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Abstract

Let N ⊆ M be a pair of closed smooth manifolds and L an algebraic model for
the submanifold N . In this paper, we will give an obstruction to finding an algebraic
modelX ofM so that the submanifoldN corresponds inX to an algebraic subvariety

isomorphic to L.

1. Introduction and results

Seifert proved in 1936 that any closed smooth submanifold M of Rn with trivial

normal bundle is isotopic to a nonsingular component of a real algebraic subvariety

X of Rn ([18]). In 1952 Nash showed that any closed smooth manifold is diffeomor-

phic to a component of a nonsingular real algebraic variety ([13]). Later, in 1973

Tognoli proved that any closed smooth manifold is diffeomorphic to a nonsingular

real algebraic variety ([22]) and also observed that the algebraic realization problem

is a bordism problem. Later Akbulut and King improved Tognoli’s result using this

bordism technique. They proved that any closed smooth submanifold M of Rn is

isotopic to a nonsingular real algebraic subvariety X of Rn+1 ([3, 4]). Using simi-

lar techniques Dovermann and Masuda showed that closed smooth manifolds with

certain group actions, such as semifree or odd order finite group actions, can be real-

ized algebraically ([11]). Suh has also results in this direction ([19]). In 1993 Akbulut

and King showed that some submanifolds of Rn cannot be isotoped to an algebraic

subvariety of Rn with nonsingular complexification ([5]).

Given a closed smooth manifold M with a submanifold N, not necessarily con-
nected, there exits a nonsingular real algebraic variety X diffeomorphic to M such

that N corresponds to a nonsingular subvariety of X under the diffeomorphism. In

this paper we will focus on the following problem: let N ⊆ M be a smooth closed

submanifold and L a nonsingular real algebraic variety diffeomorphic to N . Then,
is there a nonsingular real algebraic variety X and a diffeomorphism f :M → X so

that f (N ) is an algebraic subvariety of X isomorphic to L?
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282 A. Çelikten and Y. Ozan

If M is a smooth manifold and f :M → X a diffeomorphism where X is a non-

singular real algebraic variety then we will call X an algebraic model for the smooth

manifold M . Similarly, if N ⊆ M is a smooth submanifold of the closed smooth

manifoldM and f :M → X a diffeomorphism so that L = f (N ) is a nonsingular real
algebraic subvariety of X then the pair (X,L) will be called an algebraic model for
the pair (M,N ). So the above problem can be restated as follows: given the smooth

manifoldsN ⊆ M and an algebraic model L ofN is there a nonsingular real algebraic

variety X so that (X,L) is an algebraic model for (M,N )?
The following theorem, which is a direct consequence of theorem 2·8·4 of [1],

whose weaker form is originally proved by Benedetti and Tognoli ([6]), shows that

the algebraic realization question of (M,N ) by a pair (X,L), for some X, is indeed
an infinitesimal question at L.

Theorem 1·1 ([1]). Let L ⊆ M ⊆ Rk, where L is a nonsingular real algebraic variety
andM an embedded closed smooth manifold. Then there is a smooth embedding g:M →
Rk × Rl such that X = g(M ) is a nonsingular real algebraic variety with g(x) = x, for
all x ∈ L, if and only if the normal bundle NM (L) of L in M has a strongly algebraic

structure.

In general, whether a given topological vector bundle over a compact nonsingular

real algebraic variety L has a strongly algebraic structure or not, is a difficult ques-
tion. If dim(L) 6 3 then the algebraic homology of L, HA

∗
(L,Z2), determines the

answer completely (cf. see section 12·5 of [7]).
The next theorem gives a partial answer to the algebraic realization question in

one direction, for all dimensions, in terms of the algebraic topology of the pairs

N ⊆ M and L ⊆ LC, where LC is a complexification of L. First some preliminaries.
Let R be any commutative ring with unity. For an R orientable nonsingular com-

pact real algebraic variety X define KH∗(X,R) to be the kernel of the induced map

i∗:H∗(X,R)→ H∗(XC,R)

on homology, where i:X → XC is the inclusion map into some nonsingular pro-

jective complexification. In [14] it is shown that KH∗(X,R) is independent of the
complexification X ⊆ XC and thus an (entire rational) isomorphism invariant of

X (see Section 2 for the definition of complexification we use in this note). Dually,

denote the image of the homomorphism

i∗:H∗(XC,R)→ H∗(X,R)

by ImH∗(X,R), which is also an isomorphism invariant.

