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In this paper, we present new fixed-circle theorems for self-mappings on an 𝑆-metric space using some Wardowski type
contractions, 𝜓-contractive, and weakly 𝜓-contractive self-mappings. The common property in all of the obtained theorems
for Wardowski type contractions is that the self-mapping fixes both the circle and the disc with the center 𝑥0 and the
radius 𝑟.

1. Introduction

Fixed-point theory has many applications in different fields;
see [1–10]. Recently, using Wardowski’s technique, some new
fixed-point theorems on 𝑆-metric spaces [11] and some new
fixed-circle theorems on metric spaces [12, 13] have been
obtained. Our aim in this paper is to obtain various fixed-
circle results using this technique. In Section 2, we recall
some necessary background on 𝑆-metric spaces and give
new examples. In Section 3, we introduce the notion of an
𝐹𝑆𝑐 -contraction to obtain fixed-circle theorems. By means of
this notion, we define new types of an 𝐹𝑆𝑐 -contraction such
as Hardy-Rogers type 𝐹𝑆𝑐 -contraction and Reich type 𝐹𝑆𝑐 -
contraction and present some fixed-circle results on 𝑆-metric
spaces. Also, we give an illustrative example of a self-mapping
satisfying all of the conditions of the obtained theorems. In
Section 4, we prove the existence along with the conditions
that give us uniqueness of a fixed circle for 𝜓-contractive
and weakly 𝜓-contractive self-mappings on 𝑆-metric spaces.
In Section 5, we give an application of fixed-circle results
obtained byWardowski technique to integral type contractive
self-mappings.

2. Preliminaries

In this section, we recall some necessary notions, relations,
and results about 𝑆-metric spaces.

Definition 1 (see [14]). Let 𝑋 be a nonempty set and S :
𝑋 × 𝑋 × 𝑋 → [0,∞) be a function satisfying the following
conditions for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋 :
(𝑆1) S(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧
(𝑆2) S(𝑥, 𝑦, 𝑧) ≤ S(𝑥, 𝑥, 𝑎) + S(𝑦, 𝑦, 𝑎) +S(𝑧, 𝑧, 𝑎)
Then S is called an 𝑆-metric on 𝑋 and the pair (𝑋,S) is

called an 𝑆-metric space.

Example 2 (see [15]). Let 𝑋 = R (or C) and the function S :
𝑋 × 𝑋 × 𝑋 → [0,∞) be defined as

S (𝑥, 𝑦, 𝑧) = |𝑥 − 𝑧| + 𝑦 − 𝑧 , (1)

for all 𝑥, 𝑦, 𝑧 ∈ R (or C). Then the function S is an 𝑆-metric
on R (or C). This 𝑆-metric is called the usual 𝑆-metric on R

(or C).
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Lemma 3 (see [14]). Let (𝑋,S) be an 𝑆-metric space and
𝑥, 𝑦 ∈ 𝑋. 
en we have

S (𝑥, 𝑥, 𝑦) = S (𝑦, 𝑦, 𝑥) . (2)

The relationships between a metric and an 𝑆-metric were
studied in different papers (see [16–18] for more details). In
[17], a formula of an 𝑆-metric space which is generated by a
metric 𝑑 was investigated as follows.

Let (𝑋, 𝑑) be a metric space. Then the function S𝑑 : 𝑋 ×𝑋 × 𝑋 → [0,∞) defined by

S𝑑 (𝑥, 𝑦, 𝑧) = 𝑑 (𝑥, 𝑧) + 𝑑 (𝑦, 𝑧) , (3)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, is an 𝑆-metric on 𝑋. The 𝑆-metric S𝑑 is
called the 𝑆-metric generated by 𝑑 [18]. We note that there
exists an 𝑆-metric which is not generated by any metric 𝑑 as
seen in the following example.

Example 4. Let 𝑋 be a nonempty set, the function 𝑑 : 𝑋 ×
𝑋 → [0,∞) be any metric on 𝑋, and the function S : 𝑋 ×
𝑋 × 𝑋 → [0,∞) be defined by

S (𝑥, 𝑦, 𝑧) = min {1, 𝑑 (𝑥, 𝑦)} +min {1, 𝑑 (𝑦, 𝑧)}
+min {1, 𝑑 (𝑥, 𝑧)} , (4)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then the function S is an 𝑆-metric and
(𝑋,S) is an 𝑆-metric space. Indeed,

(𝑆1) for 𝑥, 𝑦, 𝑧 ∈ 𝑋, we have
S (𝑥, 𝑦, 𝑧) = 0 ⇐⇒
min {1, 𝑑 (𝑥, 𝑦)} +min {1, 𝑑 (𝑦, 𝑧)} +min {1, 𝑑 (𝑥, 𝑧)}
= 0 ⇐⇒

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑧) = 𝑑 (𝑥, 𝑧) = 0 ⇐⇒
𝑥 = 𝑦 = 𝑧

(5)

(𝑆2) usingTable 1, we can easily see that the condition (𝑆2)
is satisfied.

Also the 𝑆-metric S is not generated by any metric 𝑚.
Conversely, suppose that there exists a metric 𝑚 such that

S (𝑥, 𝑦, 𝑧) = 𝑚 (𝑥, 𝑧) + 𝑚 (𝑦, 𝑧) , (6)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then we get

S (𝑥, 𝑥, 𝑧) = 2𝑚 (𝑥, 𝑧)
and so 𝑚(𝑥, 𝑧) = min {1, 𝑑 (𝑥, 𝑧)} (7)

and

S (𝑦, 𝑦, 𝑧) = 2𝑚 (𝑦, 𝑧) and so

𝑚(𝑦, 𝑧) = min {1, 𝑑 (𝑦, 𝑧)} . (8)

Therefore, we obtain

min {1, 𝑑 (𝑥, 𝑦)} +min {1, 𝑑 (𝑦, 𝑧)} +min {1, 𝑑 (𝑥, 𝑧)}
= min {1, 𝑑 (𝑥, 𝑧)} +min {1, 𝑑 (𝑦, 𝑧)} , (9)

which is a contradiction. Consequently, S is not generated by
any metric 𝑚.

In [19] and [14], a circle and a disc are defined on an 𝑆-
metric space as follows, respectively:

𝐶𝑆𝑥0 ,𝑟 = {𝑥 ∈ 𝑋 : S (𝑥, 𝑥, 𝑥0) = 𝑟} (10)

and

𝐷𝑆x0,𝑟 = {𝑥 ∈ 𝑋 : S (𝑥, 𝑥, 𝑥0) ≤ 𝑟} . (11)

We give an example.

