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Abstract: Let q ≥ 3 be a prime number and let H(λq) be the extended Hecke group associated with q. In this paper,

we determine the presentation of the commutator subgroup (H (λq)α)
′ of the normal subgroup H (λq)α , where H (λq)α

is a subgroup of index 2 in H (λq). Next we discuss the commutator subgroup (H2)
′ (λq) of the principal congruence

subgroup H2 (λq) of H (λq) . Then we show that some quotient groups of H (λq) are generalized M∗−groups. Finally,

we prove some results related to some normal subgroups of H (λq) , especially in the case q = 5.
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1. Introduction

In [14], Hecke introduced the Hecke groups H(λ) generated by two linear fractional transformations

T (z) = −1

z
and S(z) =− 1

z + λ
,

where λ is a fixed positive real number.

He showed that H(λ) is Fuchsian if and only if λ = λq = 2 cos π
q , for integer q ≥ 3, (λ < 2), or λ ≥ 2. We

will focus on the discrete case with λ < 2 and we denote it by H (λq ). The Hecke group H (λq ) is isomorphic

to the free product of two finite cyclic groups of orders 2 and q ,

H(λq) =< T, S | T 2 = Sq = I >∼= C2 ∗ Cq, [10].

Let Γ be a subgroup of finite index in H(λq). Then U/Γ , where U is the upper half plane of a Riemann

surface. Let g and t be the genus and the number of cusps of U/Γ, respectively, and let m1, · · · , mk be the

branching numbers of the branch points on U/Γ. The signature of Γ is (g;m1, ...,mk; t).

The Hecke group H(λq) can be thought of as triangle groups having an infinity as one of the parameters.

As the signature of H(λq) is (0; 2, q,∞), each is an infinite triangle group. Moreover, the quotient space

U/H(λq) is a sphere with one puncture and two elliptic fixed points of order 2 and q. Hence the surface

U/H(λq) is an orbifold.

Examples of these groups are H(λ3) = Γ = PSL(2,Z) (the modular group), H(λ4) = H(
√
2), H(λ5) =

H( 1+
√
5

2 ), and H(λ6) = H(
√
3). It is clear that H(λq) ⊂ PSL(2,Z[λq]) , for q ≥ 4.
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The extended modular group, denoted by H (λ3) = Π = PGL(2,Z), is defined by adding the reflection

R(z) = 1/ z to the generators of the modular group H (λ3). Then the extended Hecke group, denoted by H(λq),

has been defined in [35] and [39] similar to the extended modular group by adding the reflection R(z) = 1/z to

the generators of the Hecke group H(λq). Thus the extended Hecke group H(λq) has the presentation

H(λq) =< T, S,R | T 2 = Sq = R2 = (TR)2 = (RS)2 = I >∼= D2 ∗C2
Dq. (1)

If we take R1(z) =
1
z , R2(z) = −z, R3(z) = −z − λq, where T = R2R1 = R1R2 and S = R1R3; then

we get the alternative presentation

H(λq) =< R1,R2,R3 | R2
1 = R2

2 = R2
3 = (R1R2)

2 = (R1R3)
q
= I > .

The Hecke group H(λq) is a subgroup of index 2 in H(λq). Since the extended Hecke groups H (λq)

contain a reflection, they are proper non-Euclidean crystallographic (NEC) groups [28]. Thus the quotient

space U/H (λq) is a Klein surface and U/H (λq) is the canonical double cover of U/H (λq).

The Hecke groups H (λq), the extended Hecke groups H (λq) and their normal subgroups have been

studied for many aspects in the literature (for instances, please see [1, 2, 6, 7, 13, 17, 24, 32, 36, and 45]).

Here the map

α : T → RT, S → S, R → R, (2)

induces an outer automorphism of H(λq), [17, p. 12]. Thus the group

H(λq)α =< RT, S | (RT )2 = Sq = I >∼= C2 ∗ Cq, (3)

is a subgroup of index 2 in H (λq ).

