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We consider the Hecke groups H(
√

N ), N � 2 integer, to get
some results about the problem when a natural number n can be
represented in the form n = x2 + N y2. Given a natural number n,
we give an algorithm that computes the integers x and y satisfying
the equation n = x2 + N y2 for all N � 2.
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1. Introduction

Hecke groups H(λ) are the discrete subgroups of PSL(2,R) generated by two linear fractional trans-
formations

R(z) = −1

z
and T (z) = z + λ,

where λ ∈ R, λ � 2 or λ = λq = 2 cos( π
q ), q ∈ N, q � 3. These values of λ are the only ones that give

discrete groups, by a theorem of Hecke [3]. It is well known that the Hecke groups H(λq) are iso-
morphic to the free product of two finite cyclic groups of orders 2 and q, that is, H(λq) ∼= C2 ∗ Cq.

Let N be a fixed positive integer and x, y are integers. For N = 1, the answer of the question
when a natural number n can be represented in the form n = x2 + N y2, is given by Fermat’s
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two-square theorem. In [2], B. Fine proved this theorem using the group structure of the modular
group H(λ3) = PSL(2,Z). To solve the problem for N = 2 and N = 3, in [5], G. Kern-Isberner and
G. Rosenberger dealt with the Hecke groups H(

√
2 ) and H(

√
3 ) where λq = 2 cos π

q and q = 4,6, re-
spectively. Aside from the modular group, these Hecke groups are the only ones whose elements
are completely known [7]. Also, G. Kern-Isberner and G. Rosenberger extended these results for
N = 5,6,7,8,9,10,12,13,16,18,22,25,28,37,58 by considering the groups G N consisting of all ma-
trices U of type (1.1) or (1.2):

U =
(

a b
√

N
c
√

N d

)
, a,b, c,d ∈ Z, ad − Nbc = 1, (1.1)

U =
(

a
√

N b
c d

√
N

)
, a,b, c,d ∈ Z, adN − bc = 1, (1.2)

where a matrix is identified with its negative. It is known that H(
√

N) = G N for N = 2,3 (see [4,11]).
Note that the case N = 4 can be reduced to the two-square theorem as stated in [5]. Here we consider
this problem for all integers N � 5. To do this we shall consider the Hecke groups H(

√
N ), N � 5

integer, generated by two linear fractional transformations

R(z) = −1

z
and T (z) = z + √

N.

These Hecke groups H(
√

N ) are Fuchsian groups of the second kind (see [7,8] for more details about
the Hecke groups). For a given n, we give an algorithm that computes the integers x and y satisfying
the equation n = x2 + N y2 for all N � 2.

Note that the problem “given a positive integer N , which primes p can be expressed in the form
p = x2 + N y2, where x and y are integers?” was considered in [1]. Also, in [10], the present author
gave an algorithm that computes the integers x and y satisfying the equation n = x2 + y2 for a given
positive integer n such that −1 is a quadratic residue mod n using the group structure of the modular
group H(λ3) = PSL(2,Z).

2. Main results

From now on we will assume that N is any integer � 5 unless otherwise stated. By identifying
the transformation z → Az+B

C z+D with the matrix
( A B

C D

)
, H(

√
N ) may be regarded as a multiplicative

group of 2 × 2 real matrices in which a matrix and its negative are identified. All elements of H(
√

N )

have one of the above two forms (1.1) or (1.2). But the converse is not true, that is, all elements
of the type (1.1) or (1.2) need not belong to H(

√
N ). In [7], Rosen proved that a transformation

V (z) = Az+B
C z+D ∈ H(

√
N) if and only if A

C is a finite
√

N-fraction. Recall that a finite
√

N-fraction has
the form

(r0
√

N,−1/r1
√

N, . . . ,−1/rn

√
N ) = r0

√
N − 1

r1
√

N − 1
r2

√
N−···− 1

rn
√

N

, (2.1)

where ri (i � 0) are positive or negative integers and r0 may be zero. Also it is known that the Hecke
group H(

√
N ) is isomorphic to the free product of a cyclic group of order 2 and a free group of rank 1

(see [6,9]), that is,

H(
√

N ) ∼= C2 ∗ Z.

