

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Number Theory

www.elsevier.com/locate/jnt

On numbers of the form $n = x^2 + Ny^2$ and the Hecke groups $H(\sqrt{N})$

Nihal Yılmaz Özgür

Balıkesir University, Department of Mathematics, 10145 Balıkesir, Turkey

article info abstract

Article history: Received 3 October 2006 Revised 14 December 2009 Available online 23 March 2010 Communicated by D. Zagier

MSC: 11D85 11F06 20H10

Keywords: Hecke groups Representation of integers

1. Introduction

Hecke groups $H(\lambda)$ are the discrete subgroups of $PSL(2,\mathbb{R})$ generated by two linear fractional transformations

$$
R(z) = -\frac{1}{z} \quad \text{and} \quad T(z) = z + \lambda,
$$

where $\lambda \in \mathbb{R}$, $\lambda \geqslant 2$ or $\lambda = \lambda_q = 2\cos(\frac{\pi}{q})$, $q \in \mathbb{N}$, $q \geqslant 3$. These values of λ are the only ones that give discrete groups, by a theorem of Hecke [3]. It is well known that the Hecke groups $H(\lambda_q)$ are isomorphic to the free product of two finite cyclic groups of orders 2 and *q*, that is, $H(\lambda_q) \cong C_2 * C_q$. Let *N* be a fixed positive integer and *x*, *y* are integers. For $N = 1$, the answer of the question when a natural number *n* can be represented in the form $n = x^2 + Ny^2$, is given by Fermat's

We consider the Hecke groups $H(\sqrt{N})$, $N \geq 2$ integer, to get some results about the problem when a natural number *n* can be represented in the form $n = x^2 + Ny^2$. Given a natural number *n*, we give an algorithm that computes the integers *x* and *y* satisfying the equation $n = x^2 + Ny^2$ for all $N \ge 2$.

© 2010 Elsevier Inc. All rights reserved.

E-mail address: [nihal@balikesir.edu.tr.](mailto:nihal@balikesir.edu.tr)

⁰⁰²²⁻³¹⁴X/\$ – see front matter © 2010 Elsevier Inc. All rights reserved. [doi:10.1016/j.jnt.2010.01.002](http://dx.doi.org/10.1016/j.jnt.2010.01.002)

two-square theorem. In [2], B. Fine proved this theorem using the group structure of the modular group $H(\lambda_3) = PSL(2, \mathbb{Z})$. To solve the problem for $N = 2$ and $N = 3$, in [5], G. Kern-Isberner and G. Rosenberger dealt with the Hecke groups $H(\sqrt{2})$ and $H(\sqrt{3})$ where $\lambda_q = 2 \cos \frac{\pi}{q}$ and $q = 4, 6$, respectively. Aside from the modular group, these Hecke groups are the only ones whose elements are completely known [7]. Also, G. Kern-Isberner and G. Rosenberger extended these results for $N = 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 37, 58$ by considering the groups G_N consisting of all matrices *U* of type (1.1) or (1.2):

$$
U = \begin{pmatrix} a & b\sqrt{N} \\ c\sqrt{N} & d \end{pmatrix}, \quad a, b, c, d \in \mathbb{Z}, \qquad ad - Nbc = 1,
$$
 (1.1)

$$
U = \begin{pmatrix} a\sqrt{N} & b \\ c & d\sqrt{N} \end{pmatrix}, \quad a, b, c, d \in \mathbb{Z}, \qquad a dN - bc = 1,
$$
 (1.2)

where a matrix is identified with its negative. It is known that $H(\sqrt{N}) = G_N$ for $N = 2, 3$ (see [4,11]). Note that the case $N = 4$ can be reduced to the two-square theorem as stated in [5]. Here we consider this problem for all integers $N \ge 5$. To do this we shall consider the Hecke groups $H(\sqrt{N})$, $N \ge 5$ integer, generated by two linear fractional transformations

$$
R(z) = -\frac{1}{z} \quad \text{and} \quad T(z) = z + \sqrt{N}.
$$

These Hecke groups $H(\sqrt{N})$ are Fuchsian groups of the second kind (see [7,8] for more details about the Hecke groups). For a given *n*, we give an algorithm that computes the integers *x* and *y* satisfying the equation $n = x^2 + Ny^2$ for all $N \ge 2$.

