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Abstract

We have examined the effect of varying opacities on envelope structure with the aid of Paczynski’s
public domain stellar modelling programs. For this, we prepared new opacity tables from the data of
Kurucz [1], using Lagrange interpolation to obtain the tabular values. We compare the results of these
Kurucz opacities with similar tabulations from Huebner et al. [2], Iglesias and Rogers [3], Rogers and
Iglesias [4] and Iglesias and Rogers [5]. We have checked calculations for the same ranges of stars con-
sidered originally by Schwarzschild [6], and compared our findings, using newer opacity data, with those
of other sources. We consider how such calculations relate to high accuracy observational data, with the
well-observed planetary eclipsing system V 376 Peg (HD 209458), providing a guideline towards data
of similar accuracy in the near future. Current accuracies on absolute radii and masses derivable from
eclipsing spectroscopic binaries are conservatively estimated at ~1%. The effects of revised opacity calcu-
lations on the radii of stars of intermediate mass are several times greater than this (5-10% for constant
values of other parameters), so that eclipsing binary data should have good potential for independent
tests of opacity theory across a wide range of stellar types.

Key Words: Stars: general-structure: modelling, opacity tables, observational tests, eclipsing binary
data

1. Introduction

While many studies show that radiative transport plays a key role in shaping the structure and evolution
of stars, no direct measurements of the opacity of matter to radiation in stellar interiors are possible.
Theoretical calculations are required if a star’s internal conditions are to be interpreted. Over the years,
various opacity formulae and tables have been applied to structural models. In his seminal book, The
Structure and Evolution of the Stars, Schwarzschild discussed effects associated with the ionization of different
atomic species, i.e. bound-free transitions, free-free absorption and electron scattering [6]. The net effects
of bound-bound (line) absorptions subsequently received closer attention, and have been shown to make
a significant contribution [7, 5, 1]. Schwarzschild also compared theoretical models with results from the
observations of binary stars. This approach to checking models was supported by Stromgren [8] and many
subsequent authors.

Opacity appears in the radiative transfer equation of stellar structure [9], which can be put in a form

such as IK
o= —kpH = —kpL /16712, (1)

r
where K and H are the Eddington radiation pressure and flux terms, respectively, and L is the global

luminosity, coming from the separate energy generation equation (all functions of the radius r, as are the

65



INLEK, BOKE, YILMAZ, BUDDING

local density p and temperature T'). K is given in the internal regions, to high accuracy by

oT?
K=— 2
3 ) ( )
where o is Stefan’s constant. The opacity thus relates the total heat flow to the local temperature gradient,
the latter being greater in regions of greater local opacity. In averaging over all frequencies, the ‘Rosseland

mean’ opacity, Kk = kg, yields a temperature gradient form of the transfer equation; thus

o3 ar — 3pL 3)
kr ) dr  64mr?’
since the Rosseland mean is defined by
oT? * 1 dB,(T)
— = ————dv. 4
KR i /0 Ky, dT Y )

Rosseland mean opacities £ (in units of cm?g~!) therefore weight the effect of frequency in proportion to
g

the flux contribution at that frequency. In a more general context, we should consider other contributions
than radiative transparency (inverse of opacity) to the total flow of heat, particularly electron conductivity
[10], but in this article we concentrate only on the effects of radiative transfer. We especially seek to clarify
the extent to which observational data on representative stars can test theory on this.

It is feasible, in a general way, that the radiative opacity of the plasma in stellar interiors may tend to
idealized forms in certain limiting conditions. For example, we could anticipate that a totally ionized hydro-
gen medium, characterized only by free-free transitions, would have a transparency component proportional
to the radiative energy density per unit material density. But, in traversing a layer of such a medium, the
outward flux receives a contribution proportional to the linear velocity of the electrons, associated with the
decrease of the Debye screening length. From such a view, a form such as

ko pT /2 (5)

(Kramers’ law) appears reasonable [6]. Similarly, another limit, that of Thomson scattering by electrons
(log k ~ —0.47), should take over in fairly high temperature (but not too high density) plasma conditions
when the foregoing formula gives low enough opacity values [6].

More generally, we can expect the net opacity to be dependent of the (varying) composition, initially set
by the fractional proportions of hydrogen X, helium Y and other atoms Z (= metallicity), where X + Y + Z
=1,aswellas pand T i.e. K, = K, (X, Z, p, T). The nature of this dependence, in detail, involves modelling
the way electromagnetic waves interact with the local field configurations around the plasma’s constituent
particles. Procedures have developed from the early Thomas-Fermi treatment towards long and complex
calculations that have become the reserve of certain patient specialists; a point made in the review of Carson
[11]. Carson also noted that the results of separately published calculations of apparently similar situations
did not always agree with each other (within factors of the order of unity). Moreover, the necessity to use
both physical and mathematical approximations to describe the inherently complex interactions implies that
such calculations cannot be regarded as a closed subject. The onward progress of computational capabilities
should allow continued advances in the modelling of absorption and consequently stellar structure.

