
Turk J Math

29 (2005) , 249 – 257.

c© TÜBİTAK

On A Class of Para-Sakakian Manifolds

Cihan Özgür

Abstract

In this study, we investigate Weyl-pseudosymmetric Para-Sasakian manifolds

and Para-Sasakian manifolds satisfying the condition C · S = 0.
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1. Introduction

Let (M, g) be an n-dimensional, n ≥ 3, differentiable manifold of class C∞. We denote
by ∇ its Levi-Civita connection. We define endomorphisms R(X, Y ) and X ∧ Y by

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, (1)

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y, (2)

respectively, where X, Y, Z ∈ χ(M), χ(M) being the Lie algebra of vector fields on
M . The Riemannian Christoffel curvature tensor R is defined by R(X, Y, Z,W ) =
g(R(X, Y )Z,W ), W ∈ χ(M). Let S and κ denote the Ricci tensor and the scalar
curvature of M , respectively. The Ricci operator S and the (0,2)-tensor S2 are defined
by

g(SX, Y ) = S(X, Y ), (3)

and

S2(X, Y ) = S(SX, Y ). (4)
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The Weyl conformal curvature operator C is defined by

C(X, Y ) = R(X, Y )− 1
n − 2

(X ∧ SY + SX ∧ Y − κ

n− 1
X ∧ Y ), (5)

and the Weyl conformal curvature tensor C is defined by C(X, Y, Z,W ) = g(C(X, Y )Z,W ).
If C = 0, n ≥ 4, then M is called conformally flat.

For a (0, k)-tensor field T , k ≥ 1, on (M, g) we define the tensors R ·T and Q(g, T ) by

(R(X, Y ) · T )(X1,...,Xk) = −T (R(X, Y )X1, X2,...,Xk)

-...-T (X1, ..., Xk−1,R(X, Y )Xk), (6)

Q(g, T )(X1,...,Xk;X, Y ) = -T ((X ∧ Y )X1, X2,...,Xk)

-...-T (X1,...,Xk−1, (X ∧ Y )Xk), (7)

respectively [8].
If the tensors R · C and Q(g, C) are linearly dependent then M is called Weyl-

pseudosymmetric. This is equivalent to

R · C = LCQ(g, C), (8)

holding on the set UC = {x ∈ M | C 6= 0 at x}, where LC is some function on UC .
If R · C = 0 then M is called Weyl-semisymmetric (see [7], [9], [8]). If ∇C = 0 then
M is called conformally symmetric (see [4]). It is obvious that a conformally symmetric
manifold is Weyl-semisymmetric.

Furthermore we define the tensor C · S on (M, g) by

(C(X, Y ) · S)(Z,W ) = −S(C(X, Y )Z,W )− S(Z, C(X, Y )W ). (9)

In [1], T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian
manifolds which are considered as special cases of an almost paracontact manifold in-
troduced by I. Sato [11]. In the same paper, the authors studied conformally symmetric
para-Sasakian manifolds and they proved that an n-dimensional conformally symmet-
ric para-Sasakian manifold is conformally flat and SP -Sasakian (n > 3). In [5], the
authors studied Weyl-semisymmetric para-Sasakian manifolds and they showed that an
n-dimensional Weyl-semisymmetric para-Sasakian manifold is conformally flat. In this
study, our aim is to obtain the characterizations of the Weyl-pseudosymmetric para-
Sasakian manifolds which are the extended class of Weyl-semisymmetric para-Sasakian
manifolds and some further characterization of para-Sasakian manifolds satisfying the
condition C · S = 0.
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2. Sasakian and Para-Sasakian Manifolds

Let M be a n-dimensional contact manifold with contact form η, i.e., η ∧ (dη)n 6= 0.
It is well known that a contact manifold admits a vector field ξ, called the characteristic
vector field, such that η(ξ) = 1 and dη(ξ, X) = 0 for every X ∈ χ(M). Moreover, M
admits a Riemannian metric g and a tensor field φ of type (1,1) such that

φ2 = I − η ⊗ ξ, g(X, ξ) = η(X), g(X, φY ) = dη(X, Y ).

We then say that (φ, ξ, η, g) is a contact metric structure. A contact metric manifold is
said to be a Sasakian if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X,

in which case

∇Xξ = −φX, R(X, Y )ξ = η(Y )X − η(X)Y.

