speed.



350 D. M. Israfilov

Acknowledgment. The author is indebted to the referees for valuable suggestions.

References

1. L.Y.ALPER(1960):Approximation in the mean of analytic functions of clas’ (Russian). Moscow:
Gos. lzdat. Fiz.-Mat. Lit., pp. 272-286.

2. J. E. A\DERSSON(1977):On the degree of polynomial approximation i @). J. Approx. Theory,
19.61-68.

3. V. V. ANDRIEVSKII (1983): Convergence of Bieberbach polynomials in domains with quasiconformal
boundary Ukrainian Math. J.35:233—-236.

4. V. V. ANDRIEVSKII (1983):Uniform convergence of Bieberbach polynomials in domains with piecewise-
quasiconformal boundargRussian). In: Theory of Mappings and Approximation of Functions. Kiev:
Naukova Dumka, pp. 3-18.

5. A.Cavusg, D. M. IsrAFILOV (1995): Approximation by Faber—Laurent rational functions in the mean of
functions of the class (") with 1 < p < oo. Approx. Theory Appl.,11:105-118.

6. G. DaviD (1984): Operateurs integraux singulers sur certaines courbes du plan complexe Sci.
Ecole Norm. Sup. (4)17:157-189.

7. P.L.DUREN(1970): Theory ofH P-Spaces. New York: Academic Press.

8. E. M. DvN’KIN (1981): The rate of polynomial approximation in the complex domé&in Complex
Analysis and Spectral Theory (Leningrad, 197980). Berlin: Springer-Verlag, pp. 90-142.

9. E.M.DyN'KIN, B. P. GSILENKER(1983):Weighted estimates for singular integrals and their applications
In: Mathematical Analysis, Vol. 21. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn.
Inform., pp. 42—-129.

10. E.M.DyN’KIN (1977):Estimates for analytic functions in Jordan domaifap. Nauch. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI)73:70-90, 231 (1978). Investigations on Linear Operators and the
Theory of Functions, VIII.

11. D. GAIER (1987): Lectures on Complex Approximation. Boston: Bakisér.

12. D. GAIER (1988):0n the convergence of the Bieberbach polynomials in region with car@ensstr.
Approx.,4:289-305.

13. D. GAIER (1998):Polynomial approximation of conformal magSonstr. Approx.,14:27-40.

14. G. M. GoLUSIN (1969): Geometric Theory of Functions of a Complex Variable. Translation of Mathe-
matical Monographs, Vol. 26. Providence, RI: American Mathematical Society.

15. E.A.HaciYEVA (1986): Investigation the properties of functions with quasimonotone Fourier coefficients
in generalized Nikolsky—Besov spaces (Russian). Author’s summary of candidates dissertation, Thilisi.

16. V. P. HwiN (1965):Boundary properties of integrals of Cauchy type and conjugate harmonic functions
in regions with rectifiable boundarfRussian). Math. Sb. (N.S§8:(110): 499-517.

17. R. A. HUNT, W. S. YOUNG (1974): A weighted norm inequalities for Fourier seriedull. Amer. Math.
Soc.,80:274-277.

18. I I. IBrRAGIMOV, D. I. MAMEDHANOV (1975): A constructive characterization of a certain class of
functions Dokl. Akad. Nauk SSSR22335-37; Soviet Math. Dokl4(1976):820-823.

19. D. M. ISrRAFILOV (1987): Approximate properties of the generalized Faber series in an integral metric
(Russian). Izv. Akad. Nauk Az. SSR, Ser Fiz.-Tekh. Math. N&k)—-14.

20. M. V. KELDYCH (1939):Sur I'approximation en moyenne quadratique des fonctions analytidylit.
Sb.,5(47):391-401.

21. V. M. KokILASHVILI (1969):A direct theorem on mean approximation of analytic functions by polyno-
mials. Soviet Math. Dokl.10:411-414.

22. S. N. MERGELYAN (1951): Certain questions of the constructive theory of functifRgssian). Trudy
Math. Inst. Steklov37:1-91.

23. B. MUCKENHOUPT(1972):Weighted norm inequalities for the Hardy maximal functioh®ns. Amer.
Math. Soc.165207-226.

24. 1. B. SMONENKO (1978):On the convergence of Bieberbach polynomials in the case of a Lipschitz
domain Math. USSR-Izv.13:166-174.

25. P. K. SETIN (1974):Polynomials orthogonal over a region and Bieberbach polynomRisc. Steklov
Inst. Math., Vol. 100. Providence, RI: American Mathematical Society.



p-Faber Polynomials in the Weighted Smirnov CI&5 G, ») and the Bieberbach Polynomials 351

26. P. K. SETIN (1984): Series of Faber Polynomials. Moscow: Nauka; New York: Gordon and Breach
(1998).

27. J. L. WALSH, H. G. RUSSEL (1959): Integrated continuity conditions and degree of approximation by
polynomials or by bounded analytic functiofisans. Amer. Math. Soc92:355-370.

28. S. WARSCHAWSKI (1932): Uber das Randverhalten der Ableitung der Abbildungsfunktionen bei kon-
former AbbildungMath. Z.,35:321-456.

29. M. WEHRENS(1981):Best approximation on the unit sphere if.RProc. Conf. Oberwolfach. August
9-16, 1980, Basel e.a. pp. 233-245. Funct. Anal. Approx.

D. M. Israfilov

Department of Mathematics
Faculty of Arts and Sciences
Balikesir University

10100 Balikesir

Turkey
mdaniyal@mail.balikesir.edu.tr



Copyright © 2003 EBSCO Publishing



Copyright of Constructive Approximation is the property of Springer Science & Business MediaB.V. and its
content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for individual use.



