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COMMUNICATIONS IN ALGEBRA, 29(3), 1085–1094 (2001)

THE p-COCKCROFT PROPERTY OF
CENTRAL EXTENSIONS OF GROUPS

A. Sinan Çevik

Matematik Bolumu, Fen-Edebiyat Fakultesi, Balikesir
Universitesi, 10100 Balikesir, Turkey

ABSTRACT

A presentation for an arbitrary group extension is well known. A
generalization of the work by Conway et al. (Group Tensor 1972,
25, 405–418) on central extensions has been given by Baik et al. (J.
Group Theor.). As an application of this we discuss necessary and
sufficient conditions for the presentation of the central extension to
be p-Cockcroft, where p is a prime or 0. Finally, we present some
examples of this result.

1991 Mathematical Subject Classification: 20F05; 20F55; 20F32;
57M05; 57M20.

1. INTRODUCTION

Let

P = 〈x ; r〉 (1)

be a group presentation. Let F denote the free group on x, and let N denote the
normal closure of r in F . The quotient G = F/N is the group defined by P .

1085

Copyright C© 2001 by Marcel Dekker, Inc. www.dekker.com



ORDER                        REPRINTS

1086 ÇEVIK

If we regard P as a 2-complex with one 0-cell, a 1-cell for each x ∈ x, and
a 2-cell for each R ∈ r in the standard way, then G is just the fundamental group
of P . There is also, of course, the second homotopy group π2(P) of P , which
is a left ZG-module. The elements of π2(P) can be represented by geometric
configurations called spherical pictures. These are described in detail in (1), and
we refer the reader these for details. In this paper we need only one basepoint
on each disc of our pictures [so we will actually use ∗-pictures, as described
in Section 2.4 of (1)]. Also, as described in (1), there are certain operations on
spherical pictures.

Suppose X is a collection of spherical pictures over P. Then, by (1), one
can define the additional operation on spherical pictures. Allowing this additional
operation leads to the notion of equivalence (rel X) of spherical pictures. Then,
by (1), the elements 〈P〉 (P ∈ X) generate π2(P) as a module if and only if every
spherical picture is equivalent (rel X) to the empty picture. If the elements 〈P〉
(P ∈ X) generate π2(P) then we say that X generates π2(P).

For any picture P over P and for any R ∈ r, the exponent sum of R in P,
denoted by expR(P), is the number of discs of P, labeled by R, minus the number
of discs, labeled by R−1. We remark that if pictures P1 and P2 are equivalent, then
expR(P1) = expR(P2) for all R ∈ r.

Definition 1. Let P be as in presentation (1), and let n be a nonnegative integer.
Then P is said to be n-Cockcroft if expR(P) ≡ 0 (mod n) (where congruence
(mod 0) is taken to be equality) for all R ∈ r and for all spherical pictures P over
P . A group G is said to be n-Cockcroft if it admits an n-Cockcroft presentation.

Remark 2. To verify that the n-Cockcroft property holds, it is enough to check
for pictures P ∈ X, where X is a set of generating pictures.

The 0-Cockcroft property is usually just called Cockcroft. In practice, we
usually take n to be 0 or a prime p. The Cockcroft property has received consider-
able attention in (2–6). The p-Cockcroft property has been discussed, for example,
in (6).

One can find the definition of efficiency for a presentation P , for example,
in (7–9). The following result, which is essentially due to Epstein (10), can be
found in (6, Theorem 2.1).

Theorem 3. Let P be as in (1). Then P is efficient if and only if it is p-Cockcroft
for some prime p.
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1.1. Central Extensions

Let Q be a group with the presentation PQ = 〈a ; r〉, and let K be a cyclic
group of order m generated by x (m = 0 if x has infinite order). Any central
extension of K by Q will have a presentation of the form

Pc = 〈a, x ; Rx−kR (R ∈ r), xm, [a, x] (a ∈ a)〉, (2)

where 0 ≤ kR < m, (kR ∈ Z if m = 0).
However, not every presentation of this form defines an extension of K

by Q, because the order of x may not be m in G ∼= G(Pc). But, by (11) [see
also (12) Corollary 7.2], if we know a generating set, say Y, of π2(PQ) then we
can give necessary and sufficient conditions for x to have order m (Theorem 4
later).

Let Q (Q ∈ Y) have discs �1, �2,. . . , �t labeled Rε1
1 , Rε2

2 ,. . . , Rεt
t , re-

spectively (Ri ∈ r, εi = ±1, 1 ≤ i ≤ t). Then let us choose a spray

γ1, γ2, . . . , γt (3)

for Q, and suppose the label on γi is W�i which is a word on a (1 ≤ i ≤ t). [The
reader can be found the details of spray in (1).] Let β(Q) = ∑t

i=1 εi kRi .