Now we give a structure similar to Sasakian but not hawing contact.
An n-dimensional differentiable manifold M is said to admit an almost paracontact

Riemannian structure (φ, ξ, η, g), where φ is a (1,1)-tensor field, ξ is a vector field, η is a
1-form and g is a Riemannian metric on M such that

φξ = 0, ηφ = 0, η(ξ) = 1, g(ξ, X) = η(X),

φ2X = X − η(X)ξ, g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for all vector fields X and Y on M. The equation η(ξ) = 1 is equivalent to |η| ≡ 1, and
then ξ is just the metric dual of η. If (φ, ξ, η, g) satisfy the equations

dη = 0, ∇Xξ = φX,

(∇Xφ)Y = −g(X, Y )ξ − η(Y )X + 2η(X)η(Y )ξ,

then M is called a Para-Sasakian manifold or, briefly, a P-Sasakian manifold. Especially,
a P-Sasakian manifold M is called a special para-Sasakian manifold or briefly a SP-
Sasakian manifold if M admits a 1-form η satisfying

(∇Xη)(Y ) = −g(X, Y ) + η(X)η(Y ).
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ÖZGÜR

It is known that in a P -Sasakian manifold the following relations hold:

S(X, ξ) = (1− n)η(X), (10)

η(R(X, Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X), (11)

for any vector fields X, Y, Z ∈ χ(M), (see [2], [11] and [12]).

A para-Sasakian manifold M is said to be η-Einstein if

S = aId + bη ⊗ ξ, (12)

where S is the Ricci operator and a, b are smooth functions on M [2].

3. Main Results

In the present section our aim is to find the characterization of P -Sasakian manifolds
satisfying the conditions C · S = 0 and R ·C = LCQ(g, C).

Firstly we give the following proposition.

Proposition 3.1 Let M be an n-dimensional, n ≥ 4, P -Sasakian manifold. If the
condition C · S = 0 holds on M then

S2(X, Y ) =
[

κ

n− 1
− n+ 2

]
S(X, Y ) + [κ+ n− 1] g(X, Y ) (13)

is satisfied on M .

Proof. Assume that M is an n-dimensional, n ≥ 4, P -Sasakian manifold satisfying
the condition C · S = 0. From (9) we have

S(C(U,X)Y, Z) + S(Y, C(U,X)Z) = 0, (14)

where U,X, Y, Z ∈ χ(M). Taking U = ξ in (14) we have

S(C(ξ, X)Y, Z) + S(Y, C(ξ, X)Z) = 0. (15)
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So using (5), (10) and (11) we get

0 = η(Y )S(X,Z) − g(X, Y )S(ξ, Z) + η(Z)S(X, Y )− g(X,Z)S(ξ, Y )
− 1
n−2
{S(X, Y )S(ξ, Z) − S(ξ, Y )S(X,Z) + g(X, Y )S2(ξ, Z)
−η(Y )S2(X,Z) + S(X,Z)S(ξ, Y ) − S(ξ, Z)S(X, Y )

+g(X,Z)S2(ξ, Y )− η(Z)S2(X, Y )}+ κ
(n−1)(n−2){g(X, Y )S(ξ, Z)

−η(Y )S(X,Z) + g(X,Z)S(ξ, Y )− η(Z)S(X, Y )}.

Hence by the use of (4), (10) we find

0 = η(Y )S(X,Z) − (1− n)g(X, Y )η(Z) + η(Z)S(X, Y )
−(1 − n)g(X,Z)η(Y ) − 1

n−2 [−η(Y )S2(X,Z) − η(Z)S2(X, Y )
+(1− n)2η(Z)g(X, Y ) + (1 − n)2η(Y )g(X,Z)]

+ κ
(n−1)(n−2)

[−η(Y )S(X,Z) − η(Z)S(X, Y )

+(1− n)η(Z)g(X, Y ) + (1− n)η(Y )g(X,Z)].

(16)

Thus replacing Z with ξ in (16) and using (4), (10) we obtain

1
n− 2

S2(X, Y ) =
[

κ

(n− 1)(n− 2)
− 1
]
S(X, Y )

+
[

κ

n− 2
+

(n− 1)2

n− 2
− (n− 1)

]
g(X, Y ),

since n ≥ 4, we get (13). 2

Let us consider an η-Einstein P -Sasakian manifold. Then we can write

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (17)

where X, Y are any vector fields and a, b are smooth functions on M.