Here, we use this group structure of H(
√

N ). Throughout the paper, we assume that n > 0, n ∈ N and
(n, N) = 1.
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Let n = x2 + N y2 with x, y ∈ Z and (x, y) = 1. Since n and N are relatively prime, we have
(N y, x) = 1. Then we can find numbers z, t ∈ Z with N yt − xz = 1. Therefore the matrix U =( y

√
N x

z t
√

N

)
is in G N . Conjugating R by U gives an element A of G N :

A =
(−(yz + xt)

√
N x2 + N y2

−(z2 + Nt2) (yz + xt)
√

N

)

=
(−α

√
N n

β α
√

N

)
; α,β ∈ Z

with det(A) = 1 = −Nα2 − nβ which implies that −N is a quadratic residue mod n. Notice that the
equation n = x2 + N y2 implies n ≡ x2 mod N and hence n is a quadratic residue mod N , too. In this
case we need not to H(

√
N ) and therefore we obtain the following theorem for all n and N using the

transformations of the group G N .

Theorem 2.1. Let N be a fixed positive integer and let n be a positive integer relatively prime to N. If n =
x2 + N y2 with x, y ∈ Z and (x, y) = 1, then −N is a quadratic residue mod n and n is a quadratic residue
mod N.

Conversely, assume that −N is a quadratic residue mod n. Since (n, N) = 1, there are k, l ∈ Z

such that kN − ln = 1. Hence we have kN = 1 + ln, and kN ≡ 1 mod n, and so −k is a quadratic
residue mod n, too. Therefore we have u2 ≡ −k mod n for some u ∈ Z. We get u2N ≡ −kN mod n,
u2N ≡ −1 mod n, and so we have

u2N = −1 + qn (2.2)

for some q ∈ Z. Now we consider the matrix

B =
(−u

√
N n

−q u
√

N

)
(2.3)

of which determinant −u2N +qn = 1. Clearly B ∈ G N . In [5], for N = 2, G. Kern-Isberner and G. Rosen-
berger solved the problem for all natural numbers n using the fact that B must be conjugate to
the generator R in G2. If −2 is a quadratic residue mod n, they proved that n can be written as
n = x2 + N y2 with x, y ∈ Z and (x, y) = 1. For the values N = 3,5,6,8,9,10,12,13,16,18,22,25,

28,37,58, G. Kern-Isberner and G. Rosenberger proved that B must be conjugate to R in G N by con-
sideration of the additional assumption n is also quadratic residue mod N . Therefore n can be written
as n = x2 + N y2 for these values of N under the extra hypothesis n is a quadratic residue mod N . For
N = 7, they obtained that if n is an odd number and if −7 is a quadratic residue mod n, then n can
be written as n = x2 + 7y2.

At this point we want to use the group structure of the Hecke groups H(
√

N) to get similar results
for the values of N � 5 other than stated above. Notice that the matrix B cannot be always in H(

√
N ).

If u
√

N
q is a finite

√
N-fraction, then B is an element of H(

√
N ). Also B has order 2 as tr B = 0.

Since H(
√

N) ∼= C2 ∗ Z, each element of order 2 in H(
√

N) is conjugate to the generator R , that is,

B = V R V −1 for some V ∈ H(
√

N). We may assume that V is a matrix of type (1.1), V = ( a b
√

N

c
√

N d

)
;

a,b, c,d ∈ Z, ad − Nbc = 1. Then we obtain

B =
(−(ac + bd)

√
N a2 + Nb2

−(d2 + Nc2) (bd + ac)
√

N

)
. (2.4)
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Comparing the entries, we have n = a2 + Nb2 for some integers a, b. From the discriminant condition,

clearly we get (a,b) = 1. Therefore, if we can find the conditions that determine whether u
√

N
q is a

finite
√

N-fraction or not, then it is possible to get some more results about this problem.

Note that we are unable to give the explicit conditions which determine whether u
√

N
q is a finite√

N-fraction or not. But, from Lemma 4 in [9], we know that A
C is a finite

√
N-fraction if and only if

there is a sequence ak such that

A

C
= ak+1

ak
or −ak−1

ak
(2.5)

for some k. The sequence ak is defined by

a0 = 1,

a1 = s1
√

N,

ak+1 = sk+1

√
Nak − ak−1, k � 2, (2.6)

where sk ’s come from any sequence of non-zero integers. Here we will use this lemma to get some
examples.

We start with an algorithm that computes the integers x and y for the cases N = 2 and N = 3.

