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3-D Imaging of Inhomogeneous Materials
Loaded in a Rectangular Waveguide

Emre Kili¢, Funda Akleman, Bayram Esen, Duygu Merve Ozaltin, Ozgiir Ozdemir, and Ali Yapar

Abstract—A Newton-type method for the reconstruction of
inhomogeneous 3-D complex permittivity variation of arbitrary
shaped materials loaded in a rectangular waveguide is presented.
The problem is first formulated as a system of integral equations
consist of the well-known data and object equations, which contain
the dyadic Green’s function of an empty rectangular waveguide.
Two unknowns of this system are solved in an iterative fashion by
linearizing one of them, i.e., the data equation in the sense of the
Newton method, which corresponds to a first-order Taylor expan-
sion of the related integral operator. Since the problem is severely
ill posed by nature, a regularization in the sense of Tikhonov is
applied to the data equation. A detailed numerical implementation
of the method, together with some numerical examples are also
given to show the capabilities and validation limits of the method.

Index Terms—Inhomogeneous permittivity reconstruction, in-
verse problem, Newton method, rectangular waveguide.

I. INTRODUCTION

RECISE imaging of electromagnetic parameters of mate-
P rials is a very important topic in electromagnetic and mi-
crowave theory since it has a wide range of applications in the
areas of microwave devices, filter design, nondestructive testing,
material science, biomedical applications, etc. The conventional
problem in this subject is the determination of the permittivity of
a homogeneous material, wherein it is possible to reach a huge
number of studies in the open literature [1]-[16]. Classical ap-
proaches for this problem can be classified in three categories,
which are: 1) free-space methods; 2) transmission line methods;
and 3) waveguide methods. A more complicated problem com-
pared to that of homogeneous materials is related to multilay-
ered structures [17], [18]. The general approach in most of the
studies mentioned above is based on the expression of the prop-
agation constant inside the material in terms of measured scat-
tering parameters of the structure under test. More recent works
related to waveguide methods were usually based on neural-net-
work- and genetic-based algorithms for different type of appli-
cations. For example, a neural-network approach for the profiles
having 2-D variations was presented in [19], where the profiles
have been approximated by linear, quadratic, or Gaussian base
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functions with a few coefficients, and very satisfactory numer-
ical results have been reported. However, a priori knowledge
of the functional variation of the actual profile is indispensable
in this method. A nondestructive testing application for the de-
termination of spherical inclusions in a homogeneous dielectric
material is formulated in [20], again by the use of the neural-net-
work method. In [21], a genetic algorithm combined with a gra-
dient descent optimization method is applied to homogeneous
or layered materials having different shapes and positions.

The more general and inclusive problem in this respect is the
reconstruction of the complex permittivity distribution of an ar-
bitrary shaped inhomogeneous material loaded in a waveguide.
To the best of our knowledge, this problem has not been inves-
tigated enough in the open literature and it is open to new theo-
retical, as well as experimental, contributions. Furthermore, al-
though this problem belongs, in principle, to the class of inverse
problems, it is so far not investigated by the general and con-
ventional integral-equation-based methods of inverse scattering
theory, except in [22]-[24], wherein [22] and [23]were related to
1-D structures, while in [24], an immature theory and the very
preliminary results for the 3-D case were presented as a con-
ference abstract. Eventually the general integral-equation-based
inverse-scattering approach to the problem with a detailed anal-
ysis will be an initiative work for further developments in the
3-D case.

Within this framework, the main aim of this study is to ad-
dress the theoretical and numerical analysis of the 3-D imaging
problem related to inhomogeneous lossy materials located in
a rectangular waveguide by an inverse scattering formalism,
which is based on the Newton iterative algorithm. Along this
direction, an empty rectangular waveguide is taken into consid-
eration, which is to be filled with an inhomogeneous material
whose permittivity distribution may have an arbitrary variation
in spatial coordinates. The problem is then formulated as an in-
verse scattering one by considering the well-known data and ob-
ject equations written in terms of the object function and the
electric field distribution inside the waveguide. The data, which
should be provided by real measurements in practical applica-
tions, are obtained by solving the direct problem through the
finite-difference time-domain (FDTD) method, which also pre-
vents us from the inverse crime. It is also worth mentioning that
the method given in this study allows one to use both the domi-
nant and/or higher order modes for the excitation, where, in fact,
even in the dominant mode excitation, the higher order modes
may exist since the geometrical and physical properties of the
material are assumed to have arbitrary variations.

