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On A Class of Para-Sakakian Manifolds

Cihan Ozgiir

Abstract

In this study, we investigate Weyl-pseudosymmetric Para-Sasakian manifolds

and Para-Sasakian manifolds satisfying the condition C'-.S = 0.
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1. Introduction
Let (M, g) be an n-dimensional, n > 3, differentiable manifold of class C*°. We denote
by V its Levi-Civita connection. We define endomorphisms R(X,Y) and X AY by

R(X,Y)Z = [Vx,Vy]Z - Vixy|Z, (1)

(X AY)Z = g(Y, 2)X — (X, 2)Y. 2)

respectively, where X,Y,Z € x(M), x(M) being the Lie algebra of vector fields on
M. The Riemannian Christoffel curvature tensor R is defined by R(X,Y,Z, W) =
gR(X,Y)Z, W), W € x(M). Let S and x denote the Ricci tensor and the scalar
curvature of M, respectively. The Ricci operator S and the (0,2)-tensor S? are defined
by

9(8X,Y)=S(X,Y), (3)
and

S%(X,Y) = S(SX,Y). (4)
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The Weyl conformal curvature operator C is defined by

K

C(X,Y)=R(X,Y) - (XASY +SX AY — XAY), (5)

n—2 n—1
and the Weyl conformal curvature tensor C is defined by C(X,Y, Z, W) = g(C(X,Y)Z,W).
If C=0,n >4, then M is called conformally flat.

For a (0, k)-tensor field T', k > 1, on (M, g) we define the tensors R-T and Q(g,T) by

(RX,Y) - T)( X1, Xp) = —T(R(X,Y)X1, Xoreoo, Xp)
i T(X 0 ey X1, R(X,Y) X, (6)
Qg T) (X1, Xp; X,Y) = -T(X AY)X1, Xo,, X5
-...—T(Xl,...,Xk_l,(X/\Y)Xk), (7)

respectively [§].
If the tensors R - C and Q(g,C) are linearly dependent then M is called Weyl-

pseudosymmetric. This is equivalent to

R-C = LcQ(g,0), (8)

holding on the set Uc = {x € M | C # 0 at z}, where L¢ is some function on Uc.
If R-C = 0 then M is called Weyl-semisymmetric (see [7], [9], [8]). If VC= 0 then
M is called conformally symmetric (see [4]). It is obvious that a conformally symmetric
manifold is Weyl-semisymmetric.

Furthermore we define the tensor C - S on (M, g) by

In [1], T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian
manifolds which are considered as special cases of an almost paracontact manifold in-
troduced by I. Sato [11]. In the same paper, the authors studied conformally symmetric
para-Sasakian manifolds and they proved that an n-dimensional conformally symmet-
ric para-Sasakian manifold is conformally flat and SP-Sasakian (n > 3). In [5], the
authors studied Weyl-semisymmetric para-Sasakian manifolds and they showed that an
n-dimensional Weyl-semisymmetric para-Sasakian manifold is conformally flat. In this
study, our aim is to obtain the characterizations of the Weyl-pseudosymmetric para-
Sasakian manifolds which are the extended class of Weyl-semisymmetric para-Sasakian
manifolds and some further characterization of para-Sasakian manifolds satisfying the
condition C' - S = 0.
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2. Sasakian and Para-Sasakian Manifolds

Let M be a n-dimensional contact manifold with contact form 7, i.e., n A (dn)™ # 0.
It is well known that a contact manifold admits a vector field &, called the characteristic
vector field, such that n(¢§) = 1 and dn(§, X) = 0 for every X € x(M). Moreover, M

admits a Riemannian metric g and a tensor field ¢ of type (1,1) such that
P?*=1-n®§ g(X,§=nX), ¢(X ¢Y)=dn(X,Y).

We then say that (¢, &, 1, g) is a contact metric structure. A contact metric manifold is

said to be a Sasakian if
(Vx)Y = g(X,Y)§ —n(Y)X,
in which case
Vx&=—-¢X, R(X,Y){=n(Y)X —n(X)Y.

