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In this study, a matrix method called the Taylor collocation method is presented for numerically solving the linear
integro-differential equations by a truncated Taylor series. Using the Taylor collocation points, this method
transforms the integro-differential equation to a matrix equation which corresponds to a system of linear
algebraic equations with unknown Taylor coefficients. Also the method can be used for linear differential and
integral equations. To illustrate the method, it is applied to certain linear differential, integral, and integro-
differential equations and the results are compared.
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1. INTRODUCTION

A Taylor expansion approach to solving integral equations has been presented by Kanwal and
Liu [1], and the method extented by Sezer to Volterra integral equations [2], second order
linear differential equations [3] and integro-differential equations [4—7].

In this study the basics of the mentioned works, by means of Taylor collocation points, are
developed and applied to problems consisting of:

1. mth-order linear Fredholm integro-differential equation

m b
> P =0 + 2| Kexpto) d )
k=0 a
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and mth-order linear Volterra integro-differential equation
> P =)+ 2 | Kex (o) d @)
k=0 a

where the known functions P(x), f(x), K(x, f) are defined on the a < x, t < b; 1 is a real
parameter, y(x) is the unknown function.
2. The conditions (in the most general)

1
[aijy(j)(a) + b (b) + Czjy(j)(c)] =/ i=0,1,...,m—1 3)

m

~.
Il
=3

where a < c < b, provided that the real coefficients, a;, b;,c; and A; are appropriate
constants, and the approximate solution is expressed in the truncated Taylor series,

N ()
=S gy
n=0

n!

where 1(c) are the Taylor coefficients to be determined.

2. METHOD OF SOLUTION FOR FREDHOLM INTEGRO-DIFFERENTIAL
EQUATIONS

Let us first consider the Fredholm integro-differential equation
m b
> P =0+ 2| Kexpto) d 4)
k=0 a

We assume that the solution of (4) can be truncated Taylor series

n

() ;
W=y ——-9" asx<b (5)
n=0 :

where N is chosen any positive integer such that N > m. Besides we suppose that the
functions Px(x) in Eq. (4) are defined in @ < x < b and K(x, ¢) is defined and if bounded var-
iation in a < x, t < b; that is, K(x, ) can be expanded to Taylor series. Then the solution (5)
of Eq. (4) can be expressed in the matrix form

)] = XMpA
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where
X=[1 x—c¢ (x—c¢)f - (x—c)N]
A=[00 @ 2@ - @]
and
- 1 -
ol 0 0 0
1
0 T 0 0
M, = ]
0 0 T 0
1
_0 0 0 i

989

To obtain such a solution, we can use the following matrix method, which is a Taylor Col-
location method. This method is based on computing the Taylor coefficients by means of the
Taylor collocation points are thereby finding the matrix A containing the unknown Taylor

coefficients.
Firstly, we substitute the Taylor collocation points defined by

i = [ ; .:0917"'3N; = k] =b
X a+i N 1 Xo = da, Xi

into Eq. (4) to obtain

Z Py (i) = f (i) + A1(x;)

k=0

so that
b
1) = J K(x (1) dr

a

then we can write the system (7) in the matrix form

PYO + P YD 4P, Y =Y R Y® = F 4 1
k=0

where

Pilxg) 0 -~ 0 S (xo) ¥ (xo)

0  Pilxo) --- 0 S @) . YO (xr)
P; . .. . F={ Y ,

’

0 0 - Pilx) (xv) yO(xy)

(6)

()

®)

1(x0)
I(xy)

I(xy)
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Let us assume that the kth derivative of the function (5) with respect to x has the truncated
Taylor series expansion defined by Eq. (5).

n(c
(k)(xl) — Z y( (k))' _ )n k a<x< b

where y®(x) (k =0, 1, ..., N) are Taylor coefficients; clearly »)(x) = y(x). Then substitut-
ing the Taylor collocation points in this expression, we get the matrix forms