In the application of the method, the first the data equation
that connects the measured scattered field and the unknown in-
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homogeneous permittivity distribution is written in an operator
form in terms of a vectorial density function, which is defined
by the multiplication of the object function and the total elec-
tric field. An initial estimate of the density function is then ob-
tained via the back propagation algorithm [25]. By the use of
this initial guess, the total electric field inside the reconstruction
region is calculated from the object equation through a stan-
dard 3-D numeric integration. The first approximation of the
object function is then determined using the known values of
the vectorial density function and the total electric field vector
in a least square sense. The rest of the algorithm is an iterative
one by nature, i.e., the data equation is linearized in terms of
the object function through the Frechét derivative of the related
operator and then the updated density function corresponding
to the update of the object function is calculated. The updated
density function is substituted in the object equation in order
to find the new electric field vector inside the object. From the
knowledge of the updated field and density functions, the ob-
ject function is again calculated in a least square sense. This
iteration scheme is continued until a desired level of accuracy is
obtained. Since the data equation is an ill-posed one, Tikhonov
regularization in each iteration step is applied where the reg-
ularization parameter is calculated by Morozov’s discrepancy
principle [26]. In order to show the applicability, as well as the
limitations of the method, some illustrative numerical examples
are presented. The preliminary numerical examples showed that
this conventional basic method, which is comprehensively ap-
plied to open region problems, is also applicable to a waveguide
problem even in the case of a very limited number of data. Al-
though the method yields quite satisfactory results, especially
for smooth and continuous variations, the sharp changes in both
geometrical and physical properties of the material cannot be
reconstructed properly, even though it is not an intrinsic limita-
tion of the method.

In Section II the general formulation of the problem is pre-
sented by introducing the data and object equations. Section III
is devoted to the solution of the inverse problem, while in
Section IV some numerical simulations are given. Finally,
conclusions and some comments are presented in Section V.
Time convention is assumed as e~** and omitted from now on.

II. GENERAL FORMULATION OF THE PROBLEM

Consider the geometry shown in Fig. 1, where a rectangular
waveguide with dimensions a x b is loaded with a nonmagnetic
(1 = po) object D, having inhomogeneous relative dielectric
permittivity ,.(r) and conductivity o(r), where r = (x,y, z)
denotes the position vector of any point in waveguide. Without
loss of generality, it can be assumed that the object D may also
be composed of disjoint bodies. Let us denote the incident, scat-
tered, and total electric field vectors inside the waveguide by
Ei, ES and E, respectively. Here, the incident field Ei corre-
sponds to an electric field vector inside the empty waveguide
for a chosen exciting case, while E is the total electric field in
the waveguide, which is loaded by an arbitrary shaped inhomo-
geneous dielectric material. Thus, the field defined by

E (r) = E(r) — E;(r) 1)
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Fig. 1. Geometry of the problem: rectangular waveguide loaded with an arbi-
trary shaped inhomogeneous material.

can be considered as the contribution of the inhomogeneous 3-D
body to the total field. From the above definitions, together with
wave equation in the waveguide and using Green’s theorem, one
has the following two integral equations:

B(r) = Bu(r) + 12 / Gl VB (),  reD
D
‘ @
Es(r) = k%/ GlryrYE@ Yv(r')do', rel 3)
D

which are known as object and data equations, respectively. In
(2) and (3), G denotes the dyadic Green’s function of the empty
rectangular waveguide whose explicit expression can be found
in [27], which will not be repeated again here for the sake of
brevity. The function v(r) appearing in (2) and (3) is the object
function defined as

-1 4
o2 “
where k() denotes the wavenumber of any point in the loaded
waveguide whose square is expressed as

reD

k2(r) = {w25T(T)60/L0 + iwo(r)po, )

k02 = w2eq o, otherwise

for a given angular frequency w.