Theorem 4. (11, 12). Let G be the group defined by the presentation (2). Then
the order of x is m in G if and only if

β(Q) ≡ 0 (mod m) (Q ∈ Y). (4)

For Q ∈ Y as above and a ∈ a, we let αa(Q) = ∑t
i=1 εi expa(W�i )kRi .

1.2. The General Theorem

Theorem 5. Let p be a prime or 0, and letPc be a presentation as in Equation (2)
such that the condition (4) holds. Then Pc is p-Cockcroft if and only if

(i) m ≡ 0 (mod p),
(ii) expa(R) ≡ 0 (mod p), for all a ∈ a, R ∈ r,

(iii) PQ is p-Cockcroft,
(iv) αa(Q) ≡ 0 (mod p), for all a ∈ a, Q ∈ Y,
(v) β(Q) ≡ 0 (mod m · p), for all Q ∈ Y.
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Figure 1.

2. THE PROOF OF THEOREM 5

Throught this section Q, K will be finite groups with the presentationsPQ =
〈a ; r〉 and PK = 〈x ; xm〉, respectively, and let Pc be a presentation of the central
extension of K by Q as in Equation (2) such that the condition (4) holds. By (12),
we can give a set of generating pictures over Pc as follows:

(I) The generating picture of the presentation PK can be illustrated as in
Figure 1.Note that if m = 0 then the picture K simply becomes the
empty picture.

(II) For each a ∈ a, we have a spherical picture Ka as in Figure 2. Also
note that if m = 0 then the picture Ka becomes the empty picture.

(III) For each R ∈ r, we have a spherical picture as in Figure 3a (or Fig. 3b
if kR = 0).

(IV) For each Q ∈ Y, a picture Q̂ defined as follows.

Figure 2.
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Figure 3.

For the picture Q, we have the spray as defined in Equation (3). Then, for
each disc �i labeled Rεi

i (1 ≤ i ≤ t), we replace the spray line (transverse path)
γi by a picture consisting of discs labeled [a, x] (a ∈ a) and with boundary label
W�i x

εi kRi W −1
�i

x−εi kRi . This can be illustrated as in Figure 4. This gives a picture
Q∗ with the boundary label

W (Q) = (xε1kR1 xε2kR2 · · · xεt kRt )−1

= x−β(Q) by the definition of β(Q).

We then cap off Q∗ with a picture consisting of β(Q)
m times xm-discs (where β(Q)

m
is taken to be 0 if m = 0), positively oriented if β(Q) > 0, negatively oriented if
β(Q) < 0, to obtain a spherical picture Q̂. In doing this it may be necessary to join
up loose oppositely oriented x-arcs.

In (12, Theorem 6.4), Baik–Harlander–Pride proved that if the presentation
Pc be as in Equation (2) such that the condition (4) holds then π2(Pc) is generated
by the pictures

K, Ka (a ∈ a), Dx,R (R ∈ r), and Q̂ (Q ∈ Y).

At this part of the proof we must check the conditions of Theorem 5 by using
these above generating pictures. Let CR , Ca denote the relators Rx−kR (R ∈ r),
[a, x] (a ∈ a), respectively, in presentation Pc.

First assume that m �= 0. Let us consider the picture K. It is clear that
expxm (K) = 1 − 1 = 0. Also, let us consider a picture Ka (a ∈ a). Clearly
expxm (Ka) = 1 − 1 = 0, and it is easy to see that expCa

(Ka) = expx (xm) = m, so
we must have m ≡ 0 (mod p). Hence the condition (i) must hold. Consider a pic-
ture Dx,R (R ∈ r). We have expCR

(Dx,R) = 1 − 1 = 0, and we get expCa
(Dx,R) =

expa(R), for all a ∈ a. Thus, the condition (ii) must hold. Now consider a picture
Q̂ (Q ∈ Y). We must have expCR

(Q̂) ≡ 0 (mod p). But expCR
(Q̂) = expR(Q), so
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Figure 4.

we must have expR(Q) ≡ 0 (mod p), that is, PQ must be p-Cockcroft. This gives
the condition (iii). Also, for a fixed a ∈ a, we have expCa

(Q̂) = αa(Q). Then we
must have αa(Q) ≡ 0 (mod p), which gives the condition (iv). Finally, we have that
expxm (Q̂) = β(Q)

m . Then we must have β(Q) ≡ 0 (mod m.p). So the condition (v)
must hold.

Suppose that m = 0. Then the five conditions (i)–(v) reduce to the three
conditions

(ii) expa(R) ≡ 0 (mod p), for all a ∈ a, R ∈ r,
(iii) PQ is p-Cockcroft,
(iv) αa(Q) ≡ 0 (mod p), for all a ∈ a, Q ∈ Y,

since the conditions (i) and (v) automatically hold. Because the pictures K and
Ka are trivial, so impose no restrictions, and there are no xm discs, then the above
process on pictures will carry over.

3. SOME EXAMPLES

Example 6. Let Q be the (k, l, n)-triangle group with the presentation PQ =
〈a, b ; ak, bl , (ab)n〉, where k, l, n ∈ Z+ and 1

k + 1
l + 1

n ≤ 1, and let K be a
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Figure 5.

cyclic group of order m generated by x (m is taken to be 0 if x has infinite order).
Consider the presentation

Pc = 〈a, b, x ; ak x−r , bl x−s, (ab)n x−t , xm, Ca, Cb〉, (5)

where 0 ≤ r, s, t < m (or r, s, t ∈ Z, if m = 0) and let Ca := [a, x] and Cb :=
[b, x]. By the weight test [see (13, 14)], PQ is Combinatorial Aspherical [see (8)]
and then Cockcroft. We can give a set of generating pictures of π2(PQ) as in
Figure 5, so β(Q1) = 0, β(Q2) = 0, β(Q3) = 0 and then condition (4) holds.
Hence, by Theorem 4, the group G defined by Pc is a central extension of K
by Q. We have expa(ak) = k, expb(bl) = l, expa((ab)n) = n, expb((ab)n) = n.
Moreover, we get αa(Q1) = r, αb(Q1) = 0, αa(Q2) = 0, αb(Q2) = s, αa(Q3) =
t, αb(Q3) = t . Also, for any prime p, we always have β(Qi ) ≡ 0 (mod m.p)(i =
1, 2, 3).

Thus, we get the following result for Example 6, as a consequence of
Theorems 3 and 5.

Corollary 7. Let p be a prime. Then the presentation Pc as in Equation (5), is
p-Cockcroft if and only if

m ≡ 0 (mod p),
k ≡ 0 (mod p), l ≡ 0 (mod p), n ≡ 0 (mod p),
r ≡ 0 (mod p), s ≡ 0 (mod p), t ≡ 0 (mod p).

Hence Pc is efficient if and only if

hc f (m, k, l, n, r, s, t) �= 1.

Example 8. Let Q be the group Zk ⊕ Zl (k, l ∈ Z+) with the presentation

PQ = 〈a, b ; ak, bl , [a, b]〉,
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Figure 6.

and let K be a finite cyclic group of order m generated by x . Let us consider the
presentation

Pc = 〈
a, b, x ; ak x−r , bl x−s, [a, b]x−t , xm, Ca, Cb

〉
, (6)

where 0 ≤ r, s, t < m and let Ca := [a, x] and Cb := [b, x]. We can give a set of
generating pictures of π2(PQ), as in Figure 6. We have β(Q1) = 0, β(Q2) = 0,
β(Q3) = lt and β(Q4) = kt . Suppose that lt ≡ 0 (mod m) and kt ≡ 0 (mod m).
So condition (4) holds. Then, by Theorem 4, the group G defined by Pc is a central
extension of K by Q. It is clear that expa(ak) = k, expb(bl) = l, expa([a, b]) =
1 − 1 = 0, expb([a, b]) = 1 − 1 = 0. Also, by the definition, we get αa(Q1) =
r, αb(Q1) = 0, αa(Q2) = 0, αb(Q2) = s, αa(Q3) = s, αb(Q3) = − 1

2 l(l − 1)t,αa

(Q4) = 1
2 k(k − 1)t, αb(Q3) = r .

Therefore, we get the following result for Example 8, as a consequence of
Theorems 3 and 5.

Corollary 9. Let p be a prime. Then the presentation Pc, as in Equation (6), is
p-Cockcroft if and only if

m ≡ 0 (mod p),

k ≡ 0 (mod p), r ≡ 0 (mod p), kt ≡ 0 (mod m.p),

l ≡ 0 (mod p), s ≡ 0 (mod p), lt ≡ 0 (mod m.p),
1
2 k(k − 1)t ≡ 0 (mod p)

− 1
2 l(l − 1)t ≡ 0 (mod p).
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Thus, Pc is efficient if and only if

hc f

(
m, k, l, r, s,

1

2
k(k − 1)t,

1

2
l(l − 1)t,

1

m
kt,

1

m
lt

)
�= 1.
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