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ON SLANT CURVES IN S-MANIFOLDS

SABAN GUVENG AND CiHAN OzGUR

ABSTRACT. In this paper, we consider biharmonic slant curves in S-space
forms. We obtain a main theorem, which gives us four different cases to
find curvature conditions for these curves. We also give examples of slant
curves in R27+$(—3s).

1. Introduction

J. Eells and L. Maire suggested k-harmonic maps in 1983 [6]. Following
their idea, G. Y. Jiang obtained bitension field equation in 1986 [11]. On the
other hand, in [4], Chen defined a biharmonic submanifold of Euclidean space
as AH = 0, where H is the mean curvature vector field and A is the Laplace
operator. If the ambient space is Euclidean, then Jiang’s and Chen’s results
coincide.

J. T. Cho, J. Inoguchi and J. E. Lee defined slant curves in Sasakian man-
ifolds as a generalization of Legendre curves in 2006 [5]. In a 3-dimensional
Sasakian manifold, they proved that a non-geodesic curve is slant if and only if
the ratio of (7 £ 1) and k is constant, where k and 7 are the geodesic curvature
and torsion of the curve, respectively. In their study, they also gave examples
of a slant helix and a non-helix slant curve.

D. Fetcu studied biharmonic Legendre curves in Sasakian space forms in 2008
[8]. He proved the non-existence of such a curve in 7-dimensional 3-Sasakian
manifold. In the same paper, he also obtained parametric equations for some
biharmonic Legendre curves in 7-dimensional sphere. Furthermore, D. Fetcu
and C. Oniciuc considered biharmonic submanifolds of Sasakian space forms
in 2009 [9]. Their method of studying Legendre curves leads the idea of four
cases in our present paper.

Motivated by these studies, we focus our interest on biharmonic slant curves
in S-space forms. We obtain curvature characterizations of these kinds of
curves. The paper is organized as follows: In Section 2, we give brief introduc-
tion about biharmonic maps and S-space forms. In Section 3, we define slant
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curves of S-manifolds and give two non-trivial examples. Finally, in Section 4,
we find curvature characterizations of slant curves in S-space forms.

2. Biharmonic maps and S-space forms

Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian mani-
folds (M, g) and (N, k). The energy functional of ¢ is given by

1
B0 =5 [ 1ol v,

¢ is called harmonic if it is a critical point of its energy functional [7]. Moreover,
¢ is said to be a biharmonic map if it is a critical point of its bienergy functional

Ea0) =5 [ 1) v,

Here, 7(¢) is the first tension field of ¢ given by 7(¢) = traceVdep. The bihar-
monic map equation [11]

2(¢) = —J?(7(¢)) = —A7(¢) — traceR" (do, 7(¢))d¢ = 0,

is derived using the Euler-Lagrange equation of the bienergy functional Es(d),
where J¢ denotes the Jacobi operator of ¢. Harmonic maps are directly bihar-
monic. Thus, we call non-harmonic biharmonic maps proper biharmonic.

Let (M, g) be a (2m + s)-dimensional Riemann manifold. It is called framed
metric manifold [16] with a framed metric structure (¢,&4,1n%,9), a€{1,..., s},
if it satisfies the following equations:

21)  ¢*=-1+ Zsjn”‘@)fa, n*(€p) =965, ¢(&)=0, n®op=0,

(2.2) 9P X, pY) = g(X,Y) = Y n*(X)n™(Y),
a=1
(2.3) dn*(X,Y) = g(X, pY) = —dn*(Y, X), n*(X) = g(X,§).

Here, ¢ is a (1,1) tensor field of rank 2m; &1, ..., &, are vector fields; nt, ..., n°
are 1-forms and ¢ is a Riemannian metric on M; X, Y € TM and «,f8 €
{1,..., 8} (M?™F5 5 &,,m%, g) is also said to be framed p-manifold [13] or
almost r-contact metric manifold [15]. (,&4,n%, g) is called S-structure, when
the Nijenhuis tensor of ¢ is equal to —2dn® ® &, for all @ € {1,...,s} [2].