For practical applications in astrophysics, tables of representative opacity values are generally presented
in two-dimensional format (for logp and logT, given the large variation of density and temperature and
the regular use of variables in logarithmic form), with selected values of X and Z. Since there is, in most
stars, a strong correlation between the runs of density and temperature values (p ~ T?), the variable R was
introduced for convenient general tabulation [3], where

logR =logp — 3logT + 18. (6)

In our present study we have applied opacity tables that originated in the work of Cox and Stewart [12] at
Los Alamos National Laboratory (as modified by later authors); Iglesias and Rogers [3], Rogers and Iglesias
[4], Iglesias and Rogers [5] and Kurucz [1], to the stellar model code GOB [13]. We have discussed previously
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how we used and checked this program [14] and we say more about its use in the following subsection. It is
well-known that opacity effects are strongest in the outer parts of the star where the temperature gradient
steepens as the major constituent elements start to recombine [15] . This is predominantly in the regions
dealt with by GOB. It was necessary to tailor published opacities [1] to the format required by GOB and
to do this we used four point Lagrange interpolation. We thus calculated k for the required 31 values of log
density in the range of =12 to 43 in steps of 0.5 and 51 values of log temperature from 3.25 in steps of 0.075.
We discuss more about this in section 2 and in section 3 present the results of different opacity tables in the
outputs of the programs GOB and also SCH, a second modelling program that deals with the bulk of the
stellar mass [13].

While we cannot measure internal opacities directly, the possibility to check different sets of calculations
from resultant models of stars is challenging. There are various options about this, but our present study
addresses the data on eclipsing binary systems. Nowadays, such data are entering a new phase of very
high accuracy [16], stimulated, in part, by the search for new planetary systems. The prototype V 376
Peg (HD 209458) has attained particular significance in this regard, and while the extraordinary accuracy
of HST photometry is not expected to be available in a wholesale way, it provides guidelines not only for
future space-based photometry, but also for well-selected terrestrial facilities. On that point, we examine
the milli-magnitude accuracy light curve of the primary transit of V 376 Peg by [17], as observed at Mauna
Kea. We combine 3 data sets of [17] and discuss how such results relate to stellar modelling in section 4.

Of course, other things than opacity affect the measured parameters of observed stars, the overall mass
usually being regarded as the first determinant of these. The positions of stars of given masses in colour-
magnitude diagrams have then been usually related to evolutionary effects. Evolutionary paths, as well as
their starting positions, are themselves different in dependence on the composition of the stellar material
[18]. The main question for our present study, however, is what precision of observational results would
allow alternative models for the opacities through the envelope, to be effectively discriminated. Andersen
et al. proposed that parameter estimation errors should be no larger that about 1% in the radius, and
2% in the mass and temperature, to enable useful checks on opacities; this for stars whose metallicity can
be assigned to within about 25% of its real value [19]. Coevally formed eclipsing spectrographic binaries,
whose components have not had significant interactive evolution, should permit isochronal tests of theory in
which some of the indeterminacy is removed, as noted by Stromgren [8]. Andersen [20], and other authors
in similar programmes, have thus used high quality observational data of such binaries to test modelling. A
recent discussion was that of Claret [21]. Persistent differences between older models and data led to further
theoretical inferences, for example regarding more generalized versions of the treatment of convection [22,
23]. But opacity theory itself has not been static, and various new sets of calculations were published since
the early nineties. A summary discussion (section 5) comments on the interplay between data-analysis and
the results of theoretical modelling, and implications for both activities.

1.1. Use of the programs GOB and SCH in model construction

It is well-known that the construction of a simple stellar model in one spatial dimension reduces, generally,
to a two-point boundary value problem involving the (numerical) quadrature of 4 simultaneous linear first-
order differential equations (cf. e.g. Schwarzschild [6]. A short introduction to the programs discussed in
this paper is given by [24]; demonstration versions have also been produced by Odell [25]).

Regarding the imposed boundary conditions: the inner boundary is conceptually simpler. The indepen-
dent variable, normally the internal mass M,., is here zero, along with the radius » and luminosity L,. The
boundary values of central temperature and density, T, and p., are assigned preliminary estimates, so the
quadrature can proceed to some internal point, where the outward integration will be matched with the
inward one from the outer boundary.