Throughout this paper, we identify matrix A in GL(2,Z[λq]) with −A, so that they each represent the

same element of H(λq). Thus we can represent the generators of H(λq) as

T =

(
0 −1
1 0

)
, S =

(
0 −1
1 λq

)
and R =

(
0 1
1 0

)
.

Next we give some information about the principal congruence subgroups of H(λq).

The principal congruence subgroups Hp(λq) of level p, p prime, of H(λq) are defined in [38] (see

also [15] and [26]) as

Hp(λq) =

{
A =

(
a bλq

cλq d

)
∈ H(λq) : a ≡ d ≡ ±1, b ≡ c ≡ 0 (mod p), det A = ±1

}
.

Hp(λq) is always a normal subgroup of finite index in H(λq). It is easily seen that Hp(λq) = Hp(λq)∩H(λq).

By [38], we know that if p ≥ 3 is a prime number, then Hp(λq) = Hp(λq) and if p = 2, then

H(λq)/H2(λq) ∼= H(λq)/H2(λq). Thus, the groups H2(λq) and H2(λq) are very important.

The principal congruence subgroups H2 (λ3) = Γ(2), H2 (λ3) = Π(2) and Γ(4) = Π(4) of Γ and Π,

respectively, have been studied extensively in the literature, for example, in relation to number theory, modular

forms, modular curves, Belyi’s theory, and graph theory (for instance, see [8, 11, 12, 21, 22, 33, and 40]).
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Some normal subgroups (the first and the second commutator subgroups H
′
(λq) and H

′′
(λq), the

principal congruence subgroups Hp(λq) and the m−th power subgroups H
m
(λq)) of H(λq), q ≥ 3 prime

number, have been studied by Ikikardes, Koruoğlu, Sahin, and Bizim in [38, 42, 43, 44]. For q ≥ 3 a prime

number, they proved the following results:

a) There are exactly 3 normal subgroups of index 2 in H(λq). Namely, H(λq) =< T, S | T 2 = Sq = I >∼=
C2 ∗ Cq, H0(λq) =< R,S, TST | R2 = Sq = (TST )q = (RS)2 = (RTST )2 = I >∼= Dq ∗Z2 Dq, and

H(λq)α =< TR,S | (TR)2 = Sq = I >∼= C2 ∗ Cq.

b) There is exactly one normal subgroup of index 4 in H(λq). Namely, H
′
(λq) =< S, TST | Sq = (TST )q =

I >∼= C2 ∗ Cq .

c) There are exactly 2 normal subgroups of index 2q in H(λq). Namely, Hq(λq) =< T > ∗ < STSq−1 >

∗ . . . ∗ < Sq−1TS >∼= C2 ∗ C2 ∗ · · · ∗ C2︸ ︷︷ ︸
q times

, and H2(λq) =< TR > ∗ < RSTS > ∗ . . . ∗ < RSq−1TSq−1 >∼=

C2 ∗ C2 ∗ · · · ∗ C2︸ ︷︷ ︸
q times

.

d) The second commutator subgroup H
′′
(λq) of H(λq) is a normal subgroup of index 4q2 in H(λq). Namely

H
′′
(λq) is a free group with basis [S, TST ], [S, TS2T ], ..., [S, TSq−1T ], [S2, TST ], [S2, TS2T ], ..., [S2, TSq−1T ],

..., [Sq−1, TST ], [Sq−1, TS2T ], ..., [Sq−1, TSq−1T ].

e) The group (H2)′(λq) is equal to the second commutator subgroup H
′′
(λq) and it has index q in H ′(λq).

f) The group (Hq)′(λq) is a free group of rank 1+ (q− 2)2q−1 , of signature ((q− 3)2q−2 +1; ∞(2q−1)) and of

index 2q+1q in H(λq).

Using the above results , we get the following subgroup diagram in Figure 1.

On the other hand, when Sahin et al. were studying in [42] some normal subgroups of the extended

Hecke groups H(λq), for q ≥ 3 prime, they came across an interesting general fact. If a bordered surface

group Γ is a normal subgroup of finite index in H(λq), then H(λq)/Γ is a group of automorphisms of the

bordered Klein surface X = U/H(λq). Moreover, the automorphism groups G of order 4q
(q−2) (g−1) that act on

compact bordered Klein surfaces X of algebraic genus g ≥ 2 are finite quotient groups of the extended Hecke

groups H(λq), where q ≥ 3 is an integer. For example, the groups of orders |G| = 12(g − 1), |G| = 8(g − 1),

|G| = 20
3 (g − 1), respectively, are the finite quotient groups of the extended Hecke groups H(λ3), H(λ4), or

H(λ5) [41] and [3]. Here the orders of these groups are the highest three among the automorphism groups of

the compact Klein surfaces of algebraic genus g ≥ 2 (see [31, p. 221, proposition 1]). The groups of order

|G| = 12(g − 1) are M∗−groups. These groups were first introduced in [30], and have been studied in several

papers [4] and [5] .

Sahin et al. defined the generalized M∗−groups in [41] similar to the M∗−groups. A finite group G is

called a generalized M∗−group if it is generated by three distinct nontrivial elements r1, r2, r3 that satisfy the

relations
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Figure 1.

r21 = r22 = r23 = (r1r2)
2 = (r1r3)

q = I,

q ≥ 3 prime, and other relations that make the group finite. It is clear that the order of G is 4q
(q−2) (g − 1),

g ≥ 2 integer .

In [41], Sahin et al. showed that a finite group of order at least 4q is a generalized M∗−group if and only

if it is the homomorphic image of the extended Hecke group H(λq), q ≥ 3 prime. Thus, if the index of a normal

subgroup N in H(λq) is greater than 2q, then the quotient group H(λq)/N is a generalized M∗−group.

The aim of this work is to generalize some results known for the extended modular group to the extended

Hecke groups H(λq), for q ≥ 3 prime (especially, H(λ5)). We obtain the group structures and the signatures of

the commutator subgroups (H (λq)α)
′ and (H2)

′ (λq) of H (λq). For this, we apply the Reidemeister–Schreier

method, the permutation method, and the Riemann–Hurwitz formula. Next, we discuss some normal subgroups

and how they are related under the map α introduced in (2). We also give some relations between some normal

subgroups of H (λq) and a figure that explain the effect of α. Furthermore, we show that some of the quotient

groups of H (λq) are generalized M∗−groups. Finally, we determine the generators of H4 (λ5) and prove that

(H2)
′ (λ5) = H4 (λ5) and H10(λ5) ̸= (H2)′(λ5) ∩ (H5)′(λ5).

2. Commutator subgroups of H (λq)α and H2 (λq)

In this section, we study the first commutator subgroups (H (λq)α)
′ and (H2)

′ (λq) of H (λq), for q ≥ 3 a

prime number.

Theorem 2.1 Let q ≥ 3 be a prime number. Then

i) |H(λq)α : (H(λq)α)
′| = 2q,

ii) the group (H(λq)α)
′ is a free group of rank (q − 1) with basis TSTS, TS2TS2, ..., TSq−1TSq−1.
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Proof

i) The quotient group H(λq)α/(H(λq)α)
′ is the group obtained by adding the relation TRS = STR to the

relations of H(λq)α in (3). Then

H(λq)α/(H(λq)α)
′ ∼= C2 × Cq.

Therefore, we obtain |H(λq)α : (H(λq)α)
′| = 2q.

ii) We choose Σ = {I, S, S2, ..., Sq−1, TR, TRS, TRS2, ..., TRSq−1} as a Schreier transversal for (H(λq)α)
′ .

According to the Reidemeister–Schreier method (see [29]), we get the generators of (H(λq)α)
′ as the

following.

I.TR.(TR)−1 = I, I.S.(S)−1 = I,

S.TR.(TRS)−1 = STRSq−1RT, S.S.(S2)−1 = I,

S2.TR.(TRS2)−1 = S2TRSq−2RT, S2.S.(S3)−1 = I,

...
...

Sq−1.TR.(TRSq−1)−1 = Sq−1TRSRT, Sq−1.S.(I)−1 = I,
TR.TR.(I)−1 = I, TR.S.(TRS)−1 = I,

TRS.TR.(S)−1 = TRSTRSq−1, TRS.S.(TRS2)−1 = I,

TRS2.TR.(S2)−1 = TRS2TRSq−2, TRS2.S.(TRS3)−1 = I,
...

...

TRSq−1.TR.(Sq−1)−1 = TRSq−1TRS, TRSq−1.S.(TR)−1 = I.

Here STRSq−1RT = STST , S2TRSq−2RT = S2TS2T, Sq−1TRSRT = Sq−1TSq−1T, TRSTRSq−1 =

TSq−1TSq−1, TRS2TRSq−2 = TSq−2TSq−2 and TRSq−1TRS = TSTS , as TR = RT and SR = RSq−1.

Also as (STST )−1 = TSq−1TSq−1, (S2TS2T )−1 = TSq−2TSq−2 and (Sq−1TSq−1T )−1 = TSTS, the genera-

tors of (H(λq)α)
′ are TSTS, TS2TS2, ..., TSq−1TSq−1.

Using the permutation method (see [46]) and the Riemann–Hurwitz formula, we get the signature of

(H(λq)α)
′ as (0;∞,∞, · · · ,∞︸ ︷︷ ︸

q times

) = (0; ∞(q)). 2

It is clear that the group (H(λq)α)
′ is a subgroup of H(λq). From [27], there are only two normal

subgroups of index 2q in H(λq), for q ≥ 3 prime. Namely, H ′(λq) and H2(λq). As the signature of H2(λq) is

(0; ∞(q)) (see [16]), we get the following result.

Corollary 2.2 The subgroup (H(λq)α)
′ is equal to the principal congruence subgroup H2(λq) of H(λq), i.e.

(H(λq)α)
′ = H2(λq).

Theorem 2.3 Let q ≥ 3 be a prime number.

i)
∣∣H2(λq) : (H2)

′(λq)
∣∣ = 2q.

ii) The group (H2)
′(λq) is a free group of rank 1 + (q − 2)2q−1.

iii) The group (H2)
′(λq) is of index 2q−1 in H2(λq).
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Proof

i) If we take k1 = TR, k2 = RSTS, k3 = RS2TS2, · · · , kq = RSq−1TSq−1 as the generators of H2(λq),then

the quotient group H2(λq)/(H2)
′(λq) is the group obtained by adding the relation kikj = kjki to the

relations of H2(λq), for i ̸= j and i, j ∈ {1, 2, · · · , q} . Thus we have

H2(λq)/(H2)
′(λq) ∼= C2 × C2 × · · · × C2︸ ︷︷ ︸

q times

.

Therefore, we obtain
∣∣H2(λq) : (H2)

′(λq)
∣∣ = 2q.

ii) Let Σ = {I, k1, k2, ..., kq, k1k2, k1k3, ..., k1kq, k2k3, k2k4, ..., k2kq, ..., kq−1kq, k1k2k3, k1k2k4,

..., k1k2kq, ..., k1k2 · · · kq} be a Schreier transversal for (H2)
′(λq). Using the Reidemeister–Schreier

method, we obtain the generators of (H2)
′(λq) as the following.

There are C(q, 2) =

(
q
2

)
generators of the form kikjkikj , where i < j and i, j ∈ {1, 2, · · · , q} . There are

2×
(

q
3

)
generators of the form kikjktkjktki, or kikjktkiktkj , where i < j < t and i, j, t ∈ {1, 2, · · · , q} .

There are 3×
(

q
4

)
generators of the form kikjktkukikuktkj , or kikjktkukjkuktki, or kikjktkuktkukjki ,

where i < j < t < u and i, j, t, u ∈ {1, 2, · · · , q} . Similarly, there are (q − 1) ×
(

q
q

)
generators of the

form k1k2 · · · kqk1kqkq−1 · · · k2, or k1k2 · · · kqk2kqkq−1 · · · k3k1, or · · · , or k1k2 · · · kqkq−1kqkq−2 · · · k2k1.

Totally, there are 1 + (q − 2)2q−1 generators of (H2)
′(λq).

iii) We know that
∣∣H(λq) : (H2)

′(λq)
∣∣ = 2q.q and |H(λq) : H2(λq)| = 2q . Therefore we get

∣∣H2(λq) : (H2)
′(λq)

∣∣ =
2q−1.

Finally, we find the signature of (H2)
′(λq) as (q2q−3 − 2q−1 + 1;∞,∞, · · · ,∞︸ ︷︷ ︸

q.2(q−2) times

) = ((q − 4)2q−3 + 1;

∞(q.2q−2)). 2

Corollary 2.4 We have H2(λq) = (H2)′(λq)(H2)
′(λq).

Proof As (H2)′(λq) and (H2)
′(λq) are normal subgroups of H ′(λq), we obtain the chains

(H2)′(λq) ⊂ (H2)′(λq)(H2)
′(λq) ⊂ H2(λq) and (H2)

′(λq) ⊂ (H2)′(λq)(H2)
′(λq) ⊂ H2(λq).

Then we get the index
∣∣H2(λq) : (H

2)′(λq)(H2)
′(λq)

∣∣ divides both of q and 2q−1. Since (q, 2q−1) = 1,

we have
∣∣H2(λq) : (H

2)′(λq)(H2)
′(λq)

∣∣ = 1 . Thus we get H2(λq) = (H2)′(λq)(H2)
′(λq). 2

Corollary 2.5 We have

a)
∣∣H(λq) : ((H

2)′(λq) ∩ (H2)
′(λq))

∣∣ = 2q.q2

b)
∣∣H(λq) : ((H

2)′(λq)) ∩ (Hq)′(λq))
∣∣ = 2q.q2
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Proof a) (H2)′(λq) and (H2)
′(λq) are normal subgroups of H(λq). By one of the isomorphism theorems of

the groups, we have that

((H2)′(λq)(H2)
′(λq))/(H

2)′(λq) ∼= (H2)
′(λq)/((H

2)′(λq) ∩ (H2)
′(λq)).

As (H2)′(λq)(H2)
′(λq) ∼= H2(λq), we find

H2(λq)/(H
2)′(λq) ∼= (H2)

′(λq)/((H
2)′(λq) ∩ (H2)

′(λq)).

Then ∣∣H2(λq) : (H
2)′(λq)

∣∣ = ∣∣(H2)
′(λq) : ((H

2)′(λq) ∩ (H2)
′(λq))

∣∣ .
As

∣∣H2(λq) : ((H
2(λq))

′
∣∣ = q, we get∣∣(H2)

′(λq) : ((H
2)′(λq) ∩ (H2)

′(λq))
∣∣ = q.

Thus, we have∣∣H(λq) : ((H
2(λq))

′ ∩ (H2)
′(λq))

∣∣ = |H(λq) : H2(λq)| .
∣∣H2(λq) : (H2)

′(λq)
∣∣ . ∣∣(H2)

′(λq) : ((H
2(λq))

′ ∩ (H2)
′(λq))

∣∣ .
As

∣∣H2(λq) : (H2)
′(λq)

∣∣ = 2q−1, we obtain∣∣H(λq) : ((H
2)′(λq) ∩ (H2)

′(λq))
∣∣ = 2q.q2.

b) The proof is similar to a). 2

Remark 2.6 Under the map α in (2), any subgroup of H(λq) is mapped to a subgroup of H(λq) similar to

the extended modular group in [19] and [20] . Indeed one finds

H(λq)
α↔ H(λq)α

Hq(λq) ↔ H2(λq)
H ′(λq) ↔ H2(λq)

(Hq)′(λq) ↔ (H2)
′(λq).

Of course, if we know the generators of any one of these subgroups, then we find the generators of its

image under α. The subgroups H(λq), H0(λq), H
′
(λq) , and H

′′
(λq) of H(λq) are α− invariant and hence

they are characteristic subgroups. Figure 2 summarizes these results .

As shown in [18], if M is a regular or orientably regular hypermap corresponding to a normal subgroup

M of H(λq), then Mα is the hypermap corresponding to the normal subgroup Mα .

Corollary 2.7 Let q ≥ 3 be a prime number.

i) The quotient groups H(λq)/H
′(λq) and H(λq)/H2(λq) are generalized M∗−groups. These quotient groups

act on surfaces of topological type ((q − 1), 1, +) and ((q − 1), q, +) respectively, where in the triple

(g, k, ϵ), g is the algebraic genus, k is the number of boundary components, and ϵ describes the orientability

of a bordered Klein surface.
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Figure 2. ◦ Normal subgroups of H(λq) • Characteristic subgroups of H(λq ).

ii) The quotient group H(λq)/H
′′(λq) is a generalized M∗−group. This quotient group acts on surfaces of

topological type (q.(q − 2) + 1, q, +).

iii) The quotient groups H(λq)/(H
q)′(λq) and H(λq)/(H2)

′(λq) are generalized M∗−groups. These quotient

groups act on surfaces of topological type (2q−1.(q − 2) + 1, 2q−1, +) and (2q−1.(q − 2) + 1, q.2q−2,+)

respectively.

Remark 2.8 If q = 3, then H(λ3)/H
′(λ3) and H(λ3)/H2(λ3) act on surfaces of topological type (2, 1, +) and

(2, 3, +); H(λ3)/H
′′(λ3) acts on surfaces of topological type (4, 3, +);H(λ3)/(H

3)′(λ3) and H(λ3)/(H2)
′(λ3)

act on surfaces of topological type (5, 4, +) and (5, 6,+). If q = 5, then H(λ5)/H
′(λ5) and H(λ5)/H2(λ5)

act on surfaces of topological type (4, 1, +) and (4, 5, +); H(λ5)/H
′′(λ5) acts on surfaces of topological type

(16, 5, +);H(λ5)/(H
5)′(λ5) and H(λ5)/(H2)

′(λ5) act on surfaces of topological type (49, 16, +) and (49,

40,+). All these results coincide with some results given in [3].

In the following, we focus on the Hecke group H(λ5). We know from [37] that the subgroup (H2)
′(λ3) is

equal to the congruence subgroup H4(λ3). We want to derive a similar equation for H(λ5). For this we start

with the special example q = 5 in ii) of the proof of Theorem 2.3.

Example 2.9 Let q = 5 . Then
∣∣H2(λ5) : (H2)

′(λ5)
∣∣ = 32. We choose Σ = {I, k1, k2, k3, k4, k5, k1k2, k1k3,

k1k4, k1k5, k2k3, k2k4, k2k5, k3k4, k3k5, k4k5, k1k2k3, k1k2k4, k1k2k5, k1k3k4, k1k3k5, k1k4k5, k2k3k4,

k2k3k5, k2k4k5, k3k4k5, k1k2k3k4, k1k2k3k5, k1k2k4k5, k1k3k4k5, k2k3k4k5, k1k2k3k4k5} as a Schreier

transversal for (H2)
′(λ5) . Using the Reidemeister–Schreier method, we get the following generators of (H2)

′(λ5)

(here λ = λ5 = 1+
√
5

2 and λ is a root of the polynomial λ2 − λ− 1 = 0). There are 10 generators of the form,
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k1k2k1k2 =