Note that (2) and (3) are written for the points inside and out-
side the inhomogeneous object, respectively. In (3), I' denotes
any region outside the inhomogeneous body, which actually
corresponds to the measurement domain. In practical applica-
tions, I" consists of two points (Port 1 and Port 2) corresponding
the so-called S-parameters measurement setup. The waveguide
problem whose geometrical configuration is given in Fig. 1 is
represented by the system of integral equations given by (2) and
(3), and therefore, they can be used for solving both direct and
inverse problems. In the direct problem, the function v(r), i.e.,
the material properties, are known and the electric field distribu-
tion is to be determined at any point inside the waveguide, while
in the inverse problem, Es(r) is known at some points outside
the inhomogeneous object and the function v(r) is to be deter-
mined. It is clear from the definition of the object function given
by (4) that v(r) vanishes for the points outside the body under
test. Therefore, at least theoretically the support of the object
function also determines the boundary of the object.

III. NEWTON-BASED RECONSTRUCTION METHOD

In this section, we will present a Newton-based algorithm in
order to reconstruct the variation of the permittivity and con-
ductivity of the object located in rectangular waveguide. To this
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aim, let us first define a vectorial density function, which indeed
corresponds to a kind of current source distribution—except a
complex constant factor—as the multiplication of the total elec-
tric field vector and the object function by

®;(r) = v(r)E;(r), i=12,...,Q (6)
in which the index j is used to represent different frequencies
within a chosen exciting frequency band. Since the imaginary

part of the object function is dependent on the frequency, it will
be convenient to use the following normalization [25]:

v;(r) = Re[a(r)] + i%lm[vv(r)],

J=12...,Q ()

where w is the minimum frequency in the working frequency
interval.

The data equation can now be written in a compact form as
follows:

Fi(®;) = E; ®)

where the operator F; is defined by

Fy(®;) = k2 /D G ()"

rely 7=12...,Q. ()

Note that all integral operators in the formulation are nu-
merically approximated by corresponding matrices through the
discretization of the integration domain. In the discretization
procedure, the integration domain is divided into small rectan-
gular prism-shaped cells and all the functions, except the dyadic
Green’s function, are assumed to have constant values inside the
cells. The integration of slowly convergent series appearing in
dyadic Green’s function in 3-D small cells of the reconstruction
domain is achieved by the partial summation technique, as ex-
plained in [27].

In order to determine the initial variations of v(r) and E(r),
which will be used in the Newton iterative algorithm, we first
apply the back propagation method [25] to obtain the initial
value of density function as

F:(E9)|? .
30 _ I1F5 (&)l P (B9) (10)

J « [ s I\
I3 (F5 (£5)) 1P

where F7 is the adjoint of the operator F;, and the norms ap-
pearing in [10] are £ norms of the matrices corresponding to
the 3-D integral operators. One can then easily substitute this
function into an object equation and perform a classical 3-D nu-
merical integration to obtain the initial guess of the total electric
field as

EJ(O) = Ei(r)+ kg /D G(T;r')@}o)(r')dv', reD. (11)
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Before going into the details of the algorithm, it will be con-
venient to mention that the relation given by (6) constitutes an
overdetermined system for v(r) since the object function v(r)
is a scalar one. Although the co-polarized components of the
vectors dominate this vectorial relation, especially in the fully
filling case, we prefer to solve the object function from this
equation by a least square algorithm in order to take the ad-
vantage of additional data coming from cross-polarized compo-
nents. Also, we force the initial guess to be a complex constant
in order to avoid unstable values, which may lead divergent re-
sults in the application of the Newton method. Therefore, in a
least square sense, an average initial value of the object function
can be written as

SV LYY, 8 Re (00, EO)
e = (g,s?z-,,i;,s?z;f |
Im (v(O)) = e Z?zl Ciet (%) fm ((bg]z"E’(zojk)

S SR T () (BB,
(13)

12)

Here,”, £ = 1,2,3, and N denote the complex conjugate,
unit vectors z, y, z, and the number of subcells of the discretized
volume of the object under test, respectively. Using these initial
variations it is possible to give an iterative algorithm, which is
based on the linearization of the data equation in the Newton
sense as

F; (®]) + Fj(6®;) = £}

J

(14)

where FJ’ in (14) is the Frechét derivative of the operator Fj
defined by

F;(6®;) = k%/ Gj(T;r')EﬁO)(T’)5v(r')dv', rel
D
(15)
where
80;(r) = E2(r)éu(r). (16)

Here, the function dv(r) corresponds to the update amount of
the object function. Equation (14) is a Fredholm integral equa-
tion of the first kind with respect to §®;(r) and it is severely
ill posed. In order to obtain a stable solution, we apply the
well-known Tikhonov regularization in which the regularization
parameter -y is determined by Morozov’s discrepancy principle
[26] based on the estimated power noise. The regularized solu-
tion of (14) can then be given as

00;(r) = DT+ F{'F) = [Fy (B5 - 5 (2)))] a7

where I denotes the identity operator. Now the updated density
function is substituted into the object equation to obtain the up-
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dated total electric field. Again, by using a least square method,
one can get v as

£, 3 Re (s0087)
Re(bv(r)) = 3 3 ) 200
e k=1 BBk
3 @ 0) (0
3 (2) 1 (8050)
o 3 5 \2 1(0) #(0
SO, 3, (2) FURY
Now the object function can be updated easily as v()) =
v(®) 4 §v(r) and the total electric field can be updated through
solving the object (2). The above iteration is continued until

the norm of 6v(r)/v(r) becomes smaller than a predefined real
number.

(18)

Im(éuv(r)) (19)

IV. NUMERICAL APPLICATIONS

In this section, we present some numerical results in order
to validate the method as well as to see the effects of some pa-
rameters on the results. In all simulations, a cross section of the
waveguide is chosen as ¢ = 7.2 cm and b = 3.4 cm, which al-
lows single mode propagation between 2.0833 and 4.1667 GHz.
To be able to model more realistic cases, a random term

S = LB e (20)
is added to the simulated data of the scattered field, where £ is
the noise level and r,,’s are normally distributed random num-
bers.

As a first example, we consider an inhomogeneous lossy di-
electric rectangular prism, which is placed in (z, y, z) € [2,4] X
[0,2] x [0,4] cm3. The real and imaginary parts of the ob-
ject function of the material under test vary linearly and sinu-
soidally along the z-axis, respectively. The reflected and trans-
mitted fields are assumed to be measured at two points defined
by z = a/2;y = b/2;z = —10cm and x = a/2;y =
b/2;z = 10 cm, respectively, for TE;q excitation. Exact and
reconstructed variations of real and imaginary parts of the ob-
ject function are given in Figs. 2 and 3. The results are plotted
for five different y = constant values corresponding to different
slices. The operating frequency and the number of subcells are
chosen as f = 2.5 GHz and N = 250, respectively, while the
noise level is & = 0.01 and the number of iterations is nine. In
order to show the convergency rate of the method, the /5 norm
of 6v(r)/v(r) with respect to the iteration number is shown in
Fig. 4. Through the results, one can observe that the method is
quite capable of reconstructing smoothly varying profiles even
with only two data.

In the second example, the proposed method is applied to
a three-layer dielectric profile placed in (z,y,2) € [2,3.2] x
[0,1.2] x [0,4.5] cm3, where the waveguide is excited by the
dominant mode. The reflected and transmitted fields are again
assumed to be measured at the points defined by z = a/2;y =
b/2;z = —10cmand z = a/2;y = b/2; z = 10 cm. In Figs. 5
and 6, the exact and reconstructed profiles, which are obtained
for N = 300, ¢ = 0.02, and iteration number 98, are plotted
where the number of operating frequency is chosen as ) = 9 in
arange of f = 2.5-3.5 GHz. It is obvious from the results that
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the method is not capable of catching the sharp transitions, but
gives a smoothed approximation of the original profile.

In the third example, we consider a lossless dielectric mate-
rial having 2-D sharp variation, which is placed in (z,y,z) €
[1,2.2] x [0,0.6] x [1,2.2] cm®. From the numerical implemen-
tations, it is first observed that such a kind of structure cannot
be reconstructed properly using only two data, therefore, we as-
sume that the reflected and transmitted fields are measured at
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4 x 3 = 12 equidistant points defined in the regions (z,y) €
[1.5,4.5] x [1,3] cm?, 2 = —10 cm and (z,y) € [1.5,4.5] x
[1,3] cm?, z = 10 cm. The exact and reconstructed profiles,
which are obtained for N = 500, f = 6 GHz, ¢ = 0.03, and
iteration number 20, are presented in Fig. 7. It should be noted
that all the propagating modes are excited in this example. It
can be seen from the reconstructions that the method gives only
arough approximation of the actual profile. On the other hand, it
is also observed through the numerical applications that multi-
frequency measurements do not improve the results for the given
parameters, while the results start to deteriorate for higher noise
levels. In order to show that the effect of higher noise levels
can be reduced by multifrequency measurements, a previous ex-
ample is again considered with the same parameters, except for
the noise level of & = 0.1, the number of the chosen frequencies
@ = 9in arange of f = 5 — 6 GHz, and iteration number of
121. The exact and reconstructed profiles are shown in Fig. 8,
which shows that the multifrequency measurements makes the
method robust against noise.