Now we give a structure similar to Sasakian but not hawing contact.
An n-dimensional differentiable manifold M is said to admit an almost paracontact
Riemannian structure (¢, &, 7, g), where ¢ is a (1,1)-tensor field, £ is a vector field, 1 is a

1-form and g is a Riemannian metric on M such that

p§=0, np=0, n&) =1, g X)=n(X),

P*X =X —n(X)E, g(¢X,¢Y) =g(X,Y)—n(X)n(Y),

for all vector fields X and Y on M. The equation n(§) = 1 is equivalent to |n| = 1, and
then £ is just the metric dual of n. If (¢, &, n, g) satisfy the equations

d77:0» VX§:¢X7

(Vxo)Y = —g(X, V)¢ —n(Y)X + 2n(X)n(Y)E,

then M is called a Para-Sasakian manifold or, briefly, a P-Sasakian manifold. Especially,
a P-Sasakian manifold M is called a special para-Sasakian manifold or briefly a SP-

Sasakian manifold if M admits a 1-form 7 satisfying

(Vxm)(Y) = —g(X,Y) + n(X)n(Y).
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It is known that in a P-Sasakian manifold the following relations hold:

S(X,€) = (1 = n)n(X), (10)

N(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X), (11)

for any vector fields X,Y, Z € x(M), (see [2], [11] and [12]).

A para-Sasakian manifold M is said to be n-Finstein if

S=al;+bn®E, (12)

where § is the Ricci operator and a, b are smooth functions on M [2].

3. Main Results

In the present section our aim is to find the characterization of P-Sasakian manifolds
satisfying the conditions C' - S =0 and R-C = LcQ(g,C).

Firstly we give the following proposition.

Proposition 3.1 Let M be an n-dimensional, n > 4, P-Sasakian manifold. If the
condition C' - S =0 holds on M then

S%(X,Y) = [%—n-ﬁ-% SX,Y)+ [k+n—-1]g(X,Y) (13)

is satisfied on M.

Proof.  Assume that M is an n-dimensional, n > 4, P-Sasakian manifold satisfying
the condition C' - S = 0. From (9) we have

S(C(U,X)Y, Z) + S(Y,C(U,X)Z) =0, (14)

where U, X, Y, Z € x(M). Taking U = £ in (14) we have

S(C(, X)Y, Z) +5(Y,C(§, X)Z) = 0. (15)
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So using (5), (10) and (11) we get

0=n(Y)S(X,Z) - g(X,Y)S(&. Z) + n(Z)S(X,Y) — g(X, Z)S(E.Y)
— L {S(X,Y)S(&, Z) - S(&.Y)S(X, Z) + g(X,Y)S*(¢, Z)
—n(Y)SX(X. Z) + S(X, Z)S(6,Y) — S(6, Z)S(X.Y)
T9(X, 2)S2(E,Y) ~ (Z)SH(X,Y)} + prepinay (9(X, V) S(E, 2)
“n(Y)S(X.Z) +9(X. 2)S(E.Y) — n(Z)S(X,Y)}.

Hence by the use of (4), (10) we find

0=nY)S(X,2) — (1 —n)g(X,Y)n(Z) +n(Z2)S(X,Y)
—(1=n)g(X, Z)n(Y) — 75[-n(Y)5*(X, Z) —n(2)5*(X,Y)
+(1 = n)*n(2)g(X,Y) + (1 —n)*n(Y)g(X, Z)]
+e ey -n(Y)S(X, Z) = n(2)S(X,Y)

+H(1 =n)n(2)g(X,Y) + (1 = n)n(Y)g(X, 2)].
Thus replacing Z with £ in (16) and using (4), (10) we obtain

1
n—2

S2(X,Y) = S(X,Y)

et

L[ +(n—1)2
n—2 n—2

- (=1,

since n > 4, we get (13).

Let us consider an n-Einstein P-Sasakian manifold. Then we can write
S(X,Y) = ag(X,Y) + bn(X)n(Y),

where X, Y are any vector fields and a, b are smooth functions on M.