Contracting (17), we have

κ = na+ b. (18)

On the other hand, putting X = Y = ξ in (17) and using (10) we also have

1− n = a+ b. (19)
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Hence it follows from (18) and (19) that

a = 1− κ
1−n , b = κ

1−n − n.

So the Ricci tensor S of an η-Einstein P -Sasakian manifold is given by

S(Y, Z) = (1− κ

1− n )g(Y, Z) + (
κ

1− n − n)η(Y )η(Z), (20)

(For more details see [2]).

Proposition 3.2 Let M be an n-dimensional, n ≥ 4, η-Einstein P -Sasakian manifold.
Then the condition C · S = 0 holds on M .

Proof. Let M be an η-Einstein P -Sasakian manifold. Since the Weyl tensor C has all
symmetries of a curvature tensor, then from (9) it is easy to show that

(C(U,X) · S)(Y, Z) = (
κ

n − 1
+ n) [η(C(U,X)Y )η(Z) + η(C(U,X)Z)η(Y )] ,

for all vector fields U,X, Y, Z on M . So using (5), (10), (11) and (20), by a straightfor-
ward calculation, we get (C(U,X) · S)(Y, Z) = 0, which proves the proposition. 2

Theorem 3.3 Let M be an n-dimensional, n ≥ 4, P -Sasakian manifold. If M is Weyl-
pseudosymmetric then M is either conformally flat, in which case M is a SP -Sasakian
manifold, or LC = −1 holds on M.

Proof. Assume that M , (n ≥ 4), is a Weyl pseudosymmetric P -Sasakian manifold
and X, Y, U, V,W ∈ χ(M). So we have

(R(X, Y ) · C)(U, V,W ) = LCQ(g, C)(U, V,W ;X, Y ).

Then from (6) and (7) we can write

R(X, Y )C(U, V )W − C(R(X, Y )U, V )W − C(U,R(X, Y )V )W
−C(U, V )R(X, Y )W = LC [(X ∧ Y )C(U, V )W − C((X ∧ Y )U, V )W

−C(U, (X ∧ Y )V )W − C(U, V )(X ∧ Y )W ].

(21)
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Therefore replacing X with ξ in (21) we have

R(ξ, Y )C(U, V )W − C(R(ξ, Y )U, V )W − C(U,R(ξ, Y )V )W
−C(U, V )R(ξ, Y )W = LC [(ξ ∧ Y )C(U, V )W − C((ξ ∧ Y )U, V )W

−C(U, (ξ ∧ Y )V )W − C(U, V )(ξ ∧ Y )W ].

(22)

So using (11), (2) and taking the inner product of (22) with ξ we get

[1 + LC ][−η(Y )η(C(U, V )W ) + C(U, V,W, Y ) + η(U)η(C(Y, V )W )
−g(Y, U)η(C(ξ, V )W ) + η(V )η(C(U, Y )W )− g(Y, V )η(C(U, ξ)W )

+η(W )η(C(U, V )Y ) − g(Y,W )η(C(U, V )ξ)] = 0.

(23)

Putting Y = U in (23) we have

[1 + LC ][C(U, V,W, U) + η(W )η(C(U, V )U)
−g(U, U)η(C(ξ, V )W )− g(U, V )η(C(U, ξ)W )] = 0.

(24)

So a contraction of (24) with respect to U gives us

[1 + LC ]η(C(ξ, V )W ) = 0. (25)

If LC = 0 then M is Weyl-semisymmetric and so the equation (25) is reduced to

η(C(ξ, V )W ) = 0, (26)

which gives

S(V,W ) =
(

1 +
κ

n− 1

)
g(V,W ) −

(
n+

κ

n− 1

)
η(V )η(W ). (27)

Therefore M is an η-Einstein manifold. So using (26) and (27) the equation (23) takes
the form

C(U, V,W, Y ) = 0,

which means that M is conformally flat. So by [2], M is a SP -Sasakian manifold.
If LC 6= 0 and η(C(ξ, V )W ) 6= 0 then 1 + LC = 0, which gives LC = −1. This com-

pletes the proof of the theorem. 2

So we have the following corollary.

Corollary 3.4 Every n-dimensional (n ≥ 4) para-Sasakian is a Weyl-pseudosymmetric
manifold of the form R · C = −Q(g, C).
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ÖZGÜR
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