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Abstract: In coastal engineering, empirical formulas grounded on experimental works regarding
the stability of breakwaters have been developed. In recent years, soft computing tools such as
artificial neural networks and fuzzy models have started to be employed to diminish the time and
cost spent in these mentioned experimental works. To predict the stability number of rubble-mound
breakwaters, the least squares version of support vector machines (LSSVM) method is used because
it can be assessed as an alternative one to diverse soft computing techniques. The LSSVM models
have been operated through the selected seven parameters, which are determined by Mallows’ Cp
approach, that are, namely, breakwater permeability, damage level, wave number, slope angle, water
depth, significant wave heights in front of the structure, and peak wave period. The performances of
the LSSVM models have shown superior accuracy (correlation coefficients (CC) of 0.997) than that
of artificial neural networks (ANN), fuzzy logic (FL), and genetic programming (GP), that are all
implemented in the related literature. As a result, it is thought that this study will provide a practical
way for readers to estimate the stability number of rubble-mound breakwaters with more accuracy.

Keywords: rubble-mound breakwater; least squares support vector mechanics; stability number;
particle swarm optimization

1. Introduction

One of the most essential structural coastal protection methods is the usage of breakwaters.
These structures are implemented to protect coastal areas and to prevent siltation in river mouths. It
also provides security against the waves coming offshore, while at the same time it ensures protection
for marine vessels entering the port. Essentially these structures are designed to absorb the available
coastal energy. Rubble-mound breakwaters are one of the most frequently used breakwater kinds over
the world. These breakwaters consist of three layers; filter, core, and armor layer. The most crucial
parameter in the design of the breakwater is to obtain data about the stability number of armor blocks.
In the literature, empirical formulas of Hudson [1] and Van der Meer [2] have been suggested, using
experimental studies in the context of stability analyses for rubble-mound breakwaters. Kaku [3],
Smith et al. [4], and Hanzawa et al. [5] have put forward new empirical equations with reference to
Van der Meer’s experimental data. However, these equations are not enough to diminish uncertainties
originated from the process. Recently, soft computing tools such as artificial neural networks (ANN),
support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) have started to be
employed both to cope with several troubles and to minimize the time and cost spent on experimental
works. Mase et al. [6] and Kim and Park [7] reported that the ANN technique yielded better results
than those of empirical model-based approaches in the breakwater design. Yagci et al. [8] used three
different types of ANN and fuzzy based techniques to determine the damage rates of the breakwater.
According to their evaluations, it has been deduced that all methods produce results which are quite
close to the experimental values. Despite the many advantages of ANN-derived methods, there are
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some disadvantages as well. Some of them are different complexity in the structure of the multi-layer
structure, trapping in local minimums, possibility of over-training, difficulty in sensitivity analysis
of parameters, and random output of assigned weights so that different outputs are generated in
each run of the network [9]. To depress the drawbacks of ANN, Vapnik [10] developed a support
vector machines (SVM) method based upon machine learning theory and solutions with quadratic
programming. While this technique maintains all the strengths of the ANN, it shows up to be a robust
alternative to make out some of the prominent weaknesses associated with ANN [11]. SVM methods
have been exported to various fields of water engineering, such as hydrology and coastal researches,
and significant inferences have been put forward [12–16]. An exemplary application of SVM is
presented by Kim et al. [17] under the estimation of stability numbers of rubble-mound breakwaters.
From their work, predictions derived from support vector regression (SVR) have been compared with
those of the empirical equation and ANN. As result of comparisons that has been conducted in their
study, the superiority of SVM has been emphasized. In the literature, this method is also applied to
the areas of coastal engineering, such as prediction of wave transmission over a submerged reef [18],
damage level prediction of non-reshaped berm breakwater [19–21], and wave transmission of floating
pipe breakwater [22].