Note that the problem "given a positive integer *N*, which primes *p* can be expressed in the form $p = x^2 + Ny^2$, where *x* and *y* are integers?" was considered in [1]. Also, in [10], the present author gave an algorithm that computes the integers *x* and *y* satisfying the equation $n = x^2 + y^2$ for a given positive integer *n* such that −1 is a quadratic residue *mod n* using the group structure of the modular group $H(\lambda_3) = PSL(2, \mathbb{Z})$.

2. Main results

From now on we will assume that N is any integer $\geqslant 5$ unless otherwise stated. By identifying the transformation $z \rightarrow \frac{Az+B}{cz+D}$ with the matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$, $H(\sqrt{N})$ may be regarded as a multiplicative group of 2 × 2 real matrices in which a matrix and its negative are identified. All elements of $H(\sqrt{N})$ have one of the above two forms (1.1) or (1.2). But the converse is not true, that is, all elements of the type (1.1) or (1.2) need not belong to $H(\sqrt{N})$. In [7], Rosen proved that a transformation of the type (1.1) or (1.2) need not belong to $H(\sqrt{N})$. In [7], Rosen proved that a transformation *V* (*z*) = $\frac{Az+B}{cz+D} \in H(\sqrt{N})$ if and only if $\frac{A}{C}$ is a finite \sqrt{N} -fraction. Recall that a finite \sqrt{N} -fraction has the form

$$
(r_0\sqrt{N}, -1/r_1\sqrt{N}, \dots, -1/r_n\sqrt{N}) = r_0\sqrt{N} - \frac{1}{r_1\sqrt{N} - \frac{1}{r_2\sqrt{N} - \dots - \frac{1}{r_n\sqrt{N}}}},
$$
(2.1)

where r_i $(i \geqslant 0)$ are positive or negative integers and r_0 may be zero. Also it is known that the Hecke group $H(\sqrt{N})$ is isomorphic to the free product of a cyclic group of order 2 and a free group of rank 1 (see [6,9]), that is,

$$
H(\sqrt{N}) \cong C_2 * \mathbb{Z}.
$$

Here, we use this group structure of $H(\sqrt{N})$. Throughout the paper, we assume that $n>0,$ $n\in\mathbb{N}$ and $(n, N) = 1.$

Let $n = x^2 + Ny^2$ with $x, y \in \mathbb{Z}$ and $(x, y) = 1$. Since *n* and *N* are relatively prime, we have $(V|V, x) = 1$. Then we can find numbers $z, t \in \mathbb{Z}$ with $Nyt - xz = 1$. Therefore the matrix $U =$ $\left(\sqrt[y]{\sqrt{N}}\right)^{x}$ $\frac{d}{dx}$ $\frac{d}{dx}$ is in G_N . Conjugating *R* by *U* gives an element *A* of G_N :

$$
A = \begin{pmatrix} -(yz + xt)\sqrt{N} & x^2 + Ny^2 \\ -(z^2 + Nt^2) & (yz + xt)\sqrt{N} \end{pmatrix}
$$

$$
= \begin{pmatrix} -\alpha\sqrt{N} & n \\ \beta & \alpha\sqrt{N} \end{pmatrix}; \quad \alpha, \beta \in \mathbb{Z}
$$

with det(*A*) = $1 = -N\alpha^2 - n\beta$ which implies that −*N* is a quadratic residue *mod n*. Notice that the equation $n = x^2 + Ny^2$ implies $n = x^2 \mod N$ and hence *n* is a quadratic residue *mod N*, too. In this case we need not to $H(\sqrt{N})$ and therefore we obtain the following theorem for all *n* and *N* using the transformations of the group *G ^N* .