Contracting (17), we have

Kk =na-+b.

On the other hand, putting X =Y = ¢ in (17) and using (10) we also have

l1-n=a+0bd.

(16)

(18)

(19)
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Hence it follows from (18) and (19) that

_ _ K
a=1 T

So the Ricci tensor S of an n-Einstein P-Sasakian manifold is given by

K

——)g(Y. 2) + (7= — (¥ n(2), (20)

S, 2) = (1 -7
(For more details see [2]).

Proposition 3.2 Let M be an n-dimensional, n > 4, n-Einstein P-Sasakian manifold.
Then the condition C' - S = 0 holds on M.

Proof. Let M be an n-Einstein P-Sasakian manifold. Since the Weyl tensor C' has all

symmetries of a curvature tensor, then from (9) it is easy to show that
K
(CU. X) - )Y, 2) = (= + 1) n(CU, X)Y)n(Z) + n(CU, X)Z)n(Y)],

for all vector fields U, X,Y, Z on M. So using (5), (10), (11) and (20), by a straightfor-
ward calculation, we get (C(U, X) - S)(Y, Z) = 0, which proves the proposition. O

Theorem 3.3 Let M be an n-dimensional, n > 4, P-Sasakian manifold. If M is Weyl-
pseudosymmetric then M is either conformally flat, in which case M is a SP-Sasakian
manifold, or Lo = —1 holds on M.

Proof.  Assume that M, (n > 4), is a Weyl pseudosymmetric P-Sasakian manifold
and X,Y,U,V,W € x(M). So we have

(R(X7 Y) : C)(U> V, W) = LCQ(Q, C)(Uv V,\W; X, Y)
Then from (6) and (7) we can write
R(X,Y)C(U V)W - C(R(X,Y)U V)W - C(U,R(X,Y) V)W

—C(U,V)R(X, Y)W = Lo[(X AY)C(U, V)W = C((X AY)U, V)W (21)
—C(U, (X AY)V)W = C(U,V)(X AY)W].
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Therefore replacing X with £ in (21) we have

R(E,YIC(U,VIW — C(R(E,Y)U, V)W — C(U, R(£,Y)V)W
—C(U, VYR(E, Y)W = Le[(EAY)C(U, V)W — C((€ AY)U, V)W (22)
—C(U, (6 A\Y)V)W — C(U,V)(€ AY)W).
So using (11), (2) and taking the inner product of (22) with & we get
[1+ Le][-n(Y)n(C(U, V)W) + C(U,V, W, Y) + n(U)n(C(Y, V)W)
—g(Y, U)n(C(E& V)W) +n(V)n(CU, V)W) = (Y, V)n(C(U, W) (23)
+n(W)n(C(U, V)Y) — (Y, W)n(C(U, V)E)] = 0.

Putting Y = U in (23) we have

[1+ Le][CU, V, W, U) +n(W)n(C(U, V)U) (24)
—g(U, Un(C(&, V)W) = g(U, V)n(C(U,§)W)] = 0.
So a contraction of (24) with respect to U gives us
[1+ Leln(CE, V)W) = 0. (25)

If Le = 0 then M is Weyl-semisymmetric and so the equation (25) is reduced to
n(C(&, V)W) =0, (26)

which gives

n— n—1

sV = (14 =25 ) gvw) = (4 =) v om), (27)

Therefore M is an n-Einstein manifold. So using (26) and (27) the equation (23) takes

the form

C(U,V,W,Y) =0,
which means that M is conformally flat. So by [2], M is a SP-Sasakian manifold.
If Lo # 0 and n(C(§, V)W) # 0 then 1+ Le = 0, which gives Lo = —1. This com-
pletes the proof of the theorem. O
So we have the following corollary.
Corollary 3.4 FEvery n-dimensional (n > 4) para-Sasakian is a Weyl-pseudosymmetric

manifold of the form R-C = —Q(g,C).
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