Example 5. Let 𝑋 be a nonempty set, the function 𝑑 : 𝑋 ×
𝑋 → [0,∞) be any metric on 𝑋, and the 𝑆-metric space
be defined as Example 4. Let us consider the circle 𝐶𝑆𝑥0 ,𝑟
according to the 𝑆-metric:
𝐶𝑆𝑥0 ,𝑟
= {𝑥 ∈ 𝑋 : S (𝑥, 𝑥, 𝑥0) = 2min {1, 𝑑 (𝑥, 𝑥0)} = 𝑟} .

(12)

Then we have the following cases:
Case 1. If 𝑟 = 2 then 𝐶𝑆𝑥0,𝑟 = {𝑥 ∈ 𝑋 : 𝑑(𝑥, 𝑥0) ≥ 1}.
Case 2. If 𝑟 > 2 then 𝐶𝑆𝑥0,𝑟 = 0.
Case 3. If 𝑟 < 2 then 𝐶𝑆𝑥0 ,𝑟 = 𝐶𝑥0 ,𝑟/2, where 𝐶𝑥0 ,𝑟/2 = {𝑥 ∈ 𝑋 :𝑑(𝑥, 𝑥0) = 𝑟/2}.
Definition 6 (see [19]). Let (𝑋,S) be an 𝑆-metric space, 𝐶𝑆𝑥0 ,𝑟
be a circle, and 𝑇 : 𝑋 → 𝑋 be a self-mapping. If 𝑇𝑥 = 𝑥 for
every 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟 then the circle𝐶𝑆𝑥0 ,𝑟 is called the fixed circle of
𝑇.

3. 𝐹𝑆𝑐 -Contraction and Hardy-Rogers Type
𝐹𝑆𝑐 -Contraction on 𝑆-Metric Spaces

At first, we recall the definition of the following family of
functions which was introduced by Wardowski in [20].

Definition 7 (see [20]). Let F be the family of all functions
𝐹 : (0,∞) → R such that
(𝐹1) 𝐹 is strictly increasing
(𝐹2) for each sequence {𝛼𝑛} in (0,∞) the following holds:

lim𝛼𝑛 = 0 if and only if lim𝐹(𝛼𝑛) = −∞
(𝐹3) there exists 𝑘 ∈ (0, 1) such that lim𝛼→0+𝛼𝑘𝐹(𝛼) = 0.
The following is an example of some functions that

satisfies conditions (𝐹1), (𝐹2), and (𝐹3) of Definition 7.

Example 8 (see [20]). (1) 𝐹 : (0,∞) → R defined by 𝐹(𝑥) =
ln(𝑥).
(2) 𝐹 : (0,∞) → R defined by 𝐹(𝑥) = ln(𝑥) + 𝑥.
(3) 𝐹 : (0,∞) → R defined by 𝐹(𝑥) = −1/√𝑥.
(4) 𝐹 : (0,∞) → R defined by 𝐹(𝑥) = ln(𝑥2 + 𝑥).
Note that these four functions satisfy conditions (𝐹1),(𝐹2), and (𝐹3) of Definition 7.
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Table 1

1 1 1 ≤ 2 2 2
1 1 1 ≤ 2 2 2𝑑(𝑧, 𝑎)
1 1 1 ≤ 1 1 𝑑(𝑦, 𝑧) ≤ 2 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
1 1 1 ≤ 𝑑(𝑥, 𝑦) 𝑑(𝑦, 𝑧) 𝑑(𝑥, 𝑧) ≤ 2𝑑(𝑥, 𝑎) 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
1 1 𝑑(𝑦, 𝑧) ≤ 1 1 1 ≤ 2 2 2
1 1 𝑑(𝑦, 𝑧) ≤ 1 1 1 ≤ 2 2 2𝑑(𝑧, 𝑎)
1 1 𝑑(𝑦, 𝑧) ≤ 2 𝑑(𝑦, 𝑎) 𝑑(𝑧, 𝑎) ≤ 2 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
1 1 𝑑(𝑦, 𝑧) ≤ 1 𝑑(𝑥, 𝑧) 1 ≤ 2 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
1 1 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑦) 1 1 ≤ 2 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
1 1 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑦) 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 2𝑑(𝑥, 𝑎) 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
1 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 1 1 1 ≤ 2 2 2
1 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 1 1 1 ≤ 2 2 2𝑑(𝑧, 𝑎)
1 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 1 1 𝑑(𝑦, 𝑧) ≤ 2 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
1 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑦) 1 1 ≤ 2𝑑(𝑥, 𝑎) 2𝑑(𝑦, 𝑎) 2
1 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑦) 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 2𝑑(𝑥, 𝑎) 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
𝑑(𝑥, 𝑦) 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 1 1 1 ≤ 2 2 2
𝑑(𝑥, 𝑦) 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 1 1 1 ≤ 2 2 2𝑑(𝑧, 𝑎)
𝑑(𝑥, 𝑦) 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 1 1 𝑑(𝑦, 𝑧) ≤ 2 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
𝑑(𝑥, 𝑦) 𝑑(𝑥, 𝑧) 𝑑(𝑦, 𝑧) ≤ 2𝑑(𝑥, 𝑎) 2𝑑(𝑦, 𝑎) 2𝑑(𝑧, 𝑎)
Other possibilities can be proved like this table.

Now we introduce the following new contraction type
using this family of functions.

Definition 9. Let (𝑋,S) be an 𝑆-metric space. A self-mapping
𝑇 on 𝑋 is said to be an 𝐹𝑆𝑐 -contraction if there exist 𝐹 ∈ F ,
𝑡 > 0, and 𝑥0 ∈ 𝑋 such that for all 𝑥 ∈ 𝑋 the following holds:

S (𝑇𝑥, 𝑇𝑥, 𝑥) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (S (𝑥, 𝑥, 𝑥0)) .

(13)

Now, we present the following proposition.

Proposition 10. Let (𝑋,S) be an 𝑆-metric space. If a self-
mapping 𝑇 on 𝑋 is an 𝐹𝑆𝑐 -contraction with 𝑥0 ∈ 𝑋, then we
have 𝑇𝑥0 = 𝑥0.
Proof. Assume that 𝑇𝑥0 ̸= 𝑥0. From the definition of an 𝐹𝑆𝑐 -
contraction, we get

S (𝑇𝑥0, 𝑇𝑥0, 𝑥0) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥0, 𝑇𝑥0, 𝑥0)) ≤ 𝐹 (S (𝑥0, 𝑥0, 𝑥0)) .