Theorem 2.2. Let N = 2 or N = 3. For N = 2, let n be a natural number such that −2 is a quadratic residue
mod n and for N = 3, let n be a natural number such that −3 is a quadratic residue mod n and n is a quadratic
residue mod 3. In either case, let u and q (>N) be the integers satisfying the equation Nu2 = −1 + qn. Define
the following functions:

f : (a,b, c,d) → (d,−c,−b,a),

g : (a,b, c,d) → (a − c,2Na + b − Nc, c, c + d). (2.7)

Start with the quadruple (−u,n,−q, u), and apply f if the first coordinate is positive and apply g if not.
Proceed likewise until the quadruple (0,1,−1,0) is obtained. For f write R and for ri times g write T ri . Then

compute the matrix V = T r0 RT r1 R . . . RT rn where only r0 and rn may be zero. If V = ( x y
√

N

z
√

N t

)
, then the

following equations are satisfied:

n = x2 + N y2,

q = Nz2 + t2,

u = xz + yt. (2.8)

If V = ( x
√

N y

z t
√

N

)
, then the following equations are satisfied:

n = Nx2 + y2,

q = z2 + Nt2,

u = xz + yt. (2.9)
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Proof. The proof is based on the fact that the matrix B , defined in (2.3), must be conjugate to R in

G N for N = 2,3. Then B = V R V −1 for some V ∈ G N . If V is a matrix of type (1.1), V = ( x y
√

N

z
√

N t

)
,

a,b, c,d ∈ Z, ad−Nbc = 1, then we obtain B = ( (−xz−yt)
√

N x2+N y2

−(Nz2+t2) (xz+yt)
√

N

)
. Comparing the entries, we have

n = x2 + N y2, q = Nz2 + t2, u = xz + yt . From the discriminant condition, clearly we get (x, y) = 1.
Our method is to find the matrix V such that B = V R V −1 and so V −1 B V = R . To do this we use
the group structure of G N . Every element of G N can be expressed as a word in R and T . So V =
T r0 RT r1 R . . . RT rn where the ri (0 < i < n) are integers and only r0 and rn may be zero. Then we have

R = V −1 B V = (
T −rn R . . . RT −r1 RT −r0

)
B
(
T r0 RT r1 R . . . RT rn

)
= (

T −rn R . . . RT −r1 R
)(

T −r0 BT r0
)(

RT r1 R . . . RT rn
)
.

If f represents the coefficients of the matrix R X R and g represents ones for the matrix T −1 X T for

any matrix X = ( a
√

N b

c d
√

N

) ∈ G N , then the proof follows easily using the fact that conjugate matrices

have equal traces.

As T r = (
1 r

√
N

0 1

)
, T r R = ( −r

√
N 1

−1 0

)
and RT r = ( 0 1

−1 −r
√

N

)
for any integer r, it is easy to compute the

matrix V .
If V is a matrix of type (1.2), the proof follows similarly. �
The following examples illustrate the algorithm defined in Theorem 2.2.

Example 2.1. Let N = 2 and n = 89. Observe that −2 is a quadratic residue mod 89. We can find the
integers 20,9 such that 2(20)2 = −1 + 89.9. We have

(−20,89,−9,20) g
→(−11,27,−9,11) g

→(−2,1,−9,2)

g
→(7,11,−9,−7) f

→
(−7,9,−11,7) g

→(4,3,−11,−4) f
→

(−4,11,−3,4)

g
→(−1,1,−3,1) g

→(2,3,−3,−2) f
→

(−2,3,−3,2) g
→(1,1,−3,−1)

f
→

(−1,3,−1,1) g
→(0,1,−1,0).

Then V = T 3 RT RT 2 RT RT . If we compute the matrix V , we obtain

V =
(

1 3
√

2
0 1

)(
0 1

−1 −√
2

)(
0 1

−1 −2
√

2

)(
0 1

−1 −√
2

)2

=
(

9 2
√

2
2
√

2 1

)
.

By (2.8), we find

89 = (9)2 + 2(2)2, 9 = 2(2)2 + 12, 20 = 9.2 + 2.1.

Example 2.2. Let N = 3 and n = 172. −3 is a quadratic residue mod 172 and 172 is a quadratic residue
mod 3. We can find the integers 33,19 such that 3(33)2 = −1 + 172.19. We have
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(−33,172,−19,33) g
→(−14,31,−19,14) g

→(5,4,−19,−5)

f
→

(−5,19,−4,5) g
→(−1,1,−4,1) g

→(3,7,−4,−3) f
→

(−3,4,−7,3)

g
→(4,7,−7,−4) f

→
(−4,7,−7,4) g

→(3,4,−7,−3) f
→

(−3,7,−4,3)

g
→(1,1,−4,−1) f

→
(−1,4,−1,1) g

→(0,1,−1,0).

Then V = (T 2 R)2(T R)3T . If we compute the matrix V , we obtain

V =
(−2

√
3 1

−1 0

)2 (−√
3 1

−1 0

)3 (
1

√
3

0 1

)

=
(

7
√

3 5
4

√
3

)
.