Theorem 1·2. Let M be a closed smooth manifold, N ⊆ M a smooth closed n-
dimensional submanifold and L an algebraic model for N . Suppose that one of the
following conditions hold:

(i) N is oriented and there exists a cohomology class u ∈ Hn(M,Q), which belongs
to the subalgebra generated by the Pontrjagin classes of (the tangent bundle of)M ,

with u([L])� 0 and [L] ∈ KHn(L,Q).
(ii) There exists a cohomology class u ∈ Hn(M,Z2), which belongs to the subalgebra

generated by the squares of the Stiefel–Whitney classes of (the tangent bundle of)

M , with u([L])� 0 and [L] ∈ KHn(L,Z2).
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Then the pair (M,N ) has no algebraic model of the form (X,L).

If L is as in the above theorem, then the vector bundle over L, obtained by pulling
back the normal bundle of N in M , has no strongly algebraic structure.

Example 1·3. Consider the smooth manifolds N ′ = RP 2 ⊆ RP 4 = M so that the

fundamental class of N ′ is not zero in H2(M,Z2). Inside a small four ball centred
at a point p of N ′ connect sum another copy of RP 2 to N ′ (note that RP 2 ⊆ R4).

So we have obtained an embedded Klein bottle, N = KB ⊆ M realizing the same

homology class as N ′. Hence, if ω1 is the first Stiefel–Whitney class of M , then

ω21([N ]) = ω21([N
′])� 0.

Proposition 1·4. There exists an algebraic model L of the Klein bottle with [L] ∈
KH2(LC,Z2).

Hence, if L is as in the above proposition then by the above theorem the smooth pair
(M,N ) has no algebraic model of the form (X,L).

Example 1·5. Consider two copies of the smooth manifold CP 2 one containing an

embedded oriented closed surface F and the other an embedded torus T 2 both real-
izing nonzero homology classes. For example, let F ⊆ CP 2 be any smooth algebraic

curve and T 2 an elliptic curve in CP 2. Now embed CP 2 × CP 2 into CP 8 using the

Segre embedding

([z0, z1, z2], [w0, w1, w2]) 7−→ [z0w0, . . . , ziwj , . . . , z2w2].

Then F × T 2 realizes a nonzero homology class, say α ∈ H4(CP 8,Q). In particular,
p1([F ×T 2])� 0, where p1 is the first Pontrjagin class of CP 8. Embed smoothly CP 8

into some Euclidean spaceRn so that the submanifold F×T 2 maps diffeomorphically
onto F ′ × S1 × S1 ⊆ R(n − 4k) × R2 × R2, where F ′ ⊆ R(n − 4k) is an algebraic
model for F and S1 is the standard unit circle. Call this algebraic variety L. Since
S1 bounds in its complexification S1

C
= CP 1 = S2 so does L and hence by the above

theorem the pair (CP 8, F × T 2) has no real algebraic model of the form (X,L).
Indeed, it is apparent from the above argument that the same works if we replace

S1 × S1 by X1 ×X2, where both are nonsingular compact connected real algebraic

curves one of which is separating (homologously trivial in its complexification).