(14)

Inequality (14) contradicts with the definition of 𝐹 since 𝐹 :
(0,∞) → R and S(𝑥0, 𝑥0, 𝑥0) = 0. Therefore, it should be
𝑇𝑥0 = 𝑥0.

Using this new type contraction, we give the following
fixed-circle theorem.

Theorem 11. Let (𝑋,S) be an 𝑆-metric space, 𝑇 be an
𝐹𝑆𝑐 -contractive self-mapping with 𝑥0 ∈ 𝑋, and 𝑟 =

min{S(𝑇𝑥, 𝑇𝑥, 𝑥) : 𝑇𝑥 ̸= 𝑥}. 
en 𝐶𝑆𝑥0 ,𝑟 is a fixed circle of
𝑇. 𝑇 especially fixes every circle 𝐶𝑆𝑥0,𝜌 where 𝜌 < 𝑟.
Proof. Let 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟. If 𝑇𝑥 ̸= 𝑥, by the definition of 𝑟 we have
S(𝑇𝑥, 𝑇𝑥, 𝑥) ≥ 𝑟. Hence, using the 𝐹𝑆𝑐 -contractive property
and the fact that 𝐹 is increasing, we obtain

𝐹 (𝑟) ≤ 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (S (𝑥, 𝑥, 𝑥0)) − 𝑡
< 𝐹 (S (𝑥, 𝑥, 𝑥0)) = 𝐹 (𝑟) ,

(15)

which also lead to a contradiction. Therefore,S(𝑇𝑥, 𝑇𝑥, 𝑥) =
0 and that is 𝑇𝑥 = 𝑥. Consequently, 𝐶𝑆𝑥0,𝑟 is a fixed circle of 𝑇.

Now we show that 𝑇 also fixes any circle𝐶𝑆𝑥0 ,𝜌 with 𝜌 < 𝑟.
Let 𝑥 ∈ 𝐶𝑆𝑥0 ,𝜌 and assume that S(𝑇𝑥, 𝑇𝑥, 𝑥) > 0. By the 𝐹𝑆𝑐 -
contractive property, we have

𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (S (𝑥, 𝑥, 𝑥0)) − 𝑡 < 𝐹 (𝜌) . (16)

Since 𝐹 is increasing, then we find

S (𝑇𝑥, 𝑇𝑥, 𝑥) < 𝜌 < 𝑟. (17)

But 𝑟 = min{S(𝑇𝑥, 𝑇𝑥, 𝑥) : for all 𝑇𝑥 ̸= 𝑥}, which leads
us to a contradiction. Thus, S(𝑇𝑥, 𝑇𝑥, 𝑥) = 0 and 𝑇𝑥 = 𝑥.
Hence, 𝐶𝑆𝑥0 ,𝜌 is a fixed circle of 𝑇.
Remark 12. Notice that, in Theorem 11, the 𝐹𝑆𝑐 -contractive
self-mapping𝑇fixes the disc with the center 𝑥0 and the radius𝑟. Therefore, the center of any fixed circle is also fixed by 𝑇.

In the following example, we see that the converse
statement of Theorem 11 is not always true.
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Example 13. Let (𝑋,S) be an 𝑆-metric space, 𝑥0 ∈ 𝑋 be any
point, and the self-mapping 𝑇 : 𝑋 → 𝑋 be defined as

𝑇𝑥 = {{
{
𝑥 if S (𝑥, 𝑥, 𝑥0) ≤ 𝑟
𝑥0 if S (𝑥, 𝑥, 𝑥0) > 𝑟,

(18)

for all 𝑥 ∈ 𝑋with 𝑟 > 0.Then it can be easily seen that 𝑇 is not
an 𝐹𝑆𝑐 -contractive self-mapping. Indeed, ifS(𝑥, 𝑥, 𝑥0) > 𝑟 for
𝑥 ∈ 𝑋, then, using Lemma 3 and the 𝐹𝑆𝑐 -contractive property,
we get

S (𝑇𝑥, 𝑇𝑥, 𝑥) = S (𝑥0, 𝑥0, 𝑥) > 0 ⇒
𝑡 + 𝐹 (S (𝑥0, 𝑥0, 𝑥)) ≤ 𝐹 (S (𝑥, 𝑥, 𝑥0)) ⇒

𝑡 ≤ 0,
(19)

which is a contradiction since 𝑡 > 0. Hence 𝑇 is not an 𝐹𝑆𝑐 -
contractive self-mapping. But 𝑇 fixes every circle 𝐶S

𝑥0 ,𝜌
where

𝜌 ≤ 𝑟.
Related to the number of the elements of the set 𝑋, the

number of the fixed circles of an 𝐹𝑆𝑐 -contractive self-mapping
𝑇 can be infinite as seen in the following example.

Example 14. Let 𝑋 = {𝑥 ∈ Q : 0 ≤ 𝑥 ≤ 2}, the metric 𝑑 :
𝑋 × 𝑋 → [0,∞) be defined as

𝑑 (𝑥, 𝑦) =

𝑥

1 + |𝑥| −
𝑦

1 + 𝑦
 , (20)

for all 𝑥, 𝑦 ∈ 𝑋, and the 𝑆-metric be defined as in Example 4.
Let us define the self-mapping 𝑇 : 𝑋 → 𝑋 as

𝑇𝑥 = {{
{

1
8 if 𝑥 = 0
𝑥 otherwise,

(21)

for all 𝑥 ∈ 𝑋. Then the self-mapping 𝑇 is an 𝐹𝑆𝑐 -contractive
self-mappingwith𝐹 = ln𝑥+𝑥, 𝑡 = ln 3, and 𝑥0 = 1/2. Indeed,
we get

S (𝑇𝑥, 𝑇𝑥, 𝑥) = 29 > 0 ⇒

S (𝑇𝑥, 𝑇𝑥, 𝑥) = 29 < S (𝑥, 𝑥, 𝑥0) = 23 ⇒

ln(29) < ln(23) ⇒

ln (29) +
2
9 < ln(23) +

2
3 ⇒

ln 3 + ln (29) +
2
9 ≤ ln(23) +

2
3 ⇒

𝑡 + 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (S (𝑥, 𝑥, 𝑥0)) .
(22)

Using Theorem 11, we have

𝑟 = min {S (𝑇𝑥, 𝑇𝑥, 𝑥) : 𝑇𝑥 ̸= 𝑥} = 29 . (23)

Therefore, 𝑇 fixes the circle 𝐶𝑆1/2,2/9 = {2/7, 4/5} and the disc
𝐷𝑆1/2,2/9 = {𝑥 ∈ 𝑋 : S(𝑥, 𝑥, 1/2) ≤ 2/9}. Evidently, the
number of the fixed circles of 𝑇 is infinite.