Most of the soft computing models mentioned above are based upon Van der Meer data as training
data and at this stage, generally a trial and error method has been employed for predictor selection.
Table 1 summarizes the input sets recommended by different researchers. Here, P is permeability
of breakwater, Nw is the number of waves, S is damage level, εm is surf similarity parameter, cotθ is
slope angle, h is water depth, h/Hs dimensionless water depth, SS is spectral shape, Ls is the period of
significant wave, Hs significant wave heights in front of the structure, and Ts is wave period [7]. If it
is regarded that there are 2N-1 input combination under N inputs defined, it will not be credible to
figure out the predictor extraction by means of a basic approach like trial and error. In the presented
study, the predictor selection process was automated by Mallows’ Cp approach. Using this approach,
the best possible subsets within different inputs have been determined and then presented as inputs to
the least squares version of the support vector machine (LSSVM). The particle swarm optimization
(PSO) is implemented in the LSSVM calibration step to ensure that the trained model offers a global
solution without being encountered to the local minimum. It is thought that the modeling strategy that
includes the above process steps has novelty and at the same time it can ensure a practical solution for
the research pertaining to the topic indicated in the title of this paper.

Table 1. The input sets recommended by different researchers using the soft computing models.

Methods Author(s)
INPUT DATA

P Nw S εm Cotθ h/Hs SS h/Ls Hs Hs/Ls Ts

ANN

Mase et al. [6]

Kim and Park [7]

I
II
III
IV
V

Balas et al. [23]
I
II

FL Erdik [24]

MT (Model
Trees)

Shadidi and
Bonakdar [25]

I
II

SVR Kim et al. [17]
GP Koc et al. [26]
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2. Prevalent Formulas for Prediction of Stability Number

Stability number of rubble-mound breakwaters in reference to wave attack is defined as:

Ns =
Hs

∆Dn50
(1)

where Hs is the significant wave height, ∆ is relative mass density, and Dn50 is the nominal diameter of
armor unit. To estimate the stability number, Hudson [1] proposed an empirical formula:

Ns = (KDcotθ)1/3 (2)

where KD is stability coefficient (depends upon the form of the armor unit, method of placement, and
so on). Considering other parameters that are not considered in Equation (2), Van deer Meer [2] has
improved two stability formulas for both surging and plunging waves as follows:

Ns =
6, 2P0,18

(
S/
√

N
)0,2

√
εm

f or plunging waves (εm < εc) (3a)

Ns = P−0,13
(

S/
√

N
)0,2

cotθεm
P f or surging waves (εm ≥ εc) (3b)

where εm is surf similarity parameter (tanθ/
√

2πHs/gTm2) dependent on the average wave period

Tm, εc is the critical surf similarity parameter ((6, 2P0,31
√

tanθ)
1/(P+0,5)

) describing the transition from
plunging to surging waves.

By using H50 instead of Hs in Van Der Meer formulas (Equations (3a) and (3b)), Vidal et al. [27]
obtained the following equations. H50 is the average wave height of the 50 highest waves hitting a
rubble-mound breakwater.

N50 = 4.44S0.2P0.18εm
−0.5 i f εm < εc and cotθ ≤ 4 (4a)

N50 = 0.716S0.2P−0.13εm
Pcotθ i f εm ≥ εc and cotθ ≥ 4 (4b)

where N50 is defined as (N50 = H50/∆Dn50).

3. Methods and Data

3.1. Least Squares Support Vector Machines

Support vector machines (SVM) applied as regression is a soft computing tool developed within
a statistical learning theory by concerning various error optimization stages [22,28]. Despite the
prosperous performance of standard SVM, it has some shortcomings. Some of them are (i) that SVM
employs basis functions superfluously in that the needed support vectors increase with the training
data size, (ii) there is a dubiousness to get the control parameters. Thus, the calibration of the three
parameters of SVM can be time-consuming and wearing.

On the other hand, the LSSVMs supply a computational benefit over standard SVM by
transforming quadratic optimization issues to the linear equation system [29].