Y@, =X, MA, (k=0,1,...,N) )
or the matrix equation
Y® = CM A (10)
where
X xo—¢)’ (-0 - @-0o
Xy, xi—o’ @m-o - @-o
C= . . . . )
Xy [Lv—0)" (v —0 Gy — o)
_ ! _
0 i (l)
0 11
M; = : 1
0 0 0 0 T3]
0 0 0 0 0
(00 - 0 0 - 0 |
Then we can write the matrix Eq. (8) as
(ZPkCMk>A=F+/II (11)
k=0

Let us now find the matrix I. The Kernel K(x, ¢) is expanded to do truncated Taylor series (in
the x = ¢ and ¢t = ¢) in the form

K(x.1) = Zanm(x—c) (=)

n=0 m=

1 an+m
n'm! ox"orm

nm —
(x=c,t=c)
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which is given in [2]. Then the matrix representation of K(x, f) can be given by

[K(x, ] = XKT' (12)
where
X=[l x—c (x—c¢)f - (x—c)N]
Tz[l t—c (t—c)? .- (t—c)N]
ko kot - kow
K— ko ko - ki
ko kvt oo- kaw

Besides, the matrix representation of y(x) and y(¢) are
()] = XMoA,  [(0)] = TMoA (13)

Substituting the expressions (12) and (13) into the integral /(x;) defined in Eq. (7), we have

b

[I(x)] = J {XKT'TM,A}dr = XKHM)A (14)
b _ eyrtmtl _ pyrtm+l

H = [h,,] = J T dz, hy,, = b0 (a—c)
a n+m-+ 1 n,m=0,1,....N

which is given in [2].
From (14) we get the matrix I in the form

I = CKHM A (15)

Finally, substituting (15) in the expression (11), we have the matrix equation
(Z P.CM; — ACKHMO)A =F (16)
k=0

which is the fundamental relation for solving of Fredholm integro-differential equation
defined in the range a < x < b.
Briefly, we can also write the Eq. (16) in the form

WA =F (17)
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which corresponds to a system of (N + 1) algebraic equations with the unknown Taylor co-
efficients so that

W =[wy] =) P«CM; — ICKHM,, ij=0,1,....N

k=0

Then we can find the unknown coefficients by means of the augmented matrix of Eq. (17)

woo  Wwor -+ wons f(Xo)
W= | T T :f(xl) (18)
Wz.vo WNT ttr WANS f(xN)
In Eq. (17) if |[W| #£ 0 we get
A=WF (19)

Thus, the unknown coefficients are uniquely determined by Eq. (19) and thereby we find any
particular solution of Fredholm integro-differential equation in the truncated Taylor series.
Note that, if we take Py(x) = 1, P1(x) = Py(x) = --- = Py(x) =0, Eq. (4) is reduce to
Fredholm integral equation and the augmented matrix (18) can be used for the approximate
solution of Fredholm integral equations.
Now let us form the matrix representation of the conditions. For the interval a < x < b, the
condition (3) reduces to

—

m—

[aip?(a) + by P(b) + e (0)] = Ai;

~

=0
i=0,1,....m—1, a<c<b (20)

Using the relation (9), we find the matrix representations of the functions at the points a, b
and c in the forms

(a)] = PM;A 1)
LY (b)] = QM;A (22)
(c)] = RM;A (23)

where

[1 (a—c) (a—c)2 (a—c)N]
[1 =) ®0=0 -+ (b=0"]
[1 00 - 0]

P
Q
R
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Substituting the matrix representations (21), (22) and (23) into the Eq. (20), we obtain

m—1

> {agP + b;Q + c; RIMA = [4]
J=0

Let us define U; as

m—1

U; = Z{a,’jP + ble + C,'jR}Mj = [uiO Uy e Uy ]’
J=0

Thus, the matrix form conditions (2) become
UA =[4] 24)
and the augmented matrices of them are
(Ui 4] = (w0 uin -+ wiv; 4] (25)

Consequently, replacing the m row matrices (25) by the last m rows of the augmented matrix
(18), we have the required augmented matrix