In case of s = 1, a framed metric structure becomes an almost contact metric
structure and an S-structure becomes a Sasakian structure. For an S-structure,
the following equations are valid [2]:

(2.4) (Vxo)V = {g(eX, oY) +n*(YV)e* X},

a=1

(2.5) Véo=—p, a€{l,...,s}.
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In Sasakian case (s = 1), (2.5) can be directly obtained from (2.4).

A plane section in T, M is called a @-section if there exists a vector X € T, M
orthogonal to &;,...,&s such that {X,pX} span the section. The sectional
curvature of a @-section is called a @-sectional curvature. An S-manifold of
constant p-sectional curvature has the curvature tensor R given by

RX,Y)Z =Y {n"(X)n*(2)e*Y —n*(Y)n"(2)p*X
a,B

—9(pX, 02 (Y)Es + g(0Y, 0 Z)n* (X)Es}

c+ 3s
I {—9(eY, 02)* X + g(pX,02)*Y }

CcC— S
0 {9(X,0Z)pY — g(Y,0Z)oX +29(X, Y )pZ}

for X,Y,Z € TM [3]. An S-manifold of constant ¢-sectional curvature c is
called an S-space form and it is denoted by M(c). If s = 1, an S-space form
turns into a Sasakian space form [1].

3. Slant curves of S-manifolds

Let v : I — M be a unit-speed curve in an n-dimensional Riemannian
manifold (M, g). v is called a Frenet curve of osculating order r; if there exist

orthonormal vector fields vy, ve, ..., v, along «y satisfying Frenet equations given
by
v = ’ylv
Vo, V1 = k102,
(31) Vvl’UQ = 7]'{311)1 + ]{521}3,
vvl'Ur = _kalUTfla
where k1, ..., k,._1 are positive functions and 1 < r < n.

i) A geodesic is a Frenet curve of osculating order 1.

ii) A circle is a Frenet curve of osculating order 2 if k; is a non-zero positive
constant.

iii) A heliz of order r is a Frenet curve of osculating order r > 3 if ky, ..., k._1
are non-zero positive constants. A helix of order 3 is shortly called a heliz.

A submanifold of an S-manifold is called an integral submanifold if n*(X) =
0, « € {1,...,s}, where X denotes tangent vectors of the submanifold [12].
A 1-dimensional integral submanifold of an S-space form (M?™*% o £,,10%, 9)
is called a Legendre curve of M. More precisely, a curve v : I — M =
(M?™+s5 . €,,m%, g) is a Legendre curve if v; L &, for all a« = 1,..., s, where
vy is the tangent vector field of «y [14].

Now, we can give the following new definition:
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Definition 3.1. Let v be a unit-speed curve in an S-manifold
M = (M™%, ¢, &0, g).

We call v a slant curve, if there exists a constant angle § such that n®(v;) =
cosf for all « = 1,...,s. Here 6 is called the contact angle of ~.

From the definition, it is obvious that every Legendre curve is slant with
contact angle 7.
We can state the following essential proposition for slant curves:

Proposition 3.1. Let M = (M5 ¢, £,,1%, g) be an S-manifold. If 0 is the
contact angle of a non-geodesic unit-speed slant curve in M, then

s <

— < cos —.

Vs Vs

Proof. Let v be a non-geodesic unit-speed slant curve with contact angle 6 in
M. Using equation (2.2), we find

glpvi,pun) = glon,v1) — S0 (0 (1)
a=1

=1—scos?6.

Since g is non-degenerate, we have 1 — scos? § > 0. The equality case leads to
a contradiction since 7 is non-geodesic. Thus, we have
1
2 p—
cos” 0 < S O
Now, we will obtain non-trivial examples of slant curves in R?"*¢(—3s). Let

us consider M = R2"*¢ with coordinate functions {x1,...,2n, Y1, Yn, 21,
,...2s} and define

n = % (dza—zn:yidxi> ,a=1,...,s,
i=1
n 8 n a n S 6

S 1 n
9=y 0" ©n + 1> (dwi © d; +dy; @ dy;).
a=1 =1

where

n

0 0 2 0
X:Z (Xiaaci—i_}/i@yi) +QZ:1 (Z“az

1=1 @

> € x(M).
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It is known that (R2"+S,<p7§a,77“,g) is an S-space form with constant -
sectional curvature ¢ = —3s and it is denoted by R?"*%(—3s) [10]. The vector
fields