By (2.9), we find

172 = 3(7)2 + (5)2, 19 = (4)2 + 3(1)2, 33 = 7.4 + 5.1.

Remark 2.1. Since the case N = 4 can be reduced to the two-square theorem and the corresponding
Hecke group H(

√
N ) is a subgroup of the modular group H(λ3) = PSL(2,Z), the similar algorithm

given in [10] can be used to compute the integers x and y in this case. That is, if −4 is a quadratic
residue mod n, then one can find the integers u and q (>4) satisfying the equation u24 = −1 + qn.
The matrix B defined in (2.3), is an element of the modular group and hence it must be conjugate
to R . Then the similar algorithm given in [10] works in this case, too.

If B ∈ H(
√

N ), N � 5, then the method given in Theorem 2.2 is also valid for all N . For all N � 5,
we use this algorithm. Now observe that the matrix

C =
(

u
√

N 1
−qn −u

√
N

)

is in H(
√

N ). Indeed, using the equation −u2N + qn = 1 given in (2.2), it can be easily verified that

−u
√

N

qn
= − 1

u
√

N + 1
u
√

N

.

Therefore we get − u
√

N
qn is a finite

√
N-fraction and so C is an element of H(

√
N ), more explicitly

C = RT u RT −u R . Also C has order 2 as tr C = 0. Since each element of order 2 in H(
√

N) is conjugate
to the generator R , if B ∈ H(

√
N ), then B must be conjugate to C . In this case C = D B D−1 for

some D ∈ H(
√

N). We may assume that D is a matrix of type (1.1), D = ( a b
√

N

c
√

N d

)
; a,b, c,d ∈ Z,

ad − Nbc = 1. We have

D B D−1 =
(∗ (2uab + b2q)N + a2n

∗ ∗
)

=
(

u
√

N 1
−qn −u

√
N

)
.

Comparing the second entries, we obtain that (2uab + b2q)N + a2n = 1 and a2n ≡ 1 mod N . Hence if
B ∈ H(

√
N ), then n must be a quadratic residue mod N . Therefore the conditions −N is a quadratic
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residue mod n and n is a quadratic residue mod N are necessary to get some results about the prob-
lem under consideration by using the group structure of the Hecke group H(

√
N ). Note that these

conditions are not the sufficient conditions. Also it must be B ∈ H(
√

N ), that is, u
q

√
N must be a finite√

N-fraction. For example, for N = 17 and n = 52, observe that 52 is a quadratic residue mod 17 and
−17 is a quadratic residue mod 52. But it is easily checked that 52 cannot be written in the form
52 = x2 + 17y2 where (x, y) = 1.

For all N � 5, we can use the algorithm given in Theorem 2.2. For N = 7, if n is an odd number
and if −7 is a quadratic residue mod n; for other values of N � 5, if −N is a quadratic residue mod n
and n is a quadratic residue mod N , then one can find the integers u and q (>N) satisfying the

equation u2N = −1 + qn. If u
√

N
q is a finite

√
N-fraction, then B ∈ H(

√
N ) and the algorithm defined

in Theorem 2.2 is valid. One can use the nearest integer algorithm to find the expansion of u
√

N
q in

an
√

N-fraction (for more details about this algorithm, see [7]).
Finally we give an example explaining our method.

Example 2.3. Let N = 11 and n = 991. −11 is a quadratic residue mod 991 and 991 is a quadratic
residue mod 11. We can find the integers 100,111 such that 11(100)2 = −1 + 991.111. We find the

expansion of 100
√

11
111 in a finite

√
11-fraction as

100
√

11

111
= √

11 − 1√
11 − 1√

11+ 1√
11− 1√

11

.

Therefore 100
√

11
111 is a finite

√
11-fraction and B = ( −100

√
11 991

−111 100
√

11

) ∈ H(
√

11). Using the algorithm

defined in Theorem 2.2, we have

(−100,991,−111,100) g
→(11,12,−111,−11) f

→
(−11,111,−12,11)

g
→(1,1,−12,−1) f

→
(−1,12,−1,1) g

→(0,1,−1,0).

Then V = (T R)2T . If we compute the matrix V , we obtain

V =
(−√

11 1
−1 0

)2 (
1

√
11

0 1

)

=
(

10 9
√

11√
11 10

)
.

By (2.8), we find

991 = (10)2 + 11(9)2, 111 = 11(1)2 + (10)2, 100 = 10.1 + 9.10.

Remark 2.2. Notice that this algorithm can be used for all N and n without any restriction. Even for
large values of n this method works easily.
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