In the following definition, we introduce the notion of a
Hardy-Rogers type 𝐹𝑆𝑐 -contraction.
Definition 15. Let (𝑋,S) be an 𝑆-metric space and 𝑇 be a self-
mapping on 𝑋. If there exist 𝐹 ∈ F , 𝑡 > 0, and 𝑥0 ∈ 𝑋 such
that for all 𝑥 ∈ 𝑋 the following holds:

S (𝑇𝑥, 𝑇𝑥, 𝑥) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (𝛼S (𝑥, 𝑥, 𝑥0)
+ 𝛽S (𝑇𝑥, 𝑇𝑥, 𝑥) + 𝛾S (𝑇𝑥0, 𝑇𝑥0, 𝑥0)
+ 𝛿S (𝑇𝑥0, 𝑇𝑥0, 𝑥) + 𝜂S (𝑇𝑥, 𝑇𝑥, 𝑥0)) ,

(24)

where

𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜂 = 1,
𝛼, 𝛽, 𝛾, 𝛿, 𝜂 ≥ 0

and 𝛼 ̸= 0,
(25)

then the self-mapping 𝑇 is called a Hardy-Rogers type 𝐹𝑆𝑐 -
contraction on 𝑋.
Proposition 16. Let (𝑋,S) be an 𝑆-metric space. If a self-
mapping 𝑇 on 𝑋 is a Hardy-Rogers type 𝐹𝑆𝑐 -contraction with
𝑥0 ∈ 𝑋 then we have 𝑇𝑥0 = 𝑥0.
Proof. Suppose that 𝑇𝑥0 ̸= 𝑥0. Using the hypothesis, we
obtain

S (𝑇𝑥0, 𝑇𝑥0, 𝑥0) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥0, 𝑇𝑥0, 𝑥0))

≤ 𝐹 (𝛼S (𝑥0, 𝑥0, 𝑥0) + 𝛽S (𝑇𝑥0, 𝑇𝑥0, 𝑥0) + 𝛾S (𝑇𝑥0, 𝑇𝑥0, 𝑥0) + 𝛿S (𝑇𝑥0, 𝑇𝑥0, 𝑥0) + 𝜂S (𝑇𝑥0, 𝑇𝑥0, 𝑥0))
= 𝐹 ((𝛽 + 𝛾 + 𝛿 + 𝜂)S (𝑇𝑥0, 𝑇𝑥0, 𝑥0)) < 𝐹 (S (𝑇𝑥0, 𝑇𝑥0, 𝑥0)) ,

(26)
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which is a contradiction since 𝑡 > 0. Therefore, we get
𝑇𝑥0 = 𝑥0.
Remark 17. Using Proposition 16, a Hardy-Rogers type 𝐹𝑆𝑐 -
contraction condition can be changed as follows:

S (𝑇𝑥, 𝑇𝑥, 𝑥) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (𝛼S (𝑥, 𝑥, 𝑥0)
+ 𝛽S (𝑇𝑥, 𝑇𝑥, 𝑥) + 𝛿S (𝑇𝑥0, 𝑇𝑥0, 𝑥)
+ 𝜂S (𝑇𝑥, 𝑇𝑥, 𝑥0)) ,

(27)

where

𝛼 + 𝛽 + 𝛿 + 𝜂 ≤ 1,

𝛼, 𝛽, 𝛿, 𝜂 ≥ 0
and 𝛼 ̸= 0.

(28)

Now using the Hardy-Rogers type 𝐹𝑆𝑐 -contraction condi-
tion, we prove the following fixed-circle theorem.

Theorem 18. Let (𝑋,S) be an 𝑆-metric space, 𝑇 be a Hardy-
Rogers type 𝐹𝑆𝑐 -contractive self-mapping with 𝑥0 ∈ 𝑋, and 𝑟 be
defined as in 
eorem 11. If S(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟, then 𝐶𝑆𝑥0,𝑟 is a
fixed circle of𝑇.𝑇 especially fixes every circle𝐶𝑆𝑥0 ,𝜌 where 𝜌 < 𝑟.
Proof. Let 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟 and 𝑇𝑥 ̸= 𝑥. Using the Hardy-Rogers
type 𝐹𝑆𝑐 -contraction property, Proposition 16, Lemma 3, and
the fact that 𝐹 is increasing, we get

𝐹 (𝑟) ≤ 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (𝛼S (𝑥, 𝑥, 𝑥0) + 𝛽S (𝑇𝑥, 𝑇𝑥, 𝑥) + 𝛿S (𝑇𝑥0, 𝑇𝑥0, 𝑥) + 𝜂S (𝑇𝑥, 𝑇𝑥, 𝑥0)) − 𝑡
< 𝐹 (𝛼S (𝑥, 𝑥, 𝑥0) + 𝛽S (𝑇𝑥, 𝑇𝑥, 𝑥) + 𝛿S (𝑇𝑥0, 𝑇𝑥0, 𝑥) + 𝜂S (𝑇𝑥, 𝑇𝑥, 𝑥0)) = 𝐹 ((𝛼 + 𝛿 + 𝜂) 𝑟 + 𝛽S (𝑇𝑥, 𝑇𝑥, 𝑥))
≤ 𝐹 ((𝛼 + 𝛽 + 𝛿 + 𝜂)S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ,

(29)

which is a contradiction. Hence S(𝑇𝑥, 𝑇𝑥, 𝑥) = 0 and so
𝑇𝑥 = 𝑥. Consequently, 𝐶𝑆𝑥0 ,𝑟 is a fixed circle of 𝑇. By the
similar arguments used in the proof of Theorem 11, 𝑇 also
fixes any circle 𝐶𝑆𝑥0 ,𝜌 where 𝜌 < 𝑟.
Corollary 19. (1) Let (𝑋,S) be an 𝑆-metric space, 𝑇 be a
Hardy-Rogers type 𝐹𝑆𝑐 -contractive self-mapping with 𝑥0 ∈ 𝑋,
and 𝑟 be defined as in 
eorem 11. If S(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟 for all𝑥 ∈ 𝐶𝑆𝑥0,𝑟 then 𝑇 fixes the disc 𝐷𝑆𝑥0,𝑟.

(2) If we consider 𝛼 = 1 and 𝛽 = 𝛾 = 𝛿 = 𝜂 = 0 in
Definition 15, then we obtain the concept of an 𝐹𝑆𝑐 -contractive
mapping.

In Definition 15, if we get 𝛿 = 𝜂 = 0 then we have the
following definition.