0 0 S 0
Xi=2—, Xppi=0X; =2 i) ) Sa=25—
y; + 14 (8a:i +ya§::18za) § 0z

form a g-orthonormal basis and the Levi-Civita connection is calculated as

Vi, Xj =V, Xngj =0V, Xny; =6 ) oV, Xj =0 L
a=1

a=1
Vxiba=Ve, Xi = X0, Vx,6a = Ve, Xy = X

(see [10]). Let v : I — R?"*%(—3s) be a slant curve with contact angle 6. Let
us denote

'y(t) = (’Yl (t)7 s 7’7n(t)7’7n+1(t)7 s ’72n(t)7’72n+1(t)7 s 7'72n+3(t)) )

where t is the arc-length parameter. The tangent vector field of 7 is

0 0
/ / / / / /
U1 71 8$1 Tn 8wn Tn+1 8y1 Yon 6yn Yon+1 821 Yon+s 6Za
In terms of the g-orthonormal basis, v; can be written as
1
o1 =5 [ Xa e 920 X+ X £ 7 Xon

+ (Vong1 = NYnt1 = = WY2n) G0+

+ (Vangs = N¥nt1 = = Yn2n) &) -
Since 7 is slant, we obtain

1
n*(01) = 5 (Vn+a = N¥nt1 =+ = Vp2n) = cosd
for all « =1,...,s. Thus, we have
Vont1 = = Yonas = ViVnt1 + o+ VY20 + 2c08 6.

Since 7 is a unit-speed curve, we can write
(V) 4+ (1) = 4 (1 = scos?6) .
So, we have the following examples:

Example 3.1. Let n = 1 and s = 2. Then, v : I — R%*(—6), v(t) =
(\/it7 0,t, t) is a slant circle with k; = v/2 and its contact angle is 5

Example 3.2. The curve v : I — R*(=6), v(t) = (v1(t),v2(t),v3(t),va(t)) is
a slant curve with contact angle 6, where

t
(0 = e+ 2v=con20 [ cosulp)ip
to
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t
() = 2+ 2= o520 | sinulp)ip.
to

v3(t) = ya(t) + c3

= ¢4 + 2t cos O
t q
+ 2v/— cos 29/ cos u(q) <62 + 2v/— cos 29/ sin u(p)dp) dq,
to tD

cosf € (71/\@,1/\/@ ;

to € I, c1, co, c3 and ¢4 are arbitrary constants.

4. Biharmonic slant curves in S-space forms

Now, let us take an S-space form (M?™*5 . £,,n% g) and a curve v : [ —
M which is a slant Frenet curve of osculating order r. Differentiating

(4.1) n“(v1) = cosé

and using (3.1), we find

(4.2) n%(v2) =0, ae{l,...,s}.
Then, (2.1) and (4.2) give us

(4.3) vy = —vsy.

Using equations (2.1), (2.2), (2.3), (2.6), (3.1), (4.2) and (4.3), we can easily
calculate

Vo, V01 = — k%U1 + kll’l)z + k1kovs,
Vo Vi, Vo1 = = 3kikivr + (K — &} — k1k3) vo
+ (lelkz + klk‘é) v3 + k1k2k3v4,

3
R(v1,Vy,v1)v; = —ky s2cosZ 0 + C—z 8(1 — scos? )| vo
c—s
*3k1( 1 )Q(SD’Ul,W)sD’Ul-
So, we get
72(7) =V, Vi, Vi, 01 — R(Uh vvlﬂl)vl
= —3]€1k/1’l)1
3
(4.4) + (kj’l’ — k3 — k1k3 4 Ky |s% cos® 0 + et 8(1 — scos? 9)]) ()

+ (2]6/1]6‘2 + klké)vd + k1koksvy

(c=s)
4

+ 3k1 g(pv1,v2)pv1.
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Let k = min {r,4}. From (4.4), the curve + is proper biharmonic if and only if
k1> 0 and

(1) ¢ = s or vy L vy or puy € span {va,...,vx}; and

(2) g(72(),v;) =0 for any i = 1,..., k.