The final example is devoted to show that the reconstruction
quality can be enhanced by using higher frequencies, especially
for sharp variations. Thus, we reconsider the profile in the pre-
vious example and apply the method for a single frequency of
f =9 GHz with the data measured at same points and contam-
inated with a noise of level ¢ = 0.03. The number of cells for
this case is chosen as N = 720. Note that all the propagating
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modes are included in the excitation. The reconstructions that
show a satisfactory improvement compared to lower frequency
results are demonstrated in Fig. 9.

V. CONCLUSION

In this study, the reconstruction problem related to 3-D arbi-
trary-shaped inhomogeneous lossy dielectric materials located
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in a rectangular waveguide is theoretically and numerically in-
vestigated by an inverse scattering formalism through the well-
known Newton iterative algorithm. The problem is first reduced
to the solution of a coupled system of integral equations by the
aid of dyadic Green’s function of the empty waveguide. The in-
tegral operators are then discretized to reduce the problem into
matrix systems, which are solved through standard techniques.
From the numerical implementations, it is shown that the pre-
liminary results are promising, even though the method have
certain validation limits. Furthermore, very satisfactory results
are obtained, especially for smoothly varying profiles. It is also
observed that the method is very sensitive to the noisy data in
single frequency measurement case. However, this sensitivity
can be readily reduced by the use of multifrequency measure-
ments, as shown in numerical results. Another issue that is worth
noting is that the resolution of the method can be enhanced by
using higher frequencies for the profiles having abrupt changes
in their geometrical or physical properties. It should be men-
tioned as a final note that although the results presented in this
study initially seem very satisfactory for a 3-D reconstruction
problem, the method should be improved so as to be applicable
with real measurement setup, and it should certainly be tested
against real data. Further studies will be developed in this direc-
tion.

REFERENCES

[1] N. Berger, N. K. Biller, H. O. Ruoss, and F. M. Landstorfer, “Broad-
band non-destructive determination of complex permittivity with
coplanar waveguide fixture,” Electron. Lett., vol. 39, no. 20, pp.
1449-1451, Oct. 2003.

[2] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Deter-
mination of effective permittivity and permeability of metamaterials
from reflection and transmission coefficients,” Phys. Rev. B, Condens.
Matter, vol. 65, no. 19, pp. 1-5, May 2002.

[3] Z. Abbas, R. D. Pollard, and R. W. Kelsall, “A rectangular dielec-

tric waveguide technique for determination of permittivity of materials

at W-band,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp.

2011-2015, Dec. 1998.

T. Zwick, A. Chandrasekhar, C. W. Baks, U. R. Pfeiffer, S. Brebels,

and B. P. Gaucher, “Determination of the complex permittivity of pack-

aging materials at millimeter-wave frequencies,” IEEE Trans. Microw.

Theory Tech., vol. 54, no. 3, pp. 1001-1010, Mar. 2006.

[5] Z. H. Ma and S. Okamura, “Permittivity determination using am-
plitudes of transmission and reflection coefficients at microwave
frequency,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp.
546-550, May 1999.

[6] U. C. Hasar, “A fast and accurate amplitude-only transmission-reflec-
tion method for complex permittivity determination of lossy materials,”
IEEE Trans. Microw. Theory Tech., vol. 56, no. 9, pp. 2129-2135, Sep.
2008.

[7]1 U. C. Hasar and C. R. Westgate, “A broadband and stable method

for unique complex permittivity determination of low-loss materials,”

IEEE Trans. Microw. Theory Tech., vol. 57, no. 2, pp. 471-477, Feb.

2009.

M. D. Janezic and J. A. Jargon, “Complex permittivity determination

from propagation constant measurements,” IEEE Microw. Guided

Wave Lett., vol. 9, no. 2, pp. 76-78, Feb. 1999.