Definition 20. Let (𝑋,S) be an 𝑆-metric space and𝑇 be a self-
mapping on 𝑋. If there exist 𝐹 ∈ F , 𝑡 > 0, and 𝑥0 ∈ 𝑋 such
that for all 𝑥 ∈ 𝑋 the following holds:

S (𝑇𝑥, 𝑇𝑥, 𝑥) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 (𝛼S (𝑥, 𝑥, 𝑥0)
+ 𝛽S (𝑇𝑥, 𝑇𝑥, 𝑥) + 𝛾S (𝑇𝑥0, 𝑇𝑥0, 𝑥0)) ,

(30)

where

𝛼 + 𝛽 + 𝛾 < 1
and 𝛼, 𝛽, 𝛾 ≥ 0, (31)

then the self-mapping 𝑇 is called a Reich type 𝐹𝑆𝑐 -contraction
on𝑋.

Proposition 21. Let (𝑋,S) be an 𝑆-metric space. If a self-
mapping 𝑇 on 𝑋 is a Reich type 𝐹𝑆𝑐 -contraction with 𝑥0 ∈ 𝑋
then we get 𝑇𝑥0 = 𝑥0.
Proof. The proof follows easily since 𝛽 + 𝛾 < 1.
Remark 22. Using Proposition 21, a Reich type 𝐹𝑆𝑐 -
contraction condition can be changed as follows:

S (𝑇𝑥, 𝑇𝑥, 𝑥) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥))
≤ 𝐹 (𝛼S (𝑥, 𝑥, 𝑥0) + 𝛽S (𝑇𝑥, 𝑇𝑥, 𝑥)) ,

(32)

where

𝛼 + 𝛽 < 1
and 𝛼, 𝛽 ≥ 0. (33)

Theorem 23. Let (𝑋,S) be an 𝑆-metric space, 𝑇 be a Reich
type𝐹𝑆𝑐 -contractive self-mapping with 𝑥0 ∈ 𝑋, and 𝑟 be defined
as in 
eorem 11. 
en 𝐶𝑆𝑥0 ,𝑟 is a fixed circle of 𝑇. Also, 𝑇 fixes
every circle 𝐶𝑆𝑥0,𝜌 where 𝜌 < 𝑟. In other words, 𝑇 fixes the disc
𝐷𝑆𝑥0,𝑟.
Proof. The proof follows easily since

𝐹 (𝑟) ≤ 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) ≤ 𝐹 ((𝛼 + 𝛽)S (𝑇𝑥, 𝑇𝑥, 𝑥))
< 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) . (34)
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In Definition 15, if we get 𝛼 = 𝛽 = 𝛾 = 0 and 𝛿 = 𝜂, then
we have the following definition.

Definition 24. Let (𝑋,S) be an 𝑆-metric space and𝑇 be a self-
mapping on 𝑋. If there exist 𝐹 ∈ F , 𝑡 > 0, and 𝑥0 ∈ 𝑋 such
that for all 𝑥 ∈ 𝑋 the following holds:

S (𝑇𝑥, 𝑇𝑥, 𝑥) > 0 ⇒
𝑡 + 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥))
≤ 𝐹 (𝜂 (S (𝑇𝑥0, 𝑇𝑥0, 𝑥) +S (𝑇𝑥, 𝑇𝑥, 𝑥0))) ,

(35)

where

𝜂 ∈ (0, 12) , (36)

then the self-mapping 𝑇 is called a Chatterjea type 𝐹𝑆𝑐 -
contraction on 𝑋.
Proposition 25. Let (𝑋,S) be an 𝑆-metric space. If a self-
mapping 𝑇 on𝑋 is a Chatterjea type 𝐹𝑆𝑐 -contraction with 𝑥0 ∈𝑋 then we get 𝑇𝑥0 = 𝑥0.
Proof. The proof follows easily.

Theorem 26. Let (𝑋,S) be an 𝑆-metric space, 𝑇 be a Chat-
terjea type 𝐹𝑆𝑐 -contractive self-mapping with 𝑥0 ∈ 𝑋, and 𝑟 be
defined as in 
eorem 11. If S(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟 for all 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟
then 𝐶𝑆𝑥0 ,𝑟 is a fixed circle of 𝑇. Also, 𝑇 fixes every circle 𝐶𝑆𝑥0 ,𝜌
where 𝜌 < 𝑟. In other words, 𝑇 fixes the disc 𝐷𝑆𝑥0,𝑟.
Proof. Theproof follows easily by the similar arguments used
in the proofs of Theorems 11 and 18.

Now we give the following illustrative example.

Example 27. Let C be the set of all complex numbers.
Consider the set

𝑋𝑧 = {0, 4, 𝑧, 𝑧2, 𝑧4, 𝑧8, 𝑧8 − 2, 𝑧8 + 2, 𝑧16, 𝑧16 − 2, 𝑧16

+ 2} ⊂ C,
(37)

where 𝑧 is any complex number with |𝑧| = 2 and the 𝑆−metric
is defined as in [18] such that

S (𝑥, 𝑦, 𝑡) = |𝑥 − 𝑡| + 𝑥 + 𝑡 − 2𝑦 , (38)

for all 𝑥, 𝑦, 𝑡 ∈ 𝑋𝑧. Let us define the self-mapping 𝑇 : 𝑋𝑧 →𝑋𝑧 as

𝑇𝑥 = {{
{
𝑧 if 𝑥 = 0
𝑥 otherwise, (39)

for all 𝑥 ∈ 𝑋𝑧. Then the self-mapping 𝑇 is an 𝐹𝑆𝑐 -contractive
self-mappingwith𝐹 = −1/√𝑥, 𝑡 = 1/28 and 𝑥0 = 𝑧16. Indeed,
we obtain

S (𝑇𝑥, 𝑇𝑥, 𝑥) = 4 > 0, (40)

for 𝑥 = 0, and
S (𝑥, 𝑥, 𝑥0) = 217. (41)

Then we have

𝑡 +S (𝑇𝑥, 𝑇𝑥, 𝑥) = 1
28 −

1
2 ≤ −

1
28√2. (42)

Also we obtain

𝑟 = min {S (𝑇𝑥, 𝑇𝑥, 𝑥) : 𝑇𝑥 ̸= 𝑥} = 4. (43)

Therefore, the self-mapping 𝑇 fixes the circle 𝐶𝑆𝑧16 ,4 = {𝑧16 −
2, 𝑧16 + 2} and the disc𝐷𝑆𝑧16,4 = {𝑧16 − 2, 𝑧16, 𝑧16 + 2}.

Also the self-mapping 𝑇 is a Hardy-Rogers type 𝐹𝑆𝑐 -
contractive self-mapping (resp., a Reich type 𝐹𝑆𝑐 -contractive
self-mapping and a Chatterjea type 𝐹𝑆𝑐 -contractive self-
mapping) on 𝑋𝑧 with 𝛼 = 1, 𝛽 = 𝛿 = 𝜂 = 0 (resp.,
𝛼 = (216 − 214 + 28)/217(214 − 28 + 1), 𝛽 = 1/4 and 𝜂 =
5/(217 + 4(1 − 215))).

4. 𝜓-Contractive and Weakly 𝜓-Contractive
Self-Mappings on 𝑆-Metric Spaces

First, in this section we present this well-known interesting
class of functions.

Definition 28. Denote by Ψ the family of nondecreasing
functions

𝜓 : [0, +∞) → [0, +∞)

such that
+∞

∑
𝑛=1

𝜓𝑛 (𝑡) < +∞ for each 𝑡 > 0, (44)

where 𝜓𝑛 is the 𝑛-th iterate of 𝜓.
Lemma 29. For every function 𝜓 : [0, +∞) → [0, +∞) the
following holds: if 𝜓 is nondecreasing, then, for each 𝑡 > 0,
lim𝑛→+∞𝜓𝑛(𝑡) = 0 implies that 𝜓(𝑡) < 𝑡.

Now, we define the 𝜓-contractive self-mapping in an 𝑆-
metric space.

Definition 30. Let 𝑇 be a self-mapping on an 𝑆-metric space
(𝑋,S).We say that 𝑇 is 𝜓-contractive self-mapping if there
exist 𝑥0 ∈ 𝑋 and 𝜓 ∈ Ψ such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 we have

S (𝑇𝑦, 𝑇𝑧, 𝑥)
≤ 𝜓 (S (𝑥, 𝑥, 𝑥0))
−min {𝜓 (S (𝑇𝑦, 𝑇𝑦, 𝑥0)) , 𝜓 (S (𝑇𝑧, 𝑇𝑧, 𝑥0))} .

(45)

Theorem 31. Let 𝑇 be a 𝜓-contractive self-mapping with 𝑥0 ∈𝑋 on an 𝑆-metric space (𝑋,S), and consider the circle 𝐶𝑆𝑥0 ,𝑟.

us, for every 𝑥 ∈ 𝐶𝑆𝑥0,𝑟, 𝑇 either fixes 𝑥 or maps 𝑥 to the
interior of 𝐶𝑆𝑥0,𝑟. Moreover, if for every 𝑥 ∈ 𝐶𝑆𝑥0,𝑟 we have
S(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟, then 𝐶𝑆𝑥0,𝑟 is a unique fixed circle of 𝑇 in𝑋.
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Proof. If 𝑥 ∈ 𝐶𝑆𝑥0,𝑟, then since 𝑇 is 𝜓-contractive we have
S (𝑇𝑥, 𝑇𝑥, 𝑥) ≤ 𝜓 (S (𝑥, 𝑥, 𝑥0)) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0))

= 𝜓 (𝑟) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0)) .
(46)

If S(𝑇𝑥, 𝑇𝑥, 𝑥0) < 𝑟, then we are in the case where 𝑇maps 𝑥
to the interior of𝐶𝑆𝑥0 ,𝑟. IfS(𝑇𝑥, 𝑇𝑥, 𝑥0) ≥ 𝑟, then by using the
fact that 𝜓 is a nondecreasing function we have

S (𝑇𝑥, 𝑇𝑥, 𝑥) ≤ 𝜓 (𝑟) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0)) . (47)

Now, if S(𝑇𝑥, 𝑇𝑥, 𝑥0) > 𝑟, then the above inequality implies
that S(𝑇𝑥, 𝑇𝑥, 𝑥) < 0 which leads to a contradiction. Hence,
in this case we must have S(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟.Thus,

S (𝑇𝑥, 𝑇𝑥, 𝑥) ≤ 𝜓 (𝑟) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0))
= 𝜓 (𝑟) − 𝜓 (𝑟) = 0, (48)

and that is 𝑇𝑥 = 𝑥.
Therefore,𝑇 either fixes𝑥 ormaps𝑥 to the interior of𝐶𝑆𝑥0 ,𝑟

as required.
To prove the second part of our theorem, we may assume

thatS(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟, for all 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟.Now, we only need to
show that if there exists 𝑥 ∈ 𝑋 where 𝑇𝑥 = 𝑥, then 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟,
and that will prove the uniqueness. So, first let 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟, and
that is 𝑇𝑥 = 𝑥, and also let 𝑦 ∈ 𝑋 be an arbitrary fixed point
of 𝑇 (i.e., 𝑇𝑦 = 𝑦) we have two cases.
Case 1. If S(𝑦, 𝑦, 𝑥0) ≥ 𝑟 then by using the fact that 𝜓 is a
nondecreasing function we have

S (𝑦, 𝑦, 𝑥) = S (𝑇𝑦, 𝑇𝑦, 𝑥)
≤ 𝜓 (𝑟) − 𝜓 (S (𝑇𝑦, 𝑇𝑦, 𝑥0)) .

(49)

Now, if S(𝑇𝑦, 𝑇𝑦, 𝑥0) > 𝑟 then the above inequality implies
that S(𝑦, 𝑦, 𝑥) < 0 which leads to a contradiction. Hence, in
this case we must have S(𝑦, 𝑦, 𝑥0) = 𝑟.

S (𝑦, 𝑦, 𝑥) = S (𝑇𝑦, 𝑇𝑦, 𝑥)
≤ 𝜓 (S (𝑥, 𝑥, 𝑥0)) − 𝜓 (S (𝑇𝑦, 𝑇𝑦, 𝑥0))
= 𝜓 (𝑟) − 𝜓 (𝑟) = 0,

(50)

and that is 𝑥 = 𝑦.
Case 2. If S(𝑦, 𝑦, 𝑥0) < 𝑟 then once again by using the fact
that 𝜓 is a nondecreasing function we have

S (𝑥, 𝑥, 𝑦) ≤ 𝜓 (S (𝑦, 𝑦, 𝑥0)) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0))
= 𝜓 (S (𝑦, 𝑦, 𝑥0)) − 𝜓 (S (𝑥, 𝑥, 𝑥0))
= 𝜓 (S (𝑦, 𝑦, 𝑥0)) − 𝜓 (𝑟) < 𝜓 (𝑟) − 𝜓 (𝑟)
= 0,

(51)

which leads us to a contradiction.
Therefore, 𝐶𝑆𝑥0 ,𝑟 is the unique fixed circle of 𝑇 in 𝑋 as

desired.

Next, we give the definition of aweakly𝜓-contractive self-
mapping.

Definition 32. Let 𝑇 be a self-mapping on an 𝑆-metric space
(𝑋,S).We say that 𝑇 is a weakly 𝜓-contractive self-mapping
with 𝑥0 ∈ 𝑋 if there exist 𝑥0 ∈ 𝑋 and 𝜓 ∈ Ψ such that for all
𝑥, 𝑦, 𝑧 ∈ 𝑋 we have

S (𝑇𝑦, 𝑇2𝑧, 𝑥)
≤ 𝜓 (S (𝑥, 𝑥, 𝑥0))
−min {𝜓 (S (𝑇𝑦, 𝑇𝑦, 𝑥0)) , 𝜓 (S (𝑇𝑧, 𝑇𝑧, 𝑥0))} .

(52)

Theorem 33. Let 𝑇 be a weakly 𝜓-contractive self-mapping
with 𝑥0 ∈ 𝑋 on an 𝑆-metric space (𝑋,S) and consider the
circle𝐶𝑆𝑥0 ,𝑟.
us, for every 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟 𝑇 either fixes 𝑥 or maps 𝑥
to the interior of𝐶𝑆𝑥0 ,𝑟.Moreover, if for every 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟, we have
S(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟, then 𝐶𝑆𝑥0,𝑟 is a unique fixed circle of 𝑇 in𝑋.
Proof. If 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟, then since 𝑇 is weakly 𝜓-contractive we
have

S (𝑇𝑥, 𝑇2𝑥, 𝑥) ≤ 𝜓 (S (𝑥, 𝑥, 𝑥0))
− 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0))

= 𝜓 (𝑟) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0)) .
(53)

If S(𝑇𝑥, 𝑇𝑥, 𝑥0) < 𝑟, then we are in the case where 𝑇maps 𝑥
to the interior of 𝐶𝑆𝑥0,𝑟. IfS(𝑇𝑥, 𝑇𝑥, 𝑥0) ≥ 𝑟, then by using the
fact that 𝜓 is a nondecreasing function we have

S (𝑇𝑥, 𝑇2𝑥, 𝑥) ≤ 𝜓 (𝑟) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0)) . (54)

Now, if S(𝑇𝑥, 𝑇𝑥, 𝑥0) > 𝑟, then the above inequality implies
thatS(𝑇𝑥, 𝑇2𝑥, 𝑥) < 0which leads to a contradiction. Hence,
in this case we must have S(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟.Thus,

S (𝑇𝑥, 𝑇2𝑥, 𝑥) ≤ 𝜓 (𝑟) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0))
= 𝜓 (𝑟) − 𝜓 (𝑟) = 0,

(55)

and that is 𝑇𝑥 = 𝑥.
Therefore,𝑇 either fixes𝑥 ormaps𝑥 to the interior of𝐶𝑆𝑥0 ,𝑟

as required.
To prove the second part of our theorem, we may assume

thatS(𝑇𝑥, 𝑇𝑥, 𝑥0) = 𝑟, for all 𝑥 ∈ 𝐶𝑆𝑥0,𝑟. Now, we only need to
show that if there exists 𝑥 ∈ 𝑋, where 𝑇𝑥 = 𝑥, then 𝑥 ∈ 𝐶𝑆𝑥0 ,𝑟,
and that will prove the uniqueness. So, first let 𝑥 ∈ 𝐶𝑆𝑥0,𝑟, and
that is 𝑇𝑥 = 𝑥, and also let 𝑦 ∈ 𝑋 be an arbitrary fixed point
(i.e., 𝑇𝑦 = 𝑦) we have two cases.
Case 1. If S(𝑦, 𝑦, 𝑥0) ≥ 𝑟 then by using the fact that 𝜓 is a
nondecreasing function we have

S (𝑦, 𝑦, 𝑥) = S (𝑇𝑦, 𝑇2𝑦, 𝑥)
≤ 𝜓 (𝑟) − 𝜓 (S (𝑇𝑦, 𝑇𝑦, 𝑥0)) .

(56)
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Now, if S(𝑇𝑦, 𝑇𝑦, 𝑥0) > 𝑟, then the above inequality implies
that S(𝑦, 𝑦, 𝑥) < 0 which leads to a contradiction. Hence, in
this case we must have S(𝑦, 𝑦, 𝑥0) = 𝑟.

S (𝑦, 𝑦, 𝑥) = S (𝑇𝑦, 𝑇2𝑦, 𝑥)
≤ 𝜓 (S (𝑥, 𝑥, 𝑥0)) − 𝜓 (S (𝑇𝑦, 𝑇𝑦, 𝑥0))
= 𝜓 (𝑟) − 𝜓 (𝑟) = 0,

(57)

and that is 𝑥 = 𝑦.
Case 2. If S(𝑦, 𝑦, 𝑥0) < 𝑟 then once again by using the fact
that 𝜓 is a nondecreasing function we have

S (𝑥, 𝑥, 𝑦) = S (𝑇𝑥, 𝑇2𝑥, 𝑦)
≤ 𝜓 (S (𝑦, 𝑦, 𝑥0)) − 𝜓 (S (𝑇𝑥, 𝑇𝑥, 𝑥0))
= 𝜓 (S (𝑦, 𝑦, 𝑥0)) − 𝜓 (S (𝑥, 𝑥, 𝑥0))
= 𝜓 (S (𝑦, 𝑦, 𝑥0)) − 𝜓 (𝑟) < 𝜓 (𝑟) − 𝜓 (𝑟)
= 0,

(58)

which leads us to a contradiction.
Therefore, 𝐶𝑆𝑥0 ,𝑟 is the unique fixed circle of 𝑇 in 𝑋 as

desired.

5. An Application to Integral Type Contractive
Self-Mappings

We assume that 𝜑 : [0,∞) → [0,∞) is a Lebesgue-
integrable mapping which is summable (that is, with finite
integral) on each compact subset of [0,∞), nonnegative, and
such that, for each 𝜀 > 0,

∫
𝜀

0
𝜑 (𝑡) 𝑑𝑡 > 0. (59)

Now we give the following definition.

Definition 34. Let (𝑋,S) be an 𝑆-metric space and 𝜑 :
[0,∞) → [0,∞) be defined as in (59). A self-mapping 𝑇 on
𝑋 is said to be an integral type 𝐹𝑆𝑐 -contraction if there exist
𝐹 ∈ F , 𝑡 > 0, and 𝑥0 ∈ 𝑋 such that for all 𝑥 ∈ 𝑋 the following
holds:

S (𝑇𝑥, 𝑇𝑥, 𝑥) > 0 ⇒

𝑡 + ∫
𝐹(S(𝑇𝑥,𝑇𝑥,𝑥))

0
𝜑 (𝑡) 𝑑𝑡 ≤ ∫

𝐹(S(𝑥,𝑥,𝑥0))

0
𝜑 (𝑡) 𝑑𝑡.