Theorem 2.1. Let N be a fixed positive integer and let n be a positive integer relatively prime to N. If $n =$ $x^2 + Nv^2$ *with* $x, y \in \mathbb{Z}$ and $(x, y) = 1$, then −*N* is a quadratic residue mod n and n is a quadratic residue *mod N.*

Conversely, assume that $-N$ is a quadratic residue *mod n*. Since $(n, N) = 1$, there are $k, l \in \mathbb{Z}$ such that $kN - \ln = 1$. Hence we have $kN = 1 + \ln$, and $kN \equiv 1 \mod n$, and so $-k$ is a quadratic residue *mod n*, too. Therefore we have $u^2 \equiv -k \mod n$ for some $u \in \mathbb{Z}$. We get $u^2N \equiv -kN \mod n$, $u^2N \equiv -1$ *mod n*, and so we have

$$
u^2N = -1 + qn \tag{2.2}
$$

for some $q \in \mathbb{Z}$. Now we consider the matrix

$$
B = \begin{pmatrix} -u\sqrt{N} & n \\ -q & u\sqrt{N} \end{pmatrix}
$$
 (2.3)

of which determinant $-u^2N+qn = 1$. Clearly $B \in G_N$. In [5], for $N = 2$, G. Kern-Isberner and G. Rosenberger solved the problem for all natural numbers n using the fact that B must be conjugate to the generator *R* in *G*2. If −2 is a quadratic residue *mod n*, they proved that *n* can be written as $n = x² + Ny²$ with $x, y \in \mathbb{Z}$ and $(x, y) = 1$. For the values $N = 3, 5, 6, 8, 9, 10, 12, 13, 16, 18, 22, 25,$ 28*,* 37*,* 58, G. Kern-Isberner and G. Rosenberger proved that *B* must be conjugate to *R* in *G ^N* by consideration of the additional assumption *n* is also quadratic residue *mod N*. Therefore *n* can be written as $n = x^2 + Ny^2$ for these values of *N* under the extra hypothesis *n* is a quadratic residue *mod N*. For *N* = 7, they obtained that if *n* is an odd number and if −7 is a quadratic residue *mod n*, then *n* can be written as $n = x^2 + 7y^2$.

At this point we want to use the group structure of the Hecke groups $H(\sqrt{N})$ to get similar results for the values of $N \ge 5$ other than stated above. Notice that the matrix *B* cannot be always in $H(\sqrt{N})$. If $\frac{u\sqrt{N}}{q}$ is a finite \sqrt{N} -fraction, then *B* is an element of $H(\sqrt{N})$. Also *B* has order 2 as $tr B = 0$. Since $H(\sqrt{N}) \cong C_2 * \mathbb{Z}$, each element of order 2 in $H(\sqrt{N})$ is conjugate to the generator *R*, that is, $B = V R V^{-1}$ for some $V \in H(\sqrt{N})$. We may assume that *V* is a matrix of type (1.1), $V = \begin{pmatrix} a & b\sqrt{N} \\ c\sqrt{N} & d \end{pmatrix}$; *a*, *b*, *c*, *d* ∈ \mathbb{Z} *, ad* − *Nbc* = 1. Then we obtain

$$
B = \begin{pmatrix} -(ac+bd)\sqrt{N} & a^2 + Nb^2 \\ -(d^2 + NC^2) & (bd + ac)\sqrt{N} \end{pmatrix}.
$$
 (2.4)

Comparing the entries, we have $n = a^2 + Nb^2$ for some integers *a*, *b*. From the discriminant condition, clearly we get $(a, b) = 1$. Therefore, if we can find the conditions that determine whether $\frac{u\sqrt{N}}{q}$ is a finite \sqrt{N} -fraction or not, then it is possible to get some more results about this problem.