C. Blanchard, J. A. Porti, J. A. Morente, A. Salinas, and E. A. Navarro,

“Determination of the effective permittivity of dielectric mixtures with

the transmission line matrix method,” J. Appl. Phys., vol. 102, no. 6,

pp. 1-9, Sep. 2007.

[10] C. H. Wan, B. Nauwelaers, W. De Raedt, and M. Van Rossum, “Two
new measurement methods for explicit determination of complex
permittivity,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp.
1614-1619, Nov. 1998.

[4

=

[8

[t}

[9

—

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

1295

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable
transmission/reflection method for low-loss material complex permit-
tivity determination,” IEEE Trans. Microw. Theory Tech., vol. 45, no.
1, pp. 52-57, Jan. 1997.

J. Baker-Jarvis and E. J. Vanzura, “Improved technique for determining
complex permittivity with the transmission/reflection method,” /IEEE
Trans. Microw. Theory Tech., vol. 38, no. 8, pp. 1096-1103, Aug. 1990.
C.-W. Chang, K.-M. Chen, and J. Qian, “Nondestructive determination
of electromagnetic parameters of dielectric materials at X band fre-
quencies using a waveuide probe system,” IEEE Trans. Instrum. Meas.,
vol. 46, no. 5, pp. 1084-1092, Oct. 1997.

J. M. Catal-Civera, A.J. Cans, F. L. Pearanda-Foix, and E. de los Reyes
Dav, “Accurate determination of the complex permittivity of materials
with transmission reflection measurements in partially filled rectan-
gular waveguides,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1,
pp. 1624, Jan. 2003.

M. J. Akhtar, L. E. Feher, and M. Thumm, “A closed-form solution for
reconstruction of permittivity of dielectric slabs placed at the center of
a rectangular waveguide,” IEEE Geosci. Remote Sens. Lett., vol. 4, no.
1, pp. 121-126, Jan. 2007.

M. J. Akhtar, L. E. Feher, and M. Thumm, “Noninvasive procedure
for measuring the complex permittivity of resins, catalysts, and other
liquids using a partially filled rectangular waveguide structure,” IEEE
Trans. Microw. Theory Tech., vol. 57, no. 2, pp. 458-470, Feb. 2009.
M. E. Baginski, D. L. Faircloth, and M. D. Deshpande, “Comparison
of two optimization techniques for the estimation of complex com-
plex permittivities of multilayered structures using waveguide mea-
surements,” [EEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp.
3251-3259, Oct. 2005.

D. L. Faircloth, M. E. Baginski, and S. M. Wentworth, “Complex per-
mittivity and permeability extraction for multilayered samples using
S-parameter waguide measurements,” IEEE Trans. Microw. Theory
Tech., vol. 54, no. 3, pp. 1201-1209, Mar. 2006.

A. V. Brovko, E. K. Murphy, and V. V. Yakovlev, “Waveguide mi-
crowave imaging: Neural network reconstruction of functional 2-D per-
mittivity profiles,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 2,
pp. 406-414, Feb. 2009.

A. V. Brovko, E. K. Murphy, M. Rother, H. P. Schuchmann, and V.
V. Yakovlev, “Waveguide microwave imaging: spherical inclusion in a
dielectric sample,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.
9, pp. 647-649, Sep. 2008.

M. E. Requena-Prez, A. Albero-Ortiz, J. Monz-Cabrera, and A. Daz-
Morcillo, “Combined use of genetic algorithms and gradient descent
optimization methods for accurate inverse permittivity,” IEEE Trans.
Microw. Theory Tech., vol. 54, no. 2, pp. 615-624, Feb. 2006.

F. Akleman, “Reconstruction of complex permittivity of a longitudi-
nally inhomogeneous material loaded in a rectangular waveguide,”
IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, pp. 158-160,
Mar. 2008.

F. Akleman and A. Yapar, “Reconstruction of longitudinally inhomo-
geneous dielectric in waveguides via integral equation technique,” in
11th Int. Direct and Inverse Problems of Electromagn. Acoust. Wave
Theory Seminar/Workshop, Thilisi, Georgia, 2006, pp. 53-58.