Remark 1·6. In Example 1·5 let F = S2 = CP 1 ⊆ CP 2. By the example below any

topological vector bundle S2 is strongly algebraic. We also know that any topological
real vector bundle over S1×S1 is strongly algebraic because the homology of S1×S1

is algebraic (cf. corollary 12·5·4 and remark 12·6·8 of [7]). Hence, by Theorem 1·1
we conclude that, not every topological real vector bundle over S2 × S1 × S1 has a
strongly algebraic structure, even though any topological real vector bundle over S2

or S1 × S1 has a strongly algebraic structure.
Any strongly algebraic complex line bundle over the standard torus S1 × S1 is

trivial, because any entire rational map from S1 × S1 to the Grassmann variety
CPn is null homotopic (see theorems 2·4 and 4·2 of [8]). However, we cannot use
this fact to get examples as above. Indeed, since any topological real vector bundle

over S1 × S1 is strongly algebraic we can even find an algebraic model (S1 × S1, X)
for the pair (E,CP 2), where E is any given smooth elliptic curve in CP 2. In other

words, the (strongly algebraic) normal bundle of S1 × S1 in X has topologically the
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structure of a complex vector bundle, even though this complex structure cannot be

made complex algebraic.

Example 1·7. It is well known that any continuous vector bundle over the standard
k-sphere Sk ⊆ Rk+1 has a strongly algebraic structure ([20, 21]) and therefore ifM is

a closed smooth manifold with an embedded k-sphere as a submanifold then M has

an algebraic model where this submanifold is replaced with a subvariety isomorphic

to the standard sphere Sk.

Remark 1·8. In their work [10] Bos, Levenberg, Milman and Taylor prove the
following nice result: let M ⊆ Rn be a smooth compact submanifold. Then M is

algebraic (a union of components of an algebraic variety) if and only if M satisfies

a tangential Markov inequality with exponent one, i.e. there exists C = C(M ) > 0

such that

|DTp(x)| 6 C (deg p) ‖p‖M , x ∈ M

for all polynomials p, where DT denotes any tangential derivative and ‖p‖M the

supremumnorm of p onM . Combining this with Example 1·5 (Example 1·3) we arrive
at the following interesting conclusion: the Markov inequality, mentioned above, will

never hold on the embedded manifold M = CP 8 ⊆ Rn (M = RP 4 ⊆ Rn) no matter

how we isotop it, even in some larger space Rn+k, provided that the isomorphism

type of L is kept fixed. On the other hand, by the Akbulut–King result mentioned in
the introduction we can isotopM to an algebraic variety in some larger space Rn+k,

on which the Markov inequality is trivially satisfied, if we are willing to replace L
with some other algebraic model of the smooth manifold F × T 2 (Klein bottle).

2. Proofs

All real algebraic varieties under consideration in this report are compact and

nonsingular. It is well known that real projective varieties are affine (proposition

2·4·1 of [1] or theorem 3·4·4 of [7]). Moreover, compact affine real algebraic varieties
are projective (corollary 2·5·14 of [1]) and therefore we will not distinguish between
real compact affine varieties and real projective varieties.

For real algebraic varieties X ⊆ Rr and Y ⊆ Rs a map F :X → Y is said to be

entire rational if there exist fi, gi ∈ R[x1, . . . , xr], i = 1, . . . , s, such that each gi
vanishes nowhere on X and F = (f1/g1, . . . , fs/gs). We say X and Y are isomorphic

to each other if there are entire rational maps F :X → Y and G:Y → X such that

F ◦ G = idY and G ◦ F = idX . Isomorphic algebraic varieties will be regarded the

same. A complexification XC ⊆ CPN of X will mean that X is embedded into some

projective space RPN and XC ⊆ CPN is the complexification of the pair X ⊆ RPN .

We also require the complexification to be nonsingular (blow up XC along smooth

centres away from X defined over reals if necessary, [9, 12]). We refer the reader to

[1, 7] for the basic definitions and facts about real algebraic geometry.

For a compact nonsingular real algebraic varietyX, letHA
k (X,Z2) ⊆ Hk(X,Z2) be

the subgroup of classes represented by algebraic subvarieties of X and let Hk
A(X,Z2)

be the Poincaré dual of HA
n−k(X,Z2). These are well known and very useful in the

study of real algebraic varieties. Also we define Hk
A(X,Z2)

2 to be the subgroup

{α2 | α ∈ Hk
A(X,Z2)} ⊆ H2k

A (X,Z2)

(cup product preserves algebraic cycles [2]).
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It is well known that Grassmann varieties together with their canonical bundles

have canonical real algebraic structures. Pullbacks of these canonical bundles via

entire rational maps, from X into the Grassmannians, are called strongly algebraic

vector bundles over X. A continuous vector bundle E → X is said to have a strongly

algebraic structure if it is continuously isomorphic to a strongly algebraic vector

bundle, or equivalently, if the continuous map classifying E is homotopic to an entire
rational map.