The outer boundary is more complicated for various reasons. One is that a main aim in the ‘solution’ of
the modelling problem is to relate observational results to the two outer boundary values determined by a
self-consistent quadrature. Normally, two quantities that can be directly matched to measurements are the
surface luminosity Ly and effective temperature T,. The structure equations themselves should primarily
specify Lo and R, as paired opposites to the central density and temperature (the inner boundary); but
since R can be expressed as R = \/Lo/4wcT?, it appears this point can be dealt with, although the R in
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question should really be that at the actual outer ‘boundary’ of the star (at a slightly different radius), where
the density pg becomes formally zero. Note that a separate relation connecting 7. to the boundary layer
temperature Ty comes from model atmosphere theory [14]. Another point is that, in these outer layers, the
problem has degenerated to one involving only 3 variables, since Lg settles to an essentially constant value
outside the central energy-generating regions.

The program GOB (generates the outer boundary) is intended to take care of these issues. The program
constructs a set of model atmospheres for four corner points in the Lg, Ty plane that should enclose the
true final values resulting from a self-consistent complete model. The GOB inward integration proceeds, in
principle, down to a user-set base-of-atmosphere layer M, = Mpg, which is typically 0.95 x Mg, the total
mass of the star. In practice, some control parameters intervene if the temperature becomes too high or the
number of integration steps unmanageably large. Since there are only 3 differential equations to integrate
and no match-point fitting, this program proceeds quickly. At the lower boundary GOB produces a set of
pB, T and Rp values, with Ly = Lp also holding valid. Given these 4 corner values, it is possible to make
(linear) interpolations for intermediate points to find base of atmosphere values. We can thus write, for a
base density corresponding to a general surface point Lo, R, say (R being derived from the assigned T)

Lo—L
pB(Lo,R) = pp(L1,R1)+ 7[/0 Ll [pB(L2, R1) — pp(L1, R1)] +
o— Ly
R—R
+———[p5(L1, Ra) — pp(L1, R1)]. (7)
Ry — R

The 4 base values for such surface Lo;, Tp; pairs, enclosing a particular trial Lo, R pair, are given, together
with the trial pair itself, by GOB as input for the inward integration in SCH. The outward integration from
the centre is compared with the inward integration from this 0.95Mg level at a selected inner fitting point,
which is typically M, = Mpg/2. The averages of the 4 pairs of variables at this fitting point are taken as
new starting values for backward integrations to the boundaries, and an iteration process thus started.

12
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Figure 1. Combination of SCH and GOB integrations for the radial variation with mass of a zero-age 1 solar mass
model.

It is easy to visualize new central values of T, and p. being substituted back in a second outward run from
the centre. At the outer boundary of the SCH run, however, there will be new values for all four variables;
but it is really only the Ly and R surface pair that are independently corrected by the integrations of this
two-point problem. The new surface Ly is obtained directly, since it does not vary through the outer layers.
The corresponding new surface value of R can be derived, using the new Ly and the original GOB surface
values Ry and Rs, for which corresponding values of Rp1, Rp2 are known. These Rp1 2 values are compared
with the Rp newly obtained from the outward integration. A corresponding corrected surface value of R
may then be interpolated. Having the new surface values of Ly and R allows a new set of base values to be
obtained, with p and T starting values derived from equation (7) (for pp, with a corresponding equation for
Tg) for a second, corrected, inward integration. In a convergent problem, the differences between the four
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Figure 2. Example of Lagrange-interpolation through Kurucz tabulated opacities.

pairs of variables at the inner matching point become progressively less and the sequence is terminated when
these differences pass below some set accuracy control limit. Convergence is normally found in practice, if
the starting values are not too far from the final ones. Initial errors of more than 20 percent in the logarithms
of trial parameters may cause lack of convergence. Figure 1 shows that there is a good agreement between
SCH and GOB integrations.

2. Opacity Tables

We require interpolations in the two dimensions of (log) temperature and (log) density for given (log)
opacities for a fixed chemical composition: so we first interpolated log kr for different log p values at constant
temperature and then interpolated for the log temperatures with logp at each tabular value. Figure 2 shows
such Lagrange interpolated points passing smoothly through the Kurucz [1] tabular values.

The Kurucz [1] model atmosphere program, whose results we have used, includes more than 1000 atomic
and molecular species, each having up to 10 isotopic forms. It deals in detail with the ions of all elements
up to zinc. This modelling has improved opacity values particularly from including such a large number of
atomic species, especially accounting for the net effect of their line (bound-bound) absorptions [26]. There are
three aspects to this. The first involves direct calculation of the spectrum at given pressure and temperature
to include more than 10® separate lines. This involves a wavelength resolution high enough to resolve natural
spectral features smaller than observed widths associated with the Doