STRUCTURAL CHEMISTRY ISSN 2053-2296

Received 13 February 2018 Accepted 25 June 2018

Edited by T.-B. Lu, Sun Yat-Sen University, People's Republic of China

Keywords: nickel(II) complex; Schiff base; crystal structure; photoluminescence; green light emitting devices.

CCDC reference: 1589491

Supporting information: this article has supporting information at journals.iucr.org/c

 \circled{c} 2018 International Union of Crystallography

Structural and spectroscopic characterization of a new luminescent Ni^{II} complex: bis{2,4-dichloro-6-[(2-hydroxypropyl)iminomethyl]phenolato- κ^3 O,N,O'}nickel(II)

Duygu Akin Kara,^a Adem Donmez,^{a,b} Hulya Kara^{a,c*} and M. Burak Coban^{c,d*}

^aDepartment of Physics, Molecular Nano-Materials Laboratory, Mugla Sitki Kocman University, Mugla, Turkey, ^bScientific Research Projects Coordination Unit, Mugla Sitki Kocman University, Mugla, Turkey, ^cDepartment of Physics, Balikesir University, Balikesir, Turkey, and ^dCenter of Sci and Tech App and Research, Balikesir University, Balikesir, Turkey. *Correspondence e-mail: karahulya04@gmail.com, burakcoban@balikesir.edu.tr

The design and preparation of transition-metal complexes with Schiff base ligands are of interest due to their potential applications in the fields of molecular magnetism, nonlinear optics, dye-sensitized solar cells (DSSCs), sensing and photoluminescence. Luminescent metal complexes have been suggested as potential phosphors in electroluminescent devices. A new luminescent nickel(II) complex, $[Ni(C_{10}H_{10}Cl_2NO_2)]$, has been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis, UV-Vis, FT-IR, ¹H NMR, ¹³C NMR and photoluminescence spectroscopies, and LC–MS/MS. Molecules of the complex in the crystals lie on special positions, on crystallographic binary rotation axes. The Ni^H atoms are six-coordinated by two phenolate O, two imine N and two hydroxy O atoms from two tridentate Schiff base 2,4-dichloro-6-[(2-hydroxypropyl)iminomethyl]phenolate ligands, forming an elongated octahedral geometry. Furthermore, the complex exhibits a strong green luminescence emission in the solid state at room temperature, as can be seen from the (CIE) chromaticity diagram, and hence the complex may be a promising green OLED (organic light-emitting diode) in the development of electroluminescent materials for flat-panel-display applications.

1. Introduction

During the last decade, transition-metal complexes have been of great interest since they have potential applications in coordination chemistry, catalysis and sensors, and display biological and magnetic properties (Sherino et al., 2018; Bang et al., 2016; Vittaya et al., 2017; Hajikhanmirzaei et al., 2015; Vamja & Surati, 2017; Keypour et al., 2017). Recently, Schiff base ligands and their metal complexes have attracted attention as organic photovoltaic materials since their use as potential substitutes for dye-sensitized solar cells (DSSCs) (Zhang et al., 2018; Yang et al., 2010; Wesley Jeevadason et al., 2014; Dinçalp et al., 2010). In addition, impressive progress has been made in the photophysical and optoelectronic applications of these complexes, because they exhibit photoluminescence (PL), as well as electroluminescence (EL), and these qualities point to potential applications in the development of energy-efficient low-cost full-colour and flat-panel OLED (organic light-emitting diode) displays (Nishal et al., 2014, 2015; Taghi Sharbati et al., 2011; Yan et al., 2018; Bizzarri et al., 2017). Zn^{II} , Pd^{II} , Pt^{II} , Ir^{III} and Re^{I} complexes have been much more studied as luminescence emitters in comparison with Ni^H complexes (Li et al., 2013; Lepeltier et al., 2015; Singh et al., 2016; Nishal et al., 2015; Bizzarri et al., 2017). Therefore, Ni^{II} complexes do not appear as numerously in the literature as emitter materials for OLEDs. However, some recent articles have evidenced an increasing interest for emitting Ni^{II} complexes (Srinivas et al., 2016; Cerezo et al., 2017; More et al., $2017b$). In the last decade, our research group and others have reported the synthesis, structural, spectroscopic, NLO and magnetic properties of some nickel(II) Schiff base complexes (Elerman et al., 2001; Kara et al., 2003; Ünver et al., 2006; Shawish et al., 2016; Elmehdawi et al., 2017). According to the Cambridge Structural Database (CSD, Version 5.38, November 2016 updates; Groom et al., 2016), there are few reports on investigations of the emission spectra of salen-type ligands [salen is 2,2'-ethylenebis(nitrilomethylidene)diphenol] and their Ni^{II} complexes (More *et al.*, 2017*a,b*; Donmez *et al.*, 2017a,b). Green emitting materials provide one of the prime colours in the development of full-colour display technology and there is still a big challenge in developing emission materials to display green light. In this context, in view of the importance of luminescent Ni^{II} complexes and in an effort to enlarge the library of such complexes, a new luminescent nickel(II) complex, namely bis{2,4-dichloro-6-[(2-hydroxypropyl)iminomethyl]phenolato- κ^3 O,N,O'}nickel(II), (1), has been synthesized and characterized by single-crystal X-ray diffraction and elemental analysis, solid-state UV–Vis, FT–IR, 1 H NMR, 13 C NMR and solid-state photoluminescence spectroscopies, and LC–MS/MS.

2. Experimental

All chemicals and solvents used for the synthesis were of reagent grade and were used without further purification.

Elemental analyses (C, H and N) were carried out by standard methods. The solid-state UV–Vis spectra were determined with an Ocean Optics Maya 2000 Pro Spectrometer (250– 600 nm). The FT–IR spectra were measured with a Perkin-Elmer Spectrum 65 instrument in the range $4000-600 \text{ cm}^{-1}$. The solid-state luminescence spectra in the visible region were measured at room temperature with an ANDOR SR500i-BL photoluminescence spectrometer equipped with a triple grating and using an air-cooled CCD camera as the detector. The measurements were carried out using the excitation source (349 nm) of a Spectra-physics Nd:YLF laser with a 5 ns pulse width and 1.3 mJ of energy per pulse as the source. Mass spectra were determined with an LC–MS/MS AB Sciex Qtrap 5500 instrument. The ${}^{1}H$ and ${}^{13}C$ NMR spectra of the free Schiff base ligand were recorded [in dimethyl sulfoxide (DMSO)] using a Bruker Ultrashield Plus Biospin (400 MHz) instrument. Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D8 Advance diffractometer using Cu K α radiation ($\lambda = 1.5418$ Å) in the range $5 < 2\theta < 50^{\circ}$ in $\theta-\theta$ mode with a step of n s $(5 < n < 10 \text{ s})$ and a step width of 0.03°. A comparison between the experimental and calculated (from the CIF) PXRD patterns was performed with the Mercury program (Macrae et al., 2008).

2.1. Synthesis and crystallization

A solution of 3-aminopropan-1-ol (1 mmol, 0.075 g) in methanol (10 ml) was added slowly to a solution of 3,5-dichlorosalicylaldehyde (1 mmol, 0.191 g) in methanol (20 ml). The mixture was stirred for 1 h at 330 K. The yellow product of 2,4-dichloro-6- $[(2-hydroxypropy])$ iminomethyl]phenol $(H₂L)$ precipitated from the solution on cooling (yield 82%). Elemental analysis calculated for $C_{10}H_{11}Cl_2NO_2$ (%): C 48.41, H 4.47, N 5.65; found: C 48.36, H 4.49, N 5.63. LS–MS/MS m/z found 248.0, requires 248.1 (see Fig. S3 in the supporting information). ¹H NMR (400 MHz, DMSO- d_6 , Me₄Si, ppm): δ 8.56 (s, 1H, HC=N), 7.55 (d, $J = 2.8$ Hz, 1H, aromatic), 7.40 (d, $J = 2.4$ Hz, 1H, aromatic), 4.68 (brs, 1H, OH), 3.72 (t, $J =$ 6.8 Hz, 2H, H₂C—N), 3.51 (t, J = 6.0 Hz, 2H, H₂C—OH), 1.82 (quint, $J = 6.4$, 10.4 Hz, 2H, aliphatic methylene). ¹³C NMR (100 MHz, DMSO- d_6 , Me₄Si, ppm): δ 165.33 (C=N), 163.54 $(C=C=0)$, 132.72 (aromatic), 130.22 (aromatic), 124.57 $(C=C-CI)$, 116.76 $(C=C-O)$, 57.83 (methylene), 50.94 (H_2C-OH) , 32.61 (H_2C-N) . See Figs. S1 and S2 in the supporting information for the NMR spectra.

Complex (1) was prepared by the addition of a solution of nickel(II) acetate tetrahydrate (0.249 g, 1 mmol) in methanol (30 ml) to a solution of $H₂L$ (1 mmol, 0.248 g) in methanol (30 ml). The resulting solution was stirred for 2 h at 333 K and then filtered. The filtrate was left to stand at room temperature. After two weeks, single crystals were obtained (yield 44%). The synthetic route for the preparation of $H₂L$ and (1) is outlined in Scheme 1. Analysis calculated for $C_{20}H_{20}Cl_4$ -N2NiO4 (%): C 43.45, H 3.65, N 5.07; found: C 43.11, H 3.67, N 5.08. LS–MS/MS m/z found 553.3, requires 552.9 (see Fig. S4 in the supporting information).

Table 1 Experimental details.

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

2.2. Refinement

Crystal data, data collection and structure refinement details for complex (1) are summarized in Table 1. H-atom positions were calculated geometrically and refined using a riding model, except for the hydroxy H atoms, for which their positional parameters were refined with restraints $[0.84 (2)$ $\AA]$ applied to the O—H distances.

3. Results and discussion

3.1. Crystal structure

Molecules of complex (1) in the crystal lie on special positions, on crystallographic binary rotation axes, and have crystallographic C2 point symmetry (Fig. 1). The crystallographically independent unit contains two independent half molecules. The Ni^{II} atom is six-coordinated by two phenolate O, two imine N and two hydroxy O atoms from two tridentate Schiff base ligands, forming a slightly elongated octahedral geometry. The Ni—O bond lengths range from 2.029 (3) to 2.106 (3) \AA and the Ni-N distances are 2.060 (3) and 2.053 (3) Å. The *trans* angles at the Ni atom are in the range 173.47 (11)–176.86 (19) $^{\circ}$, while the other angles are close to 90 $^{\circ}$, ranging from 84.44 (16) to 96.02 (12) $^{\circ}$, indicating a slightly distorted octahedral coordination. Selected bond lengths and angles are listed in Table 2, and are typical and comparable

Symmetry code: (i) $-x + 1$, y , $-z + \frac{3}{2}$.

with those observed in nickel(II) Schiff base complexes (Wang et al., 2011; Zhou et al., 2009; Ayikoé et al., 2011). In the crystal structure of (1), the aliphatic –OH group of the tridentate Schiff base ligand actively participates in intermolecular O— $H \cdots$ O hydrogen bonds, connecting to one other unit and resulting in a one-dimensional chain along the b axis (Fig. 2 and Table 3). The intramolecular $Ni1 \cdots Ni2$ distance is 5.346 (3) \AA and the intermolecular Ni2 \cdots Ni1ⁱⁱ [symmetry] code: (ii) $x, y - 1, z$ distance is 5.388 (3) Å in the chain structure (Fig. 2). The shortest intermolecular Cl \cdots Cl contact is Cl2··· Cl4ⁱⁱⁱ of 3.443 (3) Å [symmetry code: (iii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$, which connects the molecules into a two-dimensional structure in the bc plane (Fig. 3).

Figure 1

The molecular structure of (1), showing the atom-labelling scheme and drawn with 50% probability displacement ellipsoids. [Symmetry code: (i) $-x, -y + 1, -z + 1.$

research papers

Figure 2

The one-dimensional hydrogen-bonded chain structure in (1). Dotted lines indicate $O-H\cdots O$ hydrogen bonds. Generic atom labels without symmetry codes have been used. See Table 3 for hydrogen-bond details.

3.2. Powder X-ray diffraction pattern

Before proceeding to the spectroscopic and photoluminescence studies, we also carried out a powder X-ray diffraction (PXRD) experiment to investigate the purity of (1). The PXRD results showed that the peak positions match well with those from the simulated PXRD patterns on the basis of single-crystal structure data, indicating reasonable crystalline phase purity (Fig. 4).

3.3. Spectroscopy

The FT–IR spectrum of (1) is consistent with the structural characteristics determined by single-crystal X-ray diffraction (Fig. 5). By comparing the IR spectra of $H₂L$ and its complex (1), the coordination modes and the parts of the ligand bound to the metal ion were explored. On coordination, the stretching vibrations for the $v(C=N)$ and $v(C-O)$ bonds show a significant shift from 1648 to 1633 cm^{-1} and from 1204 to 1167 cm^{-1} for H₂L and (1), respectively (Coban *et al.*, 2018; Donmez et al., 2017a). The absorptions between 2964 and 2855 cm^{-1} are characteristic of the C-H aromatic and aliphatic stretching vibrations for both structures (Kocak et al., 2017). The broad band attributed to the existence of a $\nu(O-H)$ stretching vibration at 3231 cm⁻¹ of H₂L was

Figure 4

Powder X-ray diffraction pattern of (1). The black line represents the pattern simulated from the CIF and the red line represents the experimental pattern.

Figure 5 The IR spectra of $H₂L$ (black line) and (1) (red line).

Table 3 Hydrogen-bond geometry (\mathring{A}, \degree) .

$D-\mathrm{H}\cdots A$	$D-H$	$H \cdot \cdot \cdot A$	$D\cdots A$	D -H \cdots A
$O1 - H1 \cdots O3$	0.84(3)	1.87(3)	2.702(4)	172(4)
$O4 - H4A \cdots O2$ ⁱⁱ	0.84(2)	1.91(2)	2.736(4)	168(4)

Symmetry code: (ii) $x, y - 1, z$.

Figure 3

A crystal packing view of the polymeric networks in the bc plane showing the intermolecular Cl $\cdot \cdot$ Cl interactions (dotted lines). Generic atom labels without symmetry codes have been used.

The solid-state UV–Vis spectra of $H₂L$ (black line) and (1) (red line).

replaced by the weaker broad band at 3085 cm^{-1} after metal and ligand complexation (Yahsi et al., 2016a). The shift of the peak position of the hydroxy groups and the broadening of the band could be attributed to the formation of the metal complex. The $v(C-Cl)$ stretching vibrations from the 3,5chlorobenzene rings are observed between 858 and 824 cm^{-1} in $H₂L$ and (1), respectively (Donmez *et al.*, 2017*b*).

The photophysical properties of $H₂L$ and (1) have been reported through solid-state UV–Vis absorption (Fig. 6) and solid-state photoluminescence spectroscopy (Fig. 7). The similarity in the shapes of the absorption and emission bands suggests that the bands result from ligand-centred transitions. As shown in the solid-state UV–Vis spectrum in Fig. 6, $H₂L$ displays an essential broad band in the UV region (λ_{max} = 263 nm), which may be attributed to ligand-centred $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions (Gliemann, 1985; Celen *et al.*, 2013; Yahsi *et al.*, 2016*b*). On the other hand, the absorption spec-

Figure 7

The emission spectra of H_2L (yellow line) and (1) (green line) in solid samples at room temperature (λ_{ex} = 349 nm). The upper left and lower left photos are luminescence images of (1) and $H₂L$, respectively. The upper right inset is a CIE colour space chromaticity diagram of the H_2L (yellow circle) and complex (1) (green circle) emissions.

The solid-state photoluminescence spectra of free $H₂L$ and (1) were investigated at room temperature upon excitation at $\lambda_{\rm ex}$ = 349 nm. As shown in Fig. 7, H₂L displays a broad yellow emission band at $\lambda_{\text{max}} = 592$ nm, with CIE coordinates of 0.55 and 0.41, which can be attributed to $\pi \rightarrow \pi^*$ electronic transitions in the molecular orbital manifolds of the aromatic ring systems of the ligand, suggesting that there may be intraligand charge transfer (ILCT) (Coban et al., 2016, 2018; Oylumluoglu et al., 2017). The occurrence of a photo-induced electron transfer (PET) process may be responsible for quenching the luminescence of the ligand, depending on the presence of a lone pair of electrons on the N- and O-donor atoms in the ligand (Shafaatian et al., 2015; Basak et al., 2007). Complex (1) displays an intense green broad emission band occurring at λ_{max} = 526 nm, with CIE coordinates of 0.22 and 0.62 in the visible region. The intensity of the emission in (1) is greater than that of the free ligand $(H₂L)$. The main reason for this is that the PET process was prevented by the complexation of the ligand to the metal ion. Therefore, the luminescence intensity may be greatly increased by the coordination of the Ni^{II} atom (Hopa & Cokay, 2016). In addition, chelation of H₂L to the Ni^{II} atom increases the rigidity of the HL^- ligand and thus reduces energy loss through thermal vibration decay (Das et al., 2006). However, the increase of luminescence by complexation is very interesting because it creates opportunities for the photochemical applications of these complexes (Majumder *et al.*, 2006). Upon coordinating to the Ni^{II} atom, the observed blue shift (66 nm) of the emission maximum between free H_2L and its complex (1) may be denoted as CHEF (chelation-enhanced fluorescence) (Song et al., 2015; Erkarslan et al., 2016).

4. Conclusion

The compound characterized in this study is a new example of a nickel(II) Schiff base complex which shows luminescence in the green region of the spectrum. Our results show that the emission band in the complex displays a blue shift and a greater intensity than that of the free organic ligand $(H₂L)$ when excited at 349 nm. The blue shift and enhanced luminescence intensity for the complex may be due to the chelation of the ligand to the metal centre. Such chelation enhances the rigidity of the ligand and thus reduces the loss of energy by radiationless decay of the intraligand emission excited state. The CIE graph indicated that this phosphor might be very useful for green-light-emitting diodes and solid-state lighting applications.

Acknowledgements

The authors are grateful to Dokuz Eylul University for the use of the Agilent Xcalibur Eos diffractometer (purchased under University Research grant No. 2010.KB.FEN.13) and Balikesir University, Science and Technology Application and Research Center (BUBTAM) for the use of the mass and photoluminescence spectrometers. The authors also thank Dr Muhittin Aygun (Dokuz Eylul University) for the X-ray measurement and Dr Erhan Kaplaner (Mugla Sıtkı Kocman University) for NMR comments.

Funding information

Funding for this research was provided by: Research Funds of Mugla Sitki Kocman University (grant No. BAP-2017/029).

References

- Ayikoé, K., Gultneh, Y. & Butcher, R. J. (2011). Acta Cryst. E67, [m1211.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB1)
- [Bang, S., Kim, J., Jang, B. W., Kang, S.-G. & Kwak, C. H. \(2016\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB2) Inorg. [Chim. Acta](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB2), 444, 176–180.
- [Basak, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G. & Rodriguez,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB3) [M. T. G. \(2007\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB3) Polyhedron, 26, 5104–5112.
- Bizzarri, C., Spuling, E., Knoll, D. M., Volz, D. & Bräse, S. (2017). Coord. Chem. Rev. [https://doi.org/10.1016/j.ccr.2017.09.011.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB4)
- [Celen, S., Gungor, E., Kara, H. & Azaz, A. D. \(2013\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB5) J. Coord. Chem. 66[, 3170–3181.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB5)
- Cerezo, J., Requena, A., Zúñiga, J., Piernas, M. J., Santana, M. D., Pérez, J. & García, L. (2017). Inorg. Chem. 56, 3663-3673.
- [Clark, R. C. & Reid, J. S. \(1995\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB7) Acta Cryst. A51, 887–897.
- [Coban, M. B., Erkarslan, U., Oylumluoglu, G., Aygun, M. & Kara, H.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB8) (2016). [Inorg. Chim. Acta](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB8), 447, 87–91.
- [Coban, M. B., Gungor, E., Kara, H., Baisch, U. & Acar, Y. \(2018\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB9) J. [Mol. Struct.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB9) 1154, 579–586.
- [Das, D., Chand, B. G., Sarker, K. K., Dinda, J. & Sinha, C. \(2006\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB10) Polyhedron, 25[, 2333–2340.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB10)
- Dinçalp, H., Yavuz, S., Haklı, Ö., Zafer, C., Özsoy, C., Durucasu, İ. & İçli, S. (2010). [J. Photochem. Photobiol. Chem.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB11) 210, 8-16.
- [Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB12) [Puschmann, H. \(2009\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB12) J. Appl. Cryst. 42, 339–341.
- [Donmez, A., Coban, M. B., Kocak, C., Oylumluoglu, G., Baisch, U. &](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB13) Kara, H. (2017a). [Mol. Cryst. Liq. Cryst.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB13) 652, 213–222.
- [Donmez, A., Oylumluoglu, G., Coban, M. B., Kocak, C., Aygun, M. &](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB14) [Kara, H. \(2017](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB14)b). J. Mol. Struct. 1149, 569–575.
- [Elerman, Y., Kara, H., Prout, K. & Chippindale, A. \(2001\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB15) Acta Cryst. C57[, 149–150.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB15)
- [Elmehdawi, R., EL-Kaheli, M., Abuhmaiera, R., Treish, F., Ben](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB16) [Younes, M., Bazzicalupi, C., Guerri, A., Caneschi, A. & Amjad, A.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB16) (2017). Materials (Basel), 10[, article number 178.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB16)
- Erkarslan, U., Oylumluoglu, G., Coban, M. B., Öztürk, E. & Kara, H. (2016). [Inorg. Chim. Acta](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB17), 445, 57–61.
- Gliemann, G. (1985). [Ber. Bunsen. Phys. Chem.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB18) 89, 99–100.
- [Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. \(2016\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB19) Acta Cryst. B72[, 171–179.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB19)
- Hajikhanmirzaei, L., Safaei, E., Wojtczak, A. & Jagličić, Z. (2015). [Inorg. Chim. Acta](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB20), 430, 125–131.
- [Hopa, C. & Cokay, I. \(2016\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB21) Acta Cryst. C72, 601–606.
- [Kara, H., Elerman, Y. & Elmali, A. \(2003\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB22) Z. Naturforsch. B, 58, 955– [958.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB22)
- Keypour, H., Shayesteh, M., Rezaeivala, M., Dhers, S., Küp, F. O., Öztürk, İ, Güllü, M. & Ng, S. (2017). J. Mol. Struct. 1148, 568–576.
- [Kocak, C., Oylumluoglu, G., Donmez, A., Coban, M. B., Erkarslan,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB24) [U., Aygun, M. & Kara, H. \(2017\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB24) Acta Cryst. C73, 414–419.
- Lepeltier, M., Morlet-Savary, F., Graff, B., Lalevée, J., Gigmes, D. & [Dumur, F. \(2015\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB25) Synth. Met. 199, 139–146.
- [Li, K., Cheng, G., Ma, C., Guan, X., Kwok, W.-M., Chen, Y., Lu, W. &](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB26) [Che, C.-M. \(2013\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB26) Chem. Sci. 4, 2630–2644.
- [Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB27) [P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. &](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB27) [Wood, P. A. \(2008\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB27) J. Appl. Cryst. 41, 466–470.
- [Majumder, A., Rosair, G. M., Mallick, A., Chattopadhyay, N. & Mitra,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB28) S. (2006). Polyhedron, 25[, 1753–1762.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB28)
- [More, M. S., Devkule, S. S. & Chavan, S. S. \(2017](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB29)a). J. Fluoresc. 27, [841–851.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB29)
- [More, M. S., Pawal, S. B., Lolage, S. R. & Chavan, S. S. \(2017](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB30)b). J. Mol. Struct. 1128[, 419–427.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB30)
- [Nishal, V., Singh, D., Kumar, A., Tanwar, V., Singh, I., Srivastava, R.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB31) [& Kadyan, P. S. \(2014\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB31) J. Org. Semicond. 2, 15–20.
- [Nishal, V., Singh, D., Saini, R. K., Tanwar, V., Kadyan, S., Srivastava,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB32) [R. & Kadyan, P. S. \(2015\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB32) Cogent Chem. 1, 1–10.
- [Oylumluoglu, G., Coban, M. B., Kocak, C., Aygun, M. & Kara, H.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB33) (2017). [J. Mol. Struct.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB33) 1146, 356–364.
- Rigaku OD (2015). CrysAlis PRO[. Rigaku Oxford Diffraction Ltd,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB34) [Yarnton, Oxfordshire, England.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB34)
- [Shafaatian, B., Hashemibagha, M., Notash, B. & Rezvani, S. A.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB35) (2015). [J. Organomet. Chem.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB35) 791, 51–57.
- [Shawish, H. B., Maah, M., Halim, S. N. A. & Shaker, S. A. \(2016\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB36) [Arab. J. Chem.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB36) 9, S1935–S1942.
- [Sheldrick, G. M. \(2015](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB37)a). Acta Cryst. A71, 3–8.
- [Sheldrick, G. M. \(2015](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB38)b). Acta Cryst. C71, 3–8.
- [Sherino, B., Mohamad, S., Abdul Halim, S. N. & Abdul Manan, N. S.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB39) (2018). [Sens. Actuators B Chem.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB39) 254, 1148–1156.
- [Singh, D., Bhagwan, S., Saini, R. K., Nishal, V. & Singh, I. \(2016\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB40) [Advanced Magnetic and Optical Materials](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB40), edited by A. Tiwari, [P. K. Iyer, V. Kumar & H. Swart, pp. 473–519. Hoboken, NJ, USA:](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB40) [John Wiley & Sons Inc.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB40)
- [Song, X.-Q., Peng, Y.-Q., Cheng, G.-Q., Wang, X.-R., Liu, P.-P. & Xu,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB41) W.-Y. (2015). [Inorg. Chim. Acta](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB41), 427, 13-21.
- [Srinivas, M., Shrungesh Kumar, T. O., Mahadevan, K. M., Naveen, S.,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB42) [Vijayakumar, G. R., Nagabhushana, H., Kumara, M. N. &](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB42) [Lokanath, N. K. \(2016\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB42) J. Sci. Adv. Mater. Dev. 1, 324–329.
- [Taghi Sharbati, M., Soltani Rad, M. N., Behrouz, S., Gharavi, A. &](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB43) [Emami, F. \(2011\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB43) J. Lumin. 131, 553–558.
- Ünver, H., Elmali, A., Karakaş, A., Kara, H. & Donmez, E. (2006). J. [Mol. Struct.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB44) 800, 18–22.
- [Vamja, A. C. & Surati, K. R. \(2017\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB45) Luminescence, 32, 1197– [1202.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB45)
- [Vittaya, L., Leesakul, N., Saithong, S. & Phongpaichit, S. \(2017\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB46) [ScienceAsia](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB46), 43, 175–185.
- [Wang, C. Y., Li, J. F., Wang, P. & Yuan, C. J. \(2011\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB47) Acta Cryst. E67, [m1227–m1228.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB47)
- [Wesley Jeevadason, A., Kalidasa Murugavel, K. & Neelakantan,](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB48) M. A. (2014). [Renew. Sustain. Energy Rev.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB48) 36, 220–227.
- [Yahsi, Y., Gungor, E., Coban, M. B. & Kara, H. \(2016](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB49)a). Mol. Cryst. [Liq. Cryst.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB49) 637, 67–75.
- [Yahsi, Y., Ozbek, H., Aygun, M. & Kara, H. \(2016](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB50)b). Acta Cryst. C72, [426–431.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB50)
- [Yan, L., Li, R., Shen, W. & Qi, Z. \(2018\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB51) J. Lumin. 194, 151–155.
- [Yang, S., Kou, H., Wang, H., Cheng, K. & Wang, J. \(2010\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB52) New J. Chem. 34[, 313–317.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB52)
- [Zhang, J., Xu, L. & Wong, W. Y. \(2018\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB53) Coord. Chem. Rev. 355, 180– [198.](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB53)
- [Zhou, T., Zhou, R.-J. & An, Z. \(2009\).](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lf3072&bbid=BB54) Acta Cryst. E65, m779.

supporting information

Acta Cryst. (2018). C**74**, 901-906 [https://doi.org/10.1107/S2053229618009166]

Structural and spectroscopic characterization of a new luminescent Ni^{II} complex: bis{2,4-dichloro-6-[(2-hydroxypropyl)iminomethyl]phenolato*κ***3** *O***,***N***,***O***′}nickel(II)**

Duygu Akin Kara, Adem Donmez, Hulya Kara and M. Burak Coban

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Bis{2,4-dichloro-6-[(2-hydroxypropyl)iminomethyl]phenolato-*κ***³** *O***,***N***,***O***′}nickel(II)**

Crystal data

 $[Ni(C_{10}H_{10}Cl_2NO_2)_2]$ $M_r = 552.89$ Monoclinic, *C*2/*c* $a = 20.5375(19)$ Å $b = 10.7332$ (6) Å $c = 22.4073$ (19) Å β = 108.073 (10)^o $V = 4695.6$ (7) Å³ $Z = 8$

Data collection

Xcalibur, Eos diffractometer Detector resolution: 8.0667 pixels mm-1 *ω* scans Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] $T_{\text{min}} = 0.521, T_{\text{max}} = 0.685$

Refinement

Refinement on *F*² Least-squares matrix: full *R*[$F^2 > 2\sigma(F^2)$] = 0.051 $wR(F^2) = 0.129$ $S = 1.09$ 4420 reflections 287 parameters 2 restraints

 $F(000) = 2256$ $D_x = 1.564$ Mg m⁻³ Mo *Kα* radiation, $\lambda = 0.71073$ Å Cell parameters from 2317 reflections θ = 3.7–28.1° μ = 1.31 mm⁻¹ *T* = 292 K Prism, green $0.32 \times 0.21 \times 0.17$ mm

7742 measured reflections 4420 independent reflections 3127 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 25.7^{\circ}, \theta_{\text{min}} = 3.2^{\circ}$ $h = -24 \rightarrow 22$ $k = -13 \rightarrow 10$ *l* = −27→16

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2 (F_o^2) + (0.0441P)^2 + 4.9249P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ Δ*ρ*max = 0.96 e Å−3 $\Delta\rho_{\text{min}} = -0.48$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

H13B	0.344280	0.481296	0.652679	$0.052*$
C14	0.4702(2)	0.4524(4)	0.6140(2)	0.0368(10)
H ₁₄	0.442685	0.436358	0.573133	$0.044*$
C15	0.5413(2)	0.4833(4)	0.6228(2)	0.0361(10)
C16	0.5688(2)	0.4496(5)	0.5754(2)	0.0454(12)
H ₁₆	0.541716	0.407314	0.540169	$0.054*$
C17	0.6345(3)	0.4778(5)	0.5800(2)	0.0481(13)
C18	0.6749(2)	0.5468(5)	0.6297(2)	0.0476(13)
H18	0.719243	0.569347	0.631525	$0.057*$
C19	0.6479(2)	0.5818(4)	0.6768(2)	0.0404(11)
C20	0.5815(2)	0.5497(4)	0.6766(2)	0.0330(10)
H ₄ A	0.459(2)	0.237(3)	0.779(2)	$0.050*$
H1	0.519(2)	0.737(2)	0.701(2)	$0.050*$

Atomic displacement parameters (Å2)

supporting information

supporting information

Symmetry code: (i) −*x*+1, *y*, −*z*+3/2.

Hydrogen-bond geometry (Å, º)

Symmetry code: (ii) *x*, *y*−1, *z*.