Akbulut and King showed that Hk
A(X,Z2)

2 and Pontrjagin classes of X are pull-

backs of some classes of XC ([5]). Indeed, the same works for any strongly algebraic

vector bundle E → X over X, not just for the tangent bundle, because the complex-
ification (as a vector bundle) of any strongly algebraic vector bundle over X extends

over some complexification XC of X. The reason is that the real Grassmann variety,
GR(n, k), of the real k-planes in Rn has the complex Grassmann variety, GC(n, k), of
the complex k-planes in Cn as its natural complexification and therefore any entire

rational map from X into GR(n, k) gives rise to a regular map, maybe after some
blowing-ups of the domain along centres away from the real part X ([9, 12]), from

XC into GC(n, k). We can summarize this as follows:

Theorem 2·1 ([16]). LetX be a nonsingular compact connected real algebraic variety

and

P = {e2(E), pi(E) | E → X is a strongly algebraic vector bundle}

and

W 2 = {w2i (E) | E → X is a strongly algebraic vector bundle}

which are subsets of H∗(X,Q) and H∗(X,Z2) respectively, where e(E), pi(E) and wi(E)
are the Euler, the Pontrjagin and the Stiefel–Whitney classes of E. Then, ImH∗(X,Q)
and ImH∗(X,Z2) contain the subalgebras generated by P and W 2 respectively.

Proof of Theorem 1·2. Suppose there exists an algebraic model of the form (X,L).
Then, by Theorem 2·1 we have u = i∗(v) for some v ∈ Hn(XC,R), where i:X → XC is

the inclusion map and R is eitherQ or Z2. By the hypothesis 0�u([L]) = i∗(v)([L]) =
v(i∗([L])) = v(0) = 0, which is a contradiction. Hence we are done.

Proof of Proposition 1·4. Consider the 2-torus

T 2 = S1 × S1 = {(x1, x2, y1, y2) ⊆ R4 | x21 + x22 = 1, y
2
1 + y22 = 1}

with the algebraic Z2-action given by

(x1, x2, y1, y2) 7→ (−x1,−x2,−y1, y2).

The quotient is the smooth Klein bottle. Indeed, it is a nonsingular real algebraic

variety. To see this first consider the affine complexification of S1 × S1 in C4 given

by the same equations. The Z2-action extends over the complexification so that

the subset of the complexification on which the Z2-action agrees with the complex

conjugation is the empty set. Now, Theorem 2·2(a) of [15] (or [17]) proves that the
quotient is a nonsingular real algebraic variety, say L.

Let us now show that [L] ∈ KH2(LC,Z2). Choose an orientation for the first
factor of S1 × S1 and let D denote the closure of one of two the disk components of

S1
C
= S2 − S1, whose complex orientation agrees with this orientation of S1 on the
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boundary. Note also that the action extends over the complexification S1
C
× S1

C
:

([x0, x1, x2], [y0, y1, y2]) 7→ ([x0,−x1,−x2], [y0,−y1, y2]),

where we identify S1 with

{[x0, x1, x2] ∈ RP 2 | x21 + x22 = x20}

with projective complexification

S1
C
= {[x0, x1, x2] ∈ CP 2 | x21 + x22 = x20}

which is isomorphic to CP 1.

Since the Z2-action on the first factor of S
1 × S1 is orientation preserving (180◦

rotation) its leaves invariant the solid torus D × S1, which bounds S1 × S1 in its
projective complexification S1

C
×S1

C
. In the quotient, the two ends of the half of this

solid torus,

D × {(y1, y2) ∈ S1 | y2 > 0},

identifies and gives the solid Klein bottle bounding L. This finishes the proof.
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