(
1 4λ
0 1

)
k2k4k2k4 =

(
48λ+ 29 40λ+ 24
−20λ− 12 −16λ− 11

)
k1k3k1k3 =

(
16λ+ 9 20λ+ 12
12λ+ 8 16λ+ 9

)
k2k5k2k5 =

(
4λ+ 13 4λ+ 8
−4λ− 8 −4λ− 3

)
k1k4k1k4 =

(
16λ+ 9 12λ+ 8
20λ+ 12 16λ+ 9

)
k3k4k3k4 =

(
8λ+ 5 8λ+ 4
−8λ− 4 −8λ− 3

)
k1k5k1k5 =

(
1 0
4λ 1

)
k3k5k3k5 =

(
48λ+ 29 20λ+ 12
−40λ− 24 −16λ− 11

)
k2k3k2k3 =

(
4λ+ 5 8λ+ 4
−4λ −4λ− 3

)
k4k5k4k5 =

(
4λ+ 5 4λ
−8λ− 4 −4λ− 3

)
20 generators of the form,

k1k2k3k1k3k2 =

(
−24λ− 15 −48λ− 28
−12λ− 8 −24λ− 15

)
k1k2k3k2k3k1 =

(
4λ+ 5 −8λ− 4
4λ −4λ+ 5

)
k1k2k4k1k4k2 =

(
−42λ− 25 −128λ− 80
−20λ− 12 −52λ− 33)

)
k1k2k4k2k4k1 =

(
48λ+ 29 −40λ− 24
20λ+ 12 −16λ− 11

)
k1k2k5k1k5k2 =

(
−8λ− 3 −20λ− 16
−4λ −8λ− 7

)
k1k2k5k2k5k1 =

(
4λ+ 13 −4λ− 8
4λ+ 8 −4λ− 3

)
k1k3k4k1k4k3 =

(
−36λ− 23 −72λ− 44
−32λ− 20 −64λ− 39

)
k1k3k4k3k4k1 =

(
−4λ− 3 4λ+ 2
−4λ− 2 4λ+ 1

)

k1k3k5k1k5k3 =

(
−48λ− 31 −60λ− 36
−40λ− 24 −48λ− 41)

)
k1k3k5k3k5k1 =

(
48λ+ 29 −20λ− 12
40λ+ 24 −16λ− 11

)
k1k4k5k1k5k4 =

(
−24λ− 15 −20λ− 8
−32λ− 20 −28λ− 15)

)
k1k4k5k4k5k1 =

(
4λ+ 5 −4λ
8λ+ 4 −4λ− 3

)
k2k3k4k2k4k3 =

(
−100λ− 63 −112λ− 68
48λ+ 28 52λ+ 33

)
k2k3k4k3k4k2 =

(
−16λ− 11 −40λ+ 44
8λ+ 4 16λ+ 13

)
k2k3k5k2k5k3 =

(
−80λ− 51 −92λ− 60
40λ+ 24 48λ+ 25

)
k2k3k5k3k5k2 =

(
−80λ− 51 −228λ− 140
40λ+ 24 112λ+ 69

)
k2k4k5k2k5k4 =

(
−20λ− 11 −12λ
8λ+ 4 4λ+ 1

)
k2k4k5k4k5k2 =

(
−20λ− 11 −52λ− 32
−8λ− 4 20λ+ 13

)
k3k4k5k3k5k4 =

(
−206λ− 127 −92λ− 56
182λ+ 108 80λ+ 49

)
k3k4k5k4k5k3 =

(
−44λ− 27 −52λ− 32
40λ+ 20 44λ+ 29

)
15 generators of the form,

k1k2k3k4k1k4k3k2 =

(
68λ+ 41 84λ+ 52
32λ+ 20 40λ+ 25

)
k1k2k3k4k2k4k3k1 =

(
−100λ− 63 112λ+ 68
−48λ− 28 52λ+ 33

)
k1k2k3k4k3k4k2k1 =

(
−16λ− 11 40λ+ 20
−8λ− 4 16λ+ 13

)
k1k2k3k5k1k5k3k2 =

(
80λ+ 49 160λ+ 100
40λ+ 24 80λ+ 49)

)
k1k2k3k5k2k5k3k1 =

(
−80λ− 51 92λ+ 60
−40λ− 24 48λ+ 25)

)
k1k2k3k5k3k5k2k1 =

(
−80λ− 51 128λ+ 80
−40λ− 24 64λ+ 37

)
k1k2k4k5k1k5k4k2 =

(
80λ+ 49 200λ+ 120
32λ+ 20 80λ+ 49

)
k1k2k4k5k2k5k4k1 =

(
−20λ− 11 12λ
−8λ− 4 4λ+ 1

)
k1k2k4k5k4k5k2k1 =

(
−20λ− 11 52λ+ 32
−8λ− 4 20λ+ 13

)
k1k3k4k5k1k5k4k3 =

(
120λ+ 73 136λ+ 84
108λ+ 60 120λ+ 73

)
k1k3k4k5k3k5k4k1 =

(
−128λ− 79 92λ+ 56
−112λ− 68 80λ+ 49

)
k1k3k4k5k4k5k3k1 =

(
−44λ− 27 52λ+ 32
−40λ− 20 44λ+ 29

)
k2k3k4k5k2k5k4k3 =

(
368λ+ 221 604λ+ 372
−172λ− 112 −288λ− 179

)
k2k3k4k5k3k5k4k2 =

(
232λ+ 145 588λ+ 360
−112λ− 68 −280λ− 175

)
k2k3k4k5k4k5k3k2 =

(
56λ+ 33 164λ+ 96
−40λ− 20 −76λ− 51

)
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and 4 generators of the form

k1k2k3k4k5k1k5k4k3k2 =

(
−192λ− 119 −372λ− 228
−92λ− 56 −176λ− 111

)
k1k2k3k4k5k2k5k4k3k1 =

(
368λ+ 221 −604λ− 372
172λ+ 112 −288λ− 179

)
k1k2k3k4k5k3k5k4k2k1 =

(
232λ+ 145 −588λ− 360
112λ+ 68 −280λ− 175

)
k1k2k3k4k5k4k5k3k2k1 =

(
76λ+ 53 −164λ− 96
40λ+ 20 −76λ− 51

)

Therefore , the subgroup (H2)
′(λ5) is a free group of rank 49 and of signature (5; ∞(40)).

Corollary 2.10 The subgroup (H2)
′(λ5) of H(λ5) is equal to the congruence subgroup H4(λ5), i.e. (H2)

′(λ5) =

H4(λ5).

Proof From Theorem 2.3, the group (H2)
′(λ5) is a normal subgroup of index 160 in H(λ5). Moreover, the

congruence subgroup H4(λ5) is a normal subgroup of index 160 in H(λ5) (see [16] and [23]) . Indeed, there are

4 normal subgroups of index 160 in H(λ5) (see [9]). However, from the previous example, all generators of the

group (H2)
′(λ5) are congruent to the ± I (mod 4). Thus (H2)

′(λ5) ⊆ H4(λ5) and we get (H2)
′(λ5) = H4(λ5).

2

On the other hand, in [34], Newman and Smart showed that

H6(λ3) = (H2)′(λ3) ∩ (H3)′(λ3).

Now we show that this equality is not true for the Hecke group H(λ5).

Corollary 2.11 H10(λ5) ̸= (H2)′(λ5) ∩ (H5)′(λ5).

Proof Since (H2)′(λ5) ⊂ H ′(λ5) and (H5)′(λ5) ⊂ H ′(λ5), we have (H2)′(λ5) ∩ (H5)′(λ5) ⊂ H ′(λ5). If

H10(λ5) = (H2)′(λ5) ∩ (H5)′(λ5), then H10(λ5) ⊂ H ′(λ5). However, this is impossible since the commutator

subgroup H ′(λ5) is not congruence, from [25]. Then we get H10(λ5) ̸= (H2)′(λ5) ∩ (H5)′(λ5). 2

Finally, we formulate the following conjectures. It seems to us difficult to prove them.

Conjecture 2.12 i) For all q ≥ 3 prime, (H2(λq))
′ = H4(λq).

ii) For all q ≥ 3 prime, H2q(λq) ̸= (H2)′(λq) ∩ (Hq)′(λq).
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