(60)

Proposition 35. Let (𝑋,S) be an 𝑆-metric space and 𝜑 :
[0,∞) → [0,∞) be defined as in (59). If a self-mapping 𝑇
on 𝑋 is an integral type 𝐹𝑆𝑐 -contraction with 𝑥0 ∈ 𝑋 then we
get 𝑇𝑥0 = 𝑥0.

Proof. Suppose that 𝑇𝑥0 ̸= 𝑥0. From the definition of an
integral type 𝐹𝑆𝑐 -contraction, we have

S (𝑇𝑥0, 𝑇𝑥0, 𝑥0) > 0 ⇒

𝑡 + ∫
𝐹(S(𝑇𝑥0,𝑇𝑥0 ,𝑥0))

0
𝜑 (𝑡) 𝑑𝑡 ≤ ∫

𝐹(S(𝑥0,𝑥0,𝑥0))

0
𝜑 (𝑡) 𝑑𝑡.

(61)

Inequality (61) contradicts with the definition of 𝐹 since 𝐹 :
(0,∞) → R and S(𝑥0, 𝑥0, 𝑥0) = 0. Hence, it should be
𝑇𝑥0 = 𝑥0.

Using this newdefinition, we get the following fixed-circle
result.

Theorem 36. Let (𝑋,S) be an 𝑆-metric space, 𝜑 : [0,∞) →
[0,∞) be defined as in (59), 𝑇 be an integral type 𝐹𝑆𝑐 -
contraction with 𝑥0 ∈ 𝑋, and 𝑟 be defined as in 
eorem 11.

en 𝐶𝑆𝑥0 ,𝑟 is a fixed circle of 𝑇.
Proof. Let 𝑥 ∈ 𝐶𝑆𝑥0,𝑟. Assume that 𝑇𝑥 ̸= 𝑥. Then, by the
definition of 𝑟, we get

𝑟 ≤ S (𝑇𝑥, 𝑇𝑥, 𝑥) . (62)

Using the fact that 𝐹 is increasing property, we have

𝐹 (𝑟) ≤ 𝐹 (S (𝑇𝑥, 𝑇𝑥, 𝑥)) (63)

and

∫
𝐹(𝑟)

0
𝜑 (𝑡) 𝑑𝑡 ≤ ∫

𝐹(S(𝑇𝑥,𝑇𝑥,𝑥))

0
𝜑 (𝑡) 𝑑𝑡. (64)

From inequality (64) and the definition of integral type 𝐹𝑆𝑐 -
contractivity, we obtain

∫
𝐹(𝑟)

0
𝜑 (𝑡) 𝑑𝑡 ≤ ∫

𝐹(S(𝑇𝑥,𝑇𝑥,𝑥))

0
𝜑 (𝑡) 𝑑𝑡

≤ ∫
𝐹(S(𝑥,𝑥,𝑥0))

0
𝜑 (𝑡) 𝑑𝑡 − 𝑡

< ∫
𝐹(S(𝑥,𝑥,𝑥0))

0
𝜑 (𝑡) 𝑑𝑡 = ∫

𝐹(𝑟)

0
𝜑 (𝑡) 𝑑𝑡,

(65)

which is a contradiction. Therefore, we find 𝑇𝑥 = 𝑥.
Consequently, 𝐶𝑆𝑥0,𝑟 is a fixed circle of 𝑇.
Remark 37. (1) An integral type 𝐹𝑆𝑐 -contractive self-mapping
𝑇 fixes also the disc𝐷𝑆𝑥0,𝑟.(2) If we set the function 𝜑 : [0,∞) → [0,∞) in
Theorem 36 as 𝜑(𝑡) = 1 for all 𝑡 ∈ [0,∞), then we get
Theorem 11.
(3) By the similar argument used in Definition 34, the

notions of an integral Hardy-Rogers type 𝐹𝑆𝑐 -contractive self-
mapping, an integral Reich type𝐹𝑆𝑐 -contractive self-mapping,
an integral Chatterjea type 𝐹𝑆𝑐 -contractive self-mapping, and
obtained corresponding fixed-circle theorems can be defined.
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Finally, we give the following example.

Example 38. Let𝑋 = {𝑒, 2𝑒, 𝑒+1/2, 2𝑒−1/2, 2𝑒+1/2} ⊂ R be
the 𝑆-metric space with the usual 𝑆-metric and the function
𝜑 : [0,∞) → [0,∞) be defined by

𝜑 (𝑡) = 2𝑡 + 1, (66)

for all 𝑡 ∈ [0,∞). Let us define the self-mapping 𝑇 : 𝑋 → 𝑋
as

𝑇𝑥 = {{
{
𝑒 + 12 if 𝑥 = 𝑒
𝑥 otherwise,

(67)

for all 𝑥 ∈ 𝑋. The self-mapping 𝑇 is an integral type 𝐹𝑆𝑐 -
contractive self-mapping with 𝐹 = ln𝑥, 𝑡 = 1, and 𝑥0 = 2𝑒.
Indeed, we get

S (𝑇𝑥, 𝑇𝑥, 𝑥) = S(𝑒 + 12 , 𝑒 +
1
2 , 𝑒) = 2

𝑒 +
1
2 − 𝑒


= 1 > 0,

(68)

for 𝑥 = 𝑒. Then we have

S (𝑇𝑥, 𝑇𝑥, 𝑥) = 1 < S (𝑥, 𝑥, 𝑥0) = 2𝑒 ⇒
ln 1 = 0 < ln (2𝑒) = ln 2 + 1 ⇒

∫
0

0
(2𝑡 + 1) 𝑑𝑡 = 0 < ∫

ln 2+1

0
(2𝑡 + 1) 𝑑𝑡

= ln22 + ln 8 + 2 ⇒
1 ≤ ln22 + ln 8 + 2.

(69)

Also we obtain

𝑟 = min {S (𝑇𝑥, 𝑇𝑥, 𝑥) : 𝑇𝑥 ̸= 𝑥} = 1. (70)

Consequently, 𝑇 fixes the circle 𝐶𝑆2𝑒,1 = {2𝑒 − 1/2, 2𝑒 + 1/2}
and the disc𝐷𝑆2𝑒,1 = {2𝑒 − 1/2, 2𝑒, 2𝑒 + 1/2}.
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