Given a training set {xk, yk}N
k=1 for a regression application, where xk ∈ R is the input vector,

yk ∈ R is the related output, and N is the data point number, the aim of LSSVM is to get ŷk ∈ R.
In LSSVM, the minimization of the cost-function J is defined as:

J(W, e) =
1
2

WTW + C
1
2 ∑N

k=1e2
k . (5)
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Subjected to the constraint

yk − ŷk = ek, k = 1, . . . , N (6)

where W is the weight, e2
k is the quadratic loss component, and C is a parameter used as

regularization [14,16]. The solution of this optimization problem originated from LSSVM’s structure
and can be attained by using the Lagrange multipliers as follows:

L(W, b, e, α) = J(W, e)−
N

∑
k=1

αk

{
WT f (xk) + b + ek − yk

}
(7)

where αk are Lagrange multipliers. The conditions regarding the optimal solution can be generated by
taking first-order partial derivatives of Equation (7) with respect to W, b, ek and αk, respectively, and
then equaling the system of equations to zero values such that:

∂L
∂W

= 0→W =
N

∑
k=1

αkφ(xk) (8a)

∂L
∂b

= 0→
N

∑
k=1

αk = 0 (8b)

∂L
∂ek

= 0→ αk = Cek, k = 1, . . . , N (8c)

∂L
∂αk

= 0→WTφ(xk) + b + ek − yk, k = 1, . . . , N. (8d)

The solution of the constrained optimization problem pertaining to LSSVM modeling including
Lagrange multipliers gives W values such that:

W =
N

∑
k=1

α∗k φ(xk) (9)

where α∗k is the Lagrange multiplier, which is obtained by referencing Equation (7) [30]. The LSSVM
function output can be obtained as follows:

ŷk = f (xk) =
N

∑
k=1

α∗k K(xk, xm) + b∗ (10)

where K(xk, xm) = φ(xk)
Tφ(xm) for k, m = 1, . . . , N is the kernel function and b∗ is the bias term. Any

kernel function can be preferred in accordance with Mercer’s theorem [31–33].

3.2. Kernel Function

The kernel functions treated by LSSVM modeling studies are generally some specific functions
including linear, spline, polynomial, sigmoid, and Gaussian radial basis [32–37]. In previous studies
existing in the literature, the Gaussian radial basis function (RBF) was chosen as the kernel function
because it can map samples nonlinearly into a higher dimensional space and is able to tackle the
situation having nonlinearity [38].

K(xk, x) = exp

(
−‖x− xk‖2

2σ2

)
(11)

where σ is the width of function, at the same time, a control parameter of LSSVM.
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Keerthi et al. [39] revealed that the linear type showed similar performance with the RBF
kernel function. Lin and Lin [40] proved that the sigmoid type had similar performances with
RBF. Additionally, Lin et al. [35] have pointed out that the RBF kernel is less numerical complex in
comparison with polynomial type since it requires many more hyper-parameters than those of the
RBF version.

3.3. Optimization Algorithm Used in LSSVM Calibration: PSO

In the modeling stage of LSSVM that have C and σ parameters to be tuned, the PSO algorithm,
which is a population-based heuristic algorithm brought forward by Kennedy and Eberhart [41],
inspired by the social behavior of birds, was preferred. LSSVM is calibrated by the grid search
approach standard [13–15]. Because PSO is a successful algorithm in terms of global search capability,
extra attention has been given to more precise training of LSSVM. Implementation of LSSVM combined
with PSO for another concept has been given by Hu et al. [42]. The readers can reach this study to get
more details about the procedure.

In PSO, for each particle that is initially randomized, the local best (pbest) is found in each
generation (or iteration). The number of pbest in the swarm is equal to the number of particles. After
enough iterations, the global best (gbest) solution is determined from the local solutions by means of
velocities and position update operators. The detailed information and the related formulas about this
algorithm have been given by Okkan et al. [43].

3.4. Data Sets

Input and output data must be specified to apply LSSVM in the phase of predicting the stability
numbers. Van Der Meer’s [44] 558 data sets regarding low-crest, large scale, and small scale were used
for the training model, while 85 data sets were used to validate the performance of the trained LSSVM
model. There are seven parameters that make up input vectors for the model. Here, P is permeability
of breakwater, S is damage level, Nw is the number of waves, cotθ is slope angle, h is water depth, Hs is
significant wave heights in front of the structure, Tp is peak wave period, and Ns (stability number) is
output data to be predicted. The ranges of variables of randomly selected training and testing data sets
are given in Table 2. Additionally, the data of seven parameters used in the training test are presented
in Figure 1.

Table 2. The range of variables in the training and testing data sets.

Data Feature Variables Training Data (558 data Points) Testing Data (85 Data Points)

Input

P 0.1–0.6 0.1–0.6
S 0.32–46.38 0.35–45.86

Nw 1000–3000 1000–3000
cotθ 1.5–6 1.5–6

h 0.2–5 0.4–5
Hs 0.0461–1.18 0.0461–1.07
Tp 1.33–5.1 1.33–5.1

Output Ns 0.94–4.38 0.79–3.91

The statistics obtained in Table 3 are re-emphasized in Figure 2. It is apparent that there is no
relative difference between the linear model with seven inputs and the full linear model with nine
inputs. The lowest calculated Cp coefficient, 6.6, also proves this view. Thus, the uncertainty in the
input determination stage and the decision-making process has been moderated. These inputs are
then intended to be input to the LSSVM model to improve predictions.
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(c) the number of waves; (d) slope angle; (e) water depth; (f) significant wave heights; (g) peak wave
period; (h) stability parameter that is modeled by variables denoted between (a,g).
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Table 3. The optimal regression models with i inputs obtained from the Mallows Cp approach.

Number of
Inputs R2 Cp P S Nw ξm cotθ Tm Tp Hs h

1 31.3 1229.7
2 57.6 548.8
3 68.1 278.3
4 72.2 173.5
5 74.2 123.4
6 78 26.4
7* 78.9 6.6
8 78.9 8.2
9 78.9 10

* Bold values in Table 3 show proper results regarding Cp coefficient.
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Figure 2. Graphical display of produced (a) R2; (b) Cp for combinations determined by Mallows’ Cp

under different input numbers.

The elementary predictors specified in the previous section have been prepared to be supplied
as inputs to the LSSVM model. Five hundred and fifty-eight data points used in the predictor
selection phase were also evaluated in model training, while 85 data points were used in validation
of the calibrated model. Since it is known that the data set has extreme values, all input and target
values should be normalized before training in order not to affect the generalization ability of the
model adversely. The results were compared using two different normalization techniques given in
Equations (12) and (13), respectively, in the study content.

zi =
xi − xmin

xmax − xmin
(12)

zi =
xi − x

S
(13)

where zi is the scaled normalized value, xi is the data, xmin and xmax are, respectively, the minimum
and maximum values of the data, and x and S are, respectively, the mean and unbiased standard
deviation statistics of the data [37].

4. Results

In the study, the LSSVM models in which the aforesaid normalization techniques were applied
were named as LSSVM (model 1) and LSSVM (model 2), respectively. In the training of models, the
PSO algorithm was used. The study was carried out on a MATLAB code [14].

Here, the acceleration coefficients of the PSO were fixed and taken as 2. In addition, minimum and
maximum inertia weights controlling the algorithm were assigned 0.4 and 0.9, respectively. In the pool
of population to be employed in the generations, it was considered enough to use 20 particles while
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Lagrangian multipliers, and hence the weights of the LSSVM models, exposed to 500 iterations were
calibrated during the training data, the performance of the testing was taken as the most suitable C
and σ estimations. The situation of the root meansquare error (RMSE) used as a cost value throughout
the implemented generations and the determined LSSVM parameters are shown in Figure 3.

After estimating the LSSVM control parameters, the training and test results produced by the
models were examined. The summary of the evaluation in terms of R2 and RMSE statistics is given in
Table 4.

Under two different normalization techniques, the LSSVM models showed similar responses
during both the training and testing stages. However, it can be discussed that first normalization
is clearly more successful in the testing phases. The first model showed a 0.08% increase in R2 and
7% less RMSE compared to the second model. It can be understood from the scatter diagrams given
in Figure 4 that the first model is more favorable in terms of systematic biases over the fitted lines.
In summary, the precise result of the LSSVM (model 1) is noteworthy. To examine success of the
proposed LSSVM models on stability number prediction, a conventional technique termed as multiple
linear regression model (MLRM) was also used. MLRM analysis is performed by MS-Excel software.
MLRM model having seven parameters and one interception was constructed from the same training
set of LSSVM. Then, computed MLRM coefficients were quarried over the testing set as well. The last
column of Table 4 includes MLRM performances in point of both RMSE and R2. From Table 4 again,
the weak results of MLRM have proved that it cannot overcome the nonlinearities originated from
data distributions and the LSSVM typed model must be appealed for this mentioned issue.
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(model 1) and (b) LSSVM (model 2) during generations.

Table 4. Statistical performances of least squares version of support vector machines (LSSVM) models
and multiple linear regression model (MLRM) in training and testing phases.

Data
Portion

LSSVM (Model 1) LSSVM (Model 2) MLRM

RMSE R2 RMSE R2 RMSE R2

Training 0.0531 0.9930 0.0485 0.9942 0.4105 0.5844
Testing 0.0562 0.9950 0.0604 0.9942 0.5349 0.5192

Moreover, the correlation coefficients of the different soft computing methods are summarized in
Table 5. As can be seen from Table 5, the established model enhanced the best correlation coefficient
founded in the literature by 1.5%. This argument turns out that the LSSVM method is apparently
better than other soft computing methods.
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Table 5. Correlation coefficients of different soft computing methods shared in the literature and
this study.

Methods Author(s) Correlation Coefficients

ANN

Mase et al. [7] 0.91

Kim and Park [8]

I 0.914
II 0.906
III 0.902
IV 0.915
V 0.952

Balas et al. [24]
I 0.936–0.968
II 0.927

FL Erdik [25] 0.945

MT Shadidi and Bonakdar [26]
I 0.931
II 0.982

SVR Kim et al. [18] 0.949
GP Koc et al. [27] 0.968–0.981

LSSVM The presented study 0.997Water 2018, 10, x FOR PEER REVIEW  9 of 12 
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5. Conclusions

In the literature, there are suggested empirical formulas generated from experimental studies
to determine the number of stabilities in the protection layer of breakwaters, one of the structural
coastal protection methods. In the last decade, soft computing tools have been used not only to reduce
these uncertainties that come from the formulas, but to minimize the time and cost in the experimental
works. In this study, the LSSVM method, which maintains the strengths of ANN and overcomes some
deficiencies, is used so as to estimate the number of stabilities of rubble-mound breakwaters based
on Van Der Meer’s [44] laboratory data. Seven input data were determined by using Mallows’ Cp
approach, which determines the best possible predictors among the great deal of different inputs.
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These are permeability of breakwater, damage level, the number of waves, slope angle, water depth,
significant wave heights in front of the structure, and peak wave period. Two different normalization
techniques in the LSSVM models are applied. In the training of models, the PSO algorithm is operated
by means of a MATLAB code. It can be seen that first normalization is clearly more successful in
the testing phases. The performance of the LSSVM models was found to be of a higher accuracy
(correlation coefficients (CC) of 0.997) and better than other soft computing methods, as shown in
Table 5. It is thought that the results of this study are quite successful compared to the results attributed
to the literature and would be an inspirational example for other researchers.

Despite various advantages of LSSVM calibrated through PSO, the estimations of control
parameters, which are C and σ, respectively, may have taken place in a vast solution space with
two dimensions. Especially, C parameters has shown rather extreme values (i.e., 6.65 × 105, 6.88 × 105

for LSSVM model 1 and 2, respectively). Even if the PSO has set out stable behavior in the finding of
global minimums, determining the optimal estimations of LSSVM parameters have such an uneasy
process as it challenges the computer capacity. In this context, one-parameter version of support vector
machines, namely relevance vector machines (RVM) can be a more robust alternative in terms of
training and setting a nonlinear regression architecture. In the hydraulic literature, RVM has shown a
superior response compared to that of counterparts (for example, References [12,33,36,37]). The issues
regarding the implementation of RVM to the same problems in this study will be the future direction.
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