So we can state the following theorem:

Theorem 4.1. Let ~y be a slant curve of osculating order v in an S-space form
(M?7m+s 0 60,n%,g), a € {1,...,5} and k = min{r,4}. Then ~ is proper
biharmonic if and only if

(1) c=s or vy L vy or pvy € span{va,...,vx}; and

(2) the first k of the following equations are satisfied (replacing kj = 0):

k1 = constant > 0,

c+3s 3(c—s)

k3 + k3 = s%cos? 6 + T(l — scos? ) + I [g(ov1,v2)]%,
3(c—s
ké + %g(@vlazb)g(gpvl?v?)) = 07
3(c—s
kaks + ug(sovl, v2)g(pv1,v4) = 0.

4

We have four cases to investigate results of Theorem 4.1.

Case I. c = s.

Let ¢ = s. Then, ~ is proper biharmonic if and only if following equations
hold:
k1 = constant > 0,

k2 + k2 = s,
ko = constant,
koks = 0.

Using these last four equations, we can state the following theorem:

Theorem 4.2. Lety be a slant curve in an S-space form (M>*™F5 . £4,1m%, 9),
a€{l,...,s}, c=s. Then v is proper biharmonic if and only if either v is a
circle with ky = /3, or a heliz with k? + k3 = s. Moreover, if ~y is Legendre,
then 2m + s > 3.

Remark 4.1. If 2m+s = 3, then m = s = 1. So M is a 3-dimensional Sasakian
space form. Since a Legendre curve in a Sasakian 3-manifold has torsion 1 (see
[1]), we can write k1 > 0 and ke = 1, which contradicts k? + k3 = s = 1. Hence
~ cannot be proper biharmonic.

Case II. ¢ # s, pv; L vs.
Let us assume that g(¢v1,v2) = 0. Theorem 4.1 gives us
(4.5) k1 = constant > 0,
c+ 3s

ki + k3 = s?cos® 0 + T(l — scos? ),
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ko = constant,
koks = 0.
We have the following proposition in this case:

Proposition 4.1. Let v be a slant curve of osculating order 3 in an S-space
form (M*F3 o &0,n%, g), a € {1,...,8} and pv1 L va. Then {vy,vq,v3, vy,
Vo, ov1,81, ..., &} is linearly independent at any point of v. Hence m > 3.

Therefore, we can give the following theorem:

Theorem 4.3. Let vy be a slant curve in an S-space form (M>*™F5 . £4,1%, 9),
a€f{l,...,;s}, c# s and pv; L vy. Then v is proper biharmonic if and only
if either

(1) m > 2 and v is a circle with ki = $\/c+3s — (c — s)scos®0, where
c > —3s+ (c— s)scos? 0 and {v1 = v1,va, U1, Vo, 01,1, ..., E} is linearly
idependent; or

(2) m > 3 and vy is a heliz with k3 + k3 = w, where ¢ > —3s+

(¢ — 8)scos? 0 and {vy,va,v3, U1, Vo, 0v1,E1, ..., &} is linearly independent.

Case III. ¢ # s, pv1 || va.

In this case, pv; = £v/1 — scos? Ovy, g(pv1,ve) = £(1 —scos?0), g(pvi, v3)
=0 and g(pv1,v4) = 0. Using Theorem 4.1, + is biharmonic if and only if

k1 = constant > 0,
k2 + k2 =c—scos’0(c—s),
ko = constant,
kaoks = 0.
Let us choose ¢v; = v/1 — scos? fvy. Equation (2.1) gives us

(4.6) 1 — scos? vy = Q*v; = —v; + Zna(vl)ga = —v1 + cos GZfa.
a=1 a=1
Using (2.1), (2.2), (2.3) and (2.4), we find

(4.7) Vo, pv1 = —scos vy + Zfa + k1pvs.

a=1

From (4.6) and (4.7), we have

S S
-1 cos 0
Vo, 0v] = —scos v, + atkl | —/—m/—v F —— o
1P ! az::lg ! V1 —scos? 0 ! \/1—800529(;::1g

(4.8) =V 1—scos?0(—kjv1 + kavs).