Note that we are unable to give the explicit conditions which determine whether $\frac{u\sqrt{N}}{q}$ is a finite \sqrt{N} -fraction or not. But, from Lemma 4 in [9], we know that $\frac{A}{C}$ is a finite \sqrt{N} -fraction if and only if there is a sequence a_k such that

$$
\frac{A}{C} = \frac{a_{k+1}}{a_k} \quad \text{or} \quad -\frac{a_{k-1}}{a_k} \tag{2.5}
$$

for some k . The sequence a_k is defined by

$$
a_0 = 1,
$$

\n
$$
a_1 = s_1 \sqrt{N},
$$

\n
$$
a_{k+1} = s_{k+1} \sqrt{N} a_k - a_{k-1}, \quad k \ge 2,
$$
\n(2.6)

where *sk*'s come from any sequence of non-zero integers. Here we will use this lemma to get some examples.

We start with an algorithm that computes the integers *x* and *y* for the cases $N = 2$ and $N = 3$.

Theorem 2.2. Let $N = 2$ or $N = 3$. For $N = 2$, let n be a natural number such that -2 is a quadratic residue *mod n and for N* = 3*, let n be a natural number such that* −3 *is a quadratic residue mod n and n is a quadratic residue mod* 3*. In either case, let u and q* $(>N)$ *be the integers satisfying the equation Nu*² = $-1 + qn$ *. Define the following functions*:

$$
f: (a, b, c, d) \to (d, -c, -b, a),
$$

$$
g: (a, b, c, d) \to (a - c, 2Na + b - Nc, c, c + d).
$$
 (2.7)

Start with the quadruple (−*u,n,*−*q, u), and apply f if the first coordinate is positive and apply g if not. Proceed likewise until the quadruple (*0*,* ¹*,*−1*,* ⁰*) is obtained. For f write R and for ri times g write T ri . Then* compute the matrix $V = T^{r_0}RT^{r_1}R \ldots RT^{r_n}$ where only r_0 and r_n may be zero. If $V = (\frac{x}{z\sqrt{N}} \frac{y\sqrt{N}}{t})$, then the *following equations are satisfied*:

$$
n = x2 + Ny2,
$$

\n
$$
q = Nz2 + t2,
$$

\n
$$
u = xz + yt.
$$
\n(2.8)

If $V = \begin{pmatrix} \frac{x\sqrt{N}}{2} & y \\ z & \frac{t\sqrt{N}}{2} \end{pmatrix}$ *z t*√*^N , then the following equations are satisfied*:

$$
n = Nx2 + y2,
$$

\n
$$
q = z2 + Nt2,
$$

\n
$$
u = xz + yt.
$$
\n(2.9)

Proof. The proof is based on the fact that the matrix *B*, defined in (2.3), must be conjugate to *R* in *G_N* for $N = 2, 3$. Then $B = V R V^{-1}$ for some $V \in G_N$. If *V* is a matrix of type (1.1), $V = \begin{pmatrix} x & y\sqrt{N} \\ z\sqrt{N} & t \end{pmatrix}$, *a*, *b*, *c*, *d* ∈ Z, *ad* − *Nbc* = 1, then we obtain $B = \begin{pmatrix} (-xz - yt)\sqrt{N} & x^2 + Ny^2 \\ -(Nz^2 + t^2) & (xz + vt) \end{pmatrix}$ $-(Nz^2+t^2)(xN-x+Ny)$. Comparing the entries, we have $n = x^2 + Ny^2$, $q = Nz^2 + t^2$, $u = xz + yt$. From the discriminant condition, clearly we get $(x, y) = 1$. Our method is to find the matrix *V* such that $B = V R V^{-1}$ and so $V^{-1} B V = R$. To do this we use the group structure of G_N . Every element of G_N can be expressed as a word in *R* and *T*. So *V* = $T^{r_0}RT^{r_1}R...RT^{r_n}$ where the r_i $(0 < i < n)$ are integers and only r_0 and r_n may be zero. Then we have

$$
R = V^{-1}BV = (T^{-r_n}R \dots RT^{-r_1}RT^{-r_0})B(T^{r_0}RT^{r_1}R \dots RT^{r_n})
$$

= $(T^{-r_n}R \dots RT^{-r_1}R)(T^{-r_0}BT^{r_0})(RT^{r_1}R \dots RT^{r_n}).$

If *f* represents the coefficients of the matrix *RXR* and *g* represents ones for the matrix *T* [−]¹ *X T* for any matrix $X = \begin{pmatrix} a\sqrt{N} & b \\ c & d \end{pmatrix}$ *c d*√*^N* ∈ *G ^N* , then the proof follows easily using the fact that conjugate matrices have equal traces.

As $T^r = \begin{pmatrix} 1 & r\sqrt{N} \\ 0 & 1 \end{pmatrix}$ $\binom{1}{0}^{r}\binom{N}{1}$, $T^{r}R = \binom{-r\sqrt{N}}{-1}^{r}\binom{N}{0}$ $\binom{r}{N-1}$ and $RT^r = \binom{0}{-1} \binom{1}{-r}$ for any integer *r*, it is easy to compute the matrix *V* .

If *V* is a matrix of type (1.2), the proof follows similarly. \Box

The following examples illustrate the algorithm defined in Theorem 2.2.

Example 2.1. Let *N* = 2 and *n* = 89. Observe that −2 is a quadratic residue *mod* 89. We can find the integers 20, 9 such that $2(20)^{2} = -1 + 89.9$. We have

$$
(-20, 89, -9, 20) \underset{\rightarrow}{g} (-11, 27, -9, 11) \underset{\rightarrow}{g} (-2, 1, -9, 2)
$$

\n
$$
\underset{\rightarrow}{g} (7, 11, -9, -7) \underset{\rightarrow}{f} (-7, 9, -11, 7) \underset{\rightarrow}{g} (4, 3, -11, -4) \underset{\rightarrow}{f} (-4, 11, -3, 4)
$$

\n
$$
\underset{\rightarrow}{g} (-1, 1, -3, 1) \underset{\rightarrow}{g} (2, 3, -3, -2) \underset{\rightarrow}{f} (-2, 3, -3, 2) \underset{\rightarrow}{g} (1, 1, -3, -1)
$$

\n
$$
\underset{\rightarrow}{f} (-1, 3, -1, 1) \underset{\rightarrow}{g} (0, 1, -1, 0).
$$

Then $V = T^3 R T R T^2 R T R T$. If we compute the matrix *V*, we obtain

$$
V = \begin{pmatrix} 1 & 3\sqrt{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -2\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & -\sqrt{2} \end{pmatrix}^2
$$

$$
= \begin{pmatrix} 9 & 2\sqrt{2} \\ 2\sqrt{2} & 1 \end{pmatrix}.
$$

By (2.8), we find

$$
89 = (9)^2 + 2(2)^2
$$
, $9 = 2(2)^2 + 1^2$, $20 = 9.2 + 2.1$.

Example 2.2. Let $N = 3$ and $n = 172$. -3 is a quadratic residue *mod* 172 and 172 is a quadratic residue *mod* 3. We can find the integers 33, 19 such that $3(33)^{2} = -1 + 172.19$. We have

$$
(-33, 172, -19, 33) g(-14, 31, -19, 14) g(5, 4, -19, -5)
$$

\n
$$
f(-5, 19, -4, 5) g(-1, 1, -4, 1) g(3, 7, -4, -3) f(-3, 4, -7, 3)
$$

\n
$$
g(4, 7, -7, -4) f(-4, 7, -7, 4) g(3, 4, -7, -3) f(-3, 7, -4, 3)
$$

\n
$$
g(1, 1, -4, -1) f(-1, 4, -1, 1) g(0, 1, -1, 0).
$$

Then $V = (T^2 R)^2 (TR)^3 T$. If we compute the matrix *V*, we obtain

$$
V = \begin{pmatrix} -2\sqrt{3} & 1 \\ -1 & 0 \end{pmatrix}^2 \begin{pmatrix} -\sqrt{3} & 1 \\ -1 & 0 \end{pmatrix}^3 \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 7\sqrt{3} & 5 \\ 4 & \sqrt{3} \end{pmatrix}.
$$

By (2.9), we find

$$
172 = 3(7)^{2} + (5)^{2}, \qquad 19 = (4)^{2} + 3(1)^{2}, \qquad 33 = 7.4 + 5.1.
$$

Remark 2.1. Since the case $N = 4$ can be reduced to the two-square theorem and the corresponding Hecke group $H(\sqrt{N})$ is a subgroup of the modular group $H(\lambda_3) = PSL(2, \mathbb{Z})$, the similar algorithm given in [10] can be used to compute the integers *x* and *y* in this case. That is, if −4 is a quadratic residue *mod n*, then one can find the integers *u* and *q* (>4) satisfying the equation $u^2 = -1 + qn$. The matrix *B* defined in (2.3), is an element of the modular group and hence it must be conjugate to *R*. Then the similar algorithm given in [10] works in this case, too.

If $B \in H(\sqrt{N})$, $N \ge 5$, then the method given in Theorem 2.2 is also valid for all *N*. For all $N \ge 5$, we use this algorithm. Now observe that the matrix

$$
C = \begin{pmatrix} u\sqrt{N} & 1\\ -qn & -u\sqrt{N} \end{pmatrix}
$$

is in $H(\sqrt{N})$. Indeed, using the equation $-u^2N + qn = 1$ given in (2.2), it can be easily verified that

$$
-\frac{u\sqrt{N}}{qn}=-\frac{1}{u\sqrt{N}+\frac{1}{u\sqrt{N}}}.
$$

Therefore we get [−]*^u* [√]*^N qn* is a finite [√]*N*-fraction and so *^C* is an element of *^H(* [√]*^N)*, more explicitly $C = RT^uRT^{-u}R$. Also *C* has order 2 as $tr C = 0$. Since each element of order 2 in $H(\sqrt{N})$ is conjugate to the generator *R*, if $B \in H(\sqrt{N})$, then *B* must be conjugate to *C*. In this case $C = DBD^{-1}$ for some $D \in H(\sqrt{N})$. We may assume that D is a matrix of type (1.1), $D = \begin{pmatrix} a & b\sqrt{N} \\ c\sqrt{N} & d \end{pmatrix}$; $a, b, c, d \in \mathbb{Z}$, $ad - Nhc = 1$. We have

$$
DBD^{-1} = \begin{pmatrix} * & (2uab + b^2q)N + a^2n \\ * & * \end{pmatrix} = \begin{pmatrix} u\sqrt{N} & 1 \\ -qn & -u\sqrt{N} \end{pmatrix}.
$$

Comparing the second entries, we obtain that $(2uab + b^2a)N + a^2n = 1$ and $a^2n \equiv 1 \mod N$. Hence if $B \in H(\sqrt{N})$, then *n* must be a quadratic residue *mod N*. Therefore the conditions $-N$ is a quadratic $B \in H(\sqrt{N})$, then *n* must be a quadratic residue *mod N*. Therefore the conditions $-N$ is a quadratic

residue *mod n* and *n* is a quadratic residue *mod N* are necessary to get some results about the problem under consideration by using the group structure of the Hecke group $H(\sqrt{N})$. Note that these conditions are not the sufficient conditions. Also it must be $B \in H(\sqrt{N})$, that is, $\frac{u}{q} \sqrt{N}$ must be a finite [√]*N*-fraction. For example, for *^N* ⁼ 17 and *ⁿ* ⁼ 52, observe that 52 is a quadratic residue *mod* 17 and −17 is a quadratic residue *mod* 52. But it is easily checked that 52 cannot be written in the form $52 = x^2 + 17y^2$ where $(x, y) = 1$.

For all $N \ge 5$, we can use the algorithm given in Theorem 2.2. For $N = 7$, if *n* is an odd number and if -7 is a quadratic residue *mod n*; for other values of *N* \geqslant 5, if $-N$ is a quadratic residue *mod n* and *n* is a quadratic residue *mod N*, then one can find the integers *u* and q (>*N*) satisfying the equation $u^2N = -1 + qn$. If $\frac{u\sqrt{N}}{q}$ is a finite \sqrt{N} -fraction, then $B \in H(\sqrt{N})$ and the algorithm defined in Theorem 2.2 is valid. One can use the nearest integer algorithm to find the expansion of $\frac{u\sqrt{N}}{q}$ in an \sqrt{N} -fraction (for more details about this algorithm, see [7]).

Finally we give an example explaining our method.

Example 2.3. Let $N = 11$ and $n = 991$. −11 is a quadratic residue *mod* 991 and 991 is a quadratic residue *mod* 11. We can find the integers 100*,* 111 such that 11*(*100*)*² = −¹ + ⁹⁹¹*.*111. We find the expansion of $\frac{100\sqrt{11}}{111}$ in a finite $\sqrt{11}$ -fraction as

$$
\frac{100\sqrt{11}}{111} = \sqrt{11} - \frac{1}{\sqrt{11} - \frac{1}{\sqrt{11} + \frac{1}{\sqrt{11} - \frac{1}{\sqrt{11}}}}}.
$$

Therefore $\frac{100\sqrt{11}}{111}$ is a finite $\sqrt{11}$ -fraction and $B = \begin{pmatrix} -100\sqrt{11} & 991 \\ -111 & 100\sqrt{11} \end{pmatrix} \in H(\sqrt{11})$. Using the algorithm defined in Theorem 2.2, we have

$$
(-100, 991, -111, 100) g (11, 12, -111, -11) f (-11, 111, -12, 11)
$$

g (1, 1, -12, -1) f (-1, 12, -1, 1) g (0, 1, -1, 0).

Then $V = (TR)^2T$. If we compute the matrix *V*, we obtain

$$
V = \begin{pmatrix} -\sqrt{11} & 1 \\ -1 & 0 \end{pmatrix}^2 \begin{pmatrix} 1 & \sqrt{11} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 10 & 9\sqrt{11} \\ \sqrt{11} & 10 \end{pmatrix}.
$$

By (2.8), we find

$$
991 = (10)2 + 11(9)2, \qquad 111 = 11(1)2 + (10)2, \qquad 100 = 10.1 + 9.10.
$$

Remark 2.2. Notice that this algorithm can be used for all *N* and *n* without any restriction. Even for large values of *n* this method works easily.

References

- [2] B. Fine, A note on the two-square theorem, Canad. Math. Bull. 20 (1) (1977) 93–94.
- [3] E. Hecke, Über die bestimmung Dirichletscher reihen durch ihre funktionalgleichung, Math. Ann. 112 (1) (1936) 664–699.

^[1] D.A. Cox, Primes of the Form $x^2 + Ny^2$, John Wiley, 1989.

- [4] J.I. Hutchinson, On a class of automorphic functions, Trans. Amer. Math. Soc. 3 (1902) 1–11.
- [5] G. Kern-Isberner, G. Rosenberger, A note on numbers of the form $n = x^2 + Ny^2$, Arch. Math. 43 (2) (1984) 148–156.
- [6] R.C. Lyndon, J.L. Ullman, Pairs of real 2 × 2 matrices that generate free products, Michigan Math. J. 15 (1968) 161–166.
- [7] D. Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J. 21 (1954) 549–563.
- [8] T.A. Schmidt, M. Sheingorn, Length spectra of the Hecke triangle groups, Math. Z. 220 (3) (1995) 369–397.
- [9] N. Yılmaz Özgür, I.N. Cangül, On the group structure and parabolic points of the Hecke group *H(λ)*, Proc. Estonian Acad. Sci. Phys. Math. 51 (1) (2002) 35–46.
- [10] N. Yılmaz Özgür, On the two-square theorem and the modular group, Ars Combin. 94 (2010) 251–255.
- [11] J. Young, On the group of sign *(*0*,* 3; 2*,* 4*,*∞*)* and the functions belonging to it, Trans. Amer. Math. Soc. 5 (1) (1904) 81–104.