[W; F]
where
[ Woo Wo1 s Won ] [ f(x0) |
wio Wil WIN Sfx1)
W=| wy_mo Wnem1i - Wn-mn |» F=1fCnm)
Uoo Uo| cee Ugn Ao
L Up—-1,0 Um—11 - Up—I N L Am—1 i
If, |W| # 0 we can write
~ 1~
A=W

and thus the matrix A is uniquely determined. Then we can say that the integro-differential
Eq. (4) with conditions (20) has a unique solution in the form (5).
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3. THE METHOD OF SOLUTION FOR VOLTERRA INTEGRO-DIFFERENTIAL
EQUATIONS

Let us consider the Volterra integro-differential equation in the range @ < x < b. Then Eq. (2)
becomes

> P =)+ 2| Kex (o) d (26)
k=0 a

Let us now approximate to solution y(x) by means of a finite Taylor series. We apply the same
method presented before to Volterra integro-differential equation for finding the solution in
the form (5).

In order to determine the (N + 1) coefficients, firstly, we replace Eq. (26) by the (N + 1)
equations

> Puti ) =)+ 4| K i) a @7)
k=0 a

for the (N + 1) points x;, defined by Eq. (6). Then defining

X,

I(x;) = iJ K(x;, t)y(¢) dt (28)
we can write (27) in the matrix form
> PY® =F+I (29)
k=0

where P are matrices of order (N + 1), and Y%, F and I are (N + 1)-by-1 matrices defined
in previous section.
Substituting matrix Egs. (12) and (13) into (28) yields the matrix equation

[£(x;)] = X KH,MoA (30)

where

Xx-=[1 xi—c (xi—cf - (x,-—c)N]
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and
H, = J ‘ T'T dt
a
hoo(x;)  hor(x;) -+ hov(x:)
B hio(x))  huG) -+ hiv(x)
hyo(xi)  hyvi(xi)) -+ haw(x;)
hence, we obtain the matrix I as
I=XKHM)A €3))

where X, K, H and M, respectively, (N + 1)-by-(N 4 1)?, (N + 1)*-by-(N + 1)%, (N + 1) -
by-(N + 1)? and (N + 1)*-by-(N + 1) matrices and can be written by the blocked matrices as
follows:

X, 0 - 0 K 0 --- 0
_ 0 X, -~ 0 _ 0 K --- 0
X=| . . L K=o o
0 (D & 0 0 --- K
H, 0 0 M,
— 0 H, 0 _ M,
H= . , My=| .
0 0 --- H, M,

where X,, are 1-by-(N + 1) and H,,, K and M, are square matrices with the order (N + 1).
Inserting the Eqs. (10) and (31) into (29), we get

(Z P.CM; — )Xiﬁm)A —F (32)
k=0

This is a system of (N + 1) equations for the coefficients and also the fundamental matrix for
Volterra integro-differential equation. Therefore, we can write Eq. (32) in the form

WA =F
where
W = ZPkCMk —JXKHM,
k=0

Note that if P, =0, k=1,2,...,N and |W| # 0, the Volterra integral equation has one
and only solution; if |[W| = 0 then the integral equation either is insoluble or has an infinite
number of solution.
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On the other hand, in order to solve integro-differential or differential equation with con-
ditions, we find the matrix forms of the conditions (20) as given in (24). Then we obtain a
new matrix equation by writing values that belong to the conditions with replacing the rows
as number of conditions that are erased from the last matrix equation. Hence, the Taylor co-
efficients can be simply computed and the solution of Eq. (26) under the mixed conditions
is obtained.

4. ACCURACY OF SOLUTION

We can easily check the accuracy of the solutions obtained in the form (5) as follows.

The solution (5) or the corresponding polynomial expansion must satisfy approximately
the Eq. (4) or Eq. (26) for Volterra integro-differential equation when y(x) and its derivatives
y®(x) are substituted in this equation since the finite Taylor series (5) is an approximate
solution of Fredholm integro-differential equation. That is, for any points x = x;,
a<x;<b,i=0,1,...,N.

D(xi) =y Py (i) — f(x;) — () 22 0
k=0

or
|D(x;)| = 107%

where k; are positive integers.

If max 107% = 10 (k any positive integer) is prescribed, then the truncation limit N is
increased until the difference |D(x;)| becomes smaller than the prescribed 10~ at each of the
points x;. Thus, we can get better the solution (5) by choosing k appropriately so that 107 is
very close to zero.

5. ILLUSTRATIONS

We now give some examples to illustrate the use of the method.

Example 1 Let us first consider the linear Fredholm integro-differential equation
1
V' +x) —xy=¢"—2sinx + J sinx e "y(¢) dt
-1

with »(0) = 1 and y(0) = 1, —1 < x, ¢t < 1 and approximate the solution y(x) by the Taylor
polynomial

n

S m
=3O
n=0 :

where a=—1, b=1, ¢=0, 1=1, Pp=1, Py =x, P, = —x, f(x) = expx — 2sinx,
K(x, ) = sinx exp(—1).
Then, for N = 5, the matrix Eq. (16)

(P,CM; + P,CM, — P(CM, — CKHM)A =F
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where Py, Py, Py, H, C, K, My, M|, M; are matrices of order (6 x 6) defined by

_ } 1 0 0 00 07 205050
100000 ; 20,
010000 0 -5 0000 030507
001000 0o 0 -1ooo 202029
PZZ PI—PO— 5 H= 3 5 7
000100 0 0 0100 020%0 3
000010 0 0 0020 202020
00000 1] o o 0081 527292
) - 107050 17
-1 1 -1 1 =1
C3(23) (23 _%4 _%5 000 0 0 0 0 ]
1-3(=3) (-3 (3) (3 o1 11
1 1\? 1\’ n* 1\° 2! 314 5!
1-5 (-4 (3 (-9 () 00 0 0 0 0
Cc= Ke
= 2 3 4 s p8&=111 _ 1 1 _ 1 1
11 (l) (l> (l> (l) 30 31 73120 3131 3141 313
> W ) ) o0 0 0 0 0
3 (3 3 3 3 1 1 1 1 _ 1
1 @) @ @ @ ST 751 S TSI ST SIS
111 1 | 1
. i} ) . i i
W?OOOO 03 0000 00k 000
0770000 004000 000400
1 - !
Moz002_!(1)00,MIZOOO%!O(),Mz—OOOO%O
0005 00 000040 000004
000040 00000 4 000000
(0000 0 4] L0000 0 0] (0000 0 0

The augmented matrix forms of the conditions for N = 5 are

1 00 0 0 0; 1]
0 1 0 0 0 0; 1]

Taking N = 5, we obtain the approximate solution. The solution is
y(x) = 1 + x4 0.500343x> 4 0.166886x> + 0.0403378x* + 0.00577493x°

Taking N = 5, the solutions obtained are compared with the results given by Akyuz and
Sezer [7] and by Nas, Yalzinbas and Sezer. [4] and the exact solution y = (x) in Table L

Example 2 Let us consider the boundary-value problem
(T+2xp" @)+ 40"+ 2x—1)y/(x) =™, 0=<x<l1

with 1(0) = 1, »/(0) = 1/2 and y(0) = —1
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TABLE I Numerical Results for N=5,6, 10

Present method y(x,)

Exact solution

Chebyshev collocation

Taylor matrix

r X, N=5 N=6 N=10 y=exp(x,) method (N=10) method (N=15)
0 1 2.71334 271766  2.71828 2.718282 2.718282 2.71653
1 cos(m/10) 2.58467  2.58800  2.58844 2.588443 2.588443 2.58714
2 cos(m/5) 224414 224556  2.24569 2.245699 2.245699 2.24518
3 cos(3w/10) 1.79975 1.79999 1.8 1.799997 1.799997 1.79990
4 cos(2m/5) 1.36210  1.36208  1.36208 1.362085 1.362085 1.36207
5 cos(m/2) 1 1 1 1 0.999999 1
6 cos(3m/5) 0.734188 0.734166 0.734168 0.7341683 0.7341683 0.734171
7 cos(7w/10)  0.555598 0.55553  0.555555 0.5555564 0.5555565 0.555556
8 cos(4m/5) 0.445373 0.445291 0.445295 0.4452955 0.4452958 0.445021
9 cos(9m/10) 0.386454 0.386323 0.386332 0.3863326 0.386333 0.385544

10 cos(m) 0.368019  0.367867 0.367879 0.3678795 0.3678799 0.366796

TABLE II

and approximate the solution y(x) by the truncated Taylor series in the form

Present method

Exact solution

X; N=35 y=[x/2 exp(-x)] + 1
0 1 1

0.2 1.08188 1.081873

0.4 1.13416 1.134064

0.6 1.16469 1.164643

0.8 1.17859 1.179731

1 1.17820 1.183939

4 )
=3 Oy
n=0

n!