E. Kilig, D. M. Ozaltin, F. Akleman, A. Yapar, and O. Ozdemir, “A
newton method for the reconstruction of complex permittivity of an
inhomogeneous material located in a rectangular waveguide,” in 9th
Int. Mathem. Numer. Aspects of Waves Propag. Conf., Pau, France,
2009, pp. 308-309.

P. M. van den Berg and R. E. Kleinman, “A contrast source inversion
method,” Inv. Problems, vol. 13, no. 6, pp. 1607-1620, Dec. 1997.

C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm
Equations of the First Kind. White Plains, NY: Longman, 1984.

J. H. Wang, “Analysis of a three dimensional arbitrarily shaped dielec-
tric or biological body inside a rectangular waveguide,” IEEE Trans.
Microw. Theory Tech., vol. MTT-26, no. 7, pp. 457-462, July 1978.

Emre Kilic was born in Istanbul, Turkey, in 1986.
He received the B.Sc. degree in telecommunications
engineering from the Istanbul Technical University
(ITU), Istanbul, Turkey, in 2008, and is currently
working toward the M.Sc. degree in electronics and
communications engineering at ITU.

Since September 2008, he has been with the Elec-
tromagnetic Research Group, ITU, as a Research
Assistant. His research interests focus on numerical
methods for the solution of direct and inverse
scattering problems of electromagnetic waves.



1296

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 5, MAY 2010

Funda Akleman was born in Canakkale, Turkey, in
1973. She received the B.Sc., M.Sc., and Ph.D. de-
grees in electronics and communication engineering,
from Istanbul Technical University, Istanbul, Turkey,
in 1995, 1998, and 2002, respectively.

She is currently an Associate Professor with the
Department of Electronics and Communication En-
gineering, Istanbul Technical University. She was a
Visiting Scholar with the Rutherford Appleton Lab-
oratory, Boston University, and Pennsylvania State
University. Her research interests involve numerical

techniques in electromagnetics, guided wave propagation, and inverse scattering

problems.

and antennas.

Bayram Esen was born in Mardin, Turkey, in 1966.
He received the B.Sc. and M.Sc. degrees in elec-
tronics engineering from Uludag University, Bursa,
Turkey, in 1989 and 1992, respectively the M.Sc.
degree in electrical engineering from Texas Tech
University, Lubbock, in 1996, and the Ph.D. degree
in electrical-electronics engineering from Istanbul
Technical University, Istanbul, Turkey, in 2003.
Since 2009, he has been an Assistant Professor
with Balikesir University, Balikesir, Turkey. His
current research interests are electromagnetic theory

Duygu Merve Ozalin was born in Kocaeli, Turkey,
in 1986. She received the B.Sc. and M.Sc. degrees in
telecommunication engineering from Istanbul Tech-
nical University, Istanbul, Turkey, in 2007 and 2009,
respectively.

From 2007 to 2008, she was a Research and
Design Engineer with Northern Telecom Netas Inc.
From 2008 to 2009, she was a Project Assistant
with the Electromagnetic Research Group, Istanbul
Technical University, where she was involved with
computational electromagnetics and 3-D analysis of

scattering in a rectangular waveguide.

Ozgiir Ozdemir was born in Kayseri, Turkey, in
1977. She received the B.Sc. and M.Sc. degrees in
electronics and communication engineering from
the Istanbul Technical University, Istanbul, Turkey,
in 1998 and 2000, respectively, and the Ph.D. degree
from the Electrical and Computer Engineering
Department, New Jersey Institute of Technology
(NJIT), Newark, in 2005.

She is currently a Dr. Research Assistant with the
Istanbul Technical University, where she is a member
of the Electromagnetic Research Group. Her research

interests are in the areas of antenna design and direct and inverse scattering in
electromagnetics.

Ali Yapar was born in Aksehir, Turkey, in 1973. He
received the B.Sc. degrees in electrical engineering
and mathematics and M.Sc. and Ph.D. degrees in
electronics and communication engineering from
Istanbul Technical University, Istanbul, Turkey, in
1995, 1997, and 2001, respectively.

From 2001 to 2002, he was a Visiting Scientist
with the University of Illinois at Urbana-Champaign.
He is currently an Associate Professor with Istanbul
Technical University. His research interest includes
electromagnetic theory, inverse scattering problems,

integral equations, and numerical techniques.