Using (3.1) and (4.8), we can write

k1 cos @ °
(4.9) (1 + V%) <s cos Bvy + Z§a> = kov/1 — scos? fus,
— 5C0S

a=1
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which gives us the following theorem:

Theorem 4.4. Lety be a slant curve in an S-space form (M>*™F5 0, £4,10%, 9),
a€{l,...;s}, c#s and pvy || va. Then v is proper biharmonic if and only if
it is one of the following:

i) a Legendre heliz with the Frenet frame field

{vla Yy, \}gaz_:lga}

and k1 = /c— s and ko = /s, where ¢ > s;

ii) a non-Legendre slant circle with the Frenet frame field

V1, —F——
V1 —scos?6

V1= 2
k= %Cosa = \/c—scos?0(c— s);

iii) a non-Legendre slant helix with the Frenet frame field

and

U1 1 °
U1, ) o — Scosfv
{ b VT scos?d V/sV1 — scos? 6 <az:1€ 1)}
and
k2 + k2 =c—scos’f(c—s).

Case IV. ¢ # s, puy n vy and g(pvy,v2) # 0.

Finally, let (M?™%s 0, £&4,1%, g) be an S-space form, a € {1,...,s} and
~v : I — M a slant curve of osculating order r, where 4 < r < 2m+4sand m > 2.

In this case, v is biharmonic if and only if pv; € span {vs, vs3,vs}. We denote
the angle function between ¢uv; and vy by p(t); which means g(pvy,v2) =

V1 — scos? 6 cos p(t). If we differentiate g(puvy, v2) along v and use (2.1), (2.3),
(3.1), (4.7), we obtain

—V/1 = scos20p/(t) sin u(t) = Vo, g(pv1,v2) = g(Vy,0v1,02) + g(@v1, Vo, v2)

(4.10) = g(—scosfvy + Zﬁa + k1pva, v2)

a=1

+ g(pv1, —k1v1 + kovs)
= kag(pv1,v3).
We can write pu; = g(pv1,v2)va+g(pv1, v3)vs+9(pu1, v4)vs. So, the equations
in Theorem 4.1 become
k1 = constant > 0,

3
k% + k3 = 5% cos? 0 + %(1 — scos®0) + 1 [9(pv1,v2)]%,
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3(c—s

%9(907117112)9(@“1’ v3) =0,
3 _

k‘gk‘g, + ¥

Multiplying the third equation of the above system with 2ks and using (4.10),
we have

k5 +

g(pv1,v2)g(pvr,v4) = 0.

2kokl + /1 — s cos? 9@(72;/ cos psin p) = 0,

which gives us

3(c —
(4.11) k2 = —Vl—scos?Q% cos? 1 + wo,
where wq is a constant. If we write (4.11) in the second equation, we have

c+ 3s

(1—sc0529)+m(1—500529

k? = s%cos? 0 + 1

+v1 — scos? 9) cos? 11 + wo.

Hence p is a constant. From (4.10) and (4.11), we have g(¢vi,v3) = 0 and
ko =constant> 0. Since ||pv;|| = 1 — scos? 6 and pv; = /1 — scos? § cos pvs
+g(pv1,v4)v4, we obtain g(pvi,vs) = V1 — scos? fsin u. Because of the fact
that vy 1 vo and g(pvy,v2) # 0, it is obvious that p € (0,2m)\ {Z, 7,22} . As
a result, we can give the following theorem:

Theorem 4.5. Let v : I — M be a slant curve of osculating order r in an
S-space form (M?*™F5 . €0,n%, g), « € {1,...,8}, wherer >4, m > 2, c# s,
ov1 #ve and g(pvr,ve) # 0. Then v is proper biharmonic if and only if

kx = constant > 0, X € {1,2,3},

k2 + k2 = s%cos® 0 + 0—238(1 — scos?0)
+ @(1 — sc0s?0) cos® y,
3(s —
koks = M(1 — scos? 0) sin 241,

8
where vy =v/1 — s cos? § cos pwa++v/1 — s cos? O sin pvg, p € (0,2m)\ {5, 7, 38}

s a constant.
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