SO thata:—l, bzl, C:O, /1:1, POZO, P1:2x—l, P2:4x, P3:1+2x and

/(x) = exp(—x).

For N = 4, the collocation points

xo =0,

w=l

and the matrix form of the problems defined by

sz%, )@:%, x4 =1

(P;CM; + P,CM, + P{CM,;)A =F

After the augmented matrsces of the system and conditions are computed, we obtain the new
augmented matrix in the form

[W; F] =

S = NN O

Nf— —

S = O

—_ 0 O v O

1 0; exp(0)
o1 e (=)
0 0; %
0 0; =
2
0 0; —1
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This system has the solution
A=[1 05 -1 15 —1.72308]
Therefore, we find the solution
y(x) = 14 0.5x — 0.5x% + 0.25x° + 0.0717954x*

The values of this solution at taking i = 0.2 decimal in [0, 1] points are compare with the
exact solution in Table II

Example 3 Let us consider the linear Volterra integro-differential equation
Y@) +y(x) =14+2x+ J x(14+2x)e @) dr, 0<x<l1
0

with (0) = 1 and 0 < x, ¢ < 1. The analytical solutions y(x) = ev.

For N = 3, the collocation points
x0=0 =1 =
o=Y, X1=3 X2=

and the matrix form of the problem is defined by
(P;CM; +P,CMy — X KHM;)A =F

After the augmented matrices of the system and conditions are computed, we obtain this so-
lution

Y(x) =1+ 0.64754x% + 0.966173 x°

The values of this solution at taking i = 0.2 decimal in [0, 1] points are compare with the
exact solution [8] in Table III.

Example 4 Our last example is the linear Fredholm integro-differential equation
1

0/ (x) + y(x) = 3x* + 13—4)6 +2 - J (x + O)y(r) dt
—1

with (0) = 2 and approximate the solution y(x) by the truncated Taylor series (N = 4).

TABLE III
Present method Exact solution

X; N=3 y=exp(x’)
0 1 1

0.2 1.03361 1.04081
0.4 1.16536 1.17351
0.6 1.44163 1.43332
0.8 1.90879 1.89648

1 2.61322 2.7182
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The system has the solution
A=[2 02 0 o]
Therefore, we find the exact solution

y(x) = 242

6. CONCLUSIONS

High order integro-differential equations are usually difficult to solve analytically. In many
cases, it is required to obtain the approximate solutions. For this purpose, the presented meth-
od can be proposed.

The method presented in this study is a method for computing the coefficients in the Taylor
expansion of the solution of a linear integro-differential equation, and is valid when the func-
tions Pi(x) are defined in [a, b] and the kernel function K(x, ¢) has a Taylor series expansion
in this range. Moreover, it would appear that the method shows the best advantage when the
functions K(x, #), f(x) and P(x) can be expanded to the Taylor series which converges
rapidly.

To obtain the best approximating solution of the equation, we take more terms from the
Taylor expansion of functions; that is, the truncation limit N must be chosen to be large en-
ough. For computational efficiency, some estimate for N, the degree of the approximating
polynomial (the truncation limit of the Taylor series) to y(x), should be available.

The Taylor collocation method can also be applied to the differential and integral equa-
tions. This is demonstrated by the examples in the last section. In addition, an interesting fea-
ture of this method is to find the analytical solutions if the equation has an exact solution that
is a polynomial of degree N or less than N.

The method can also be extended to the partial integro-differential equations and to the
system of ordinary differential equations with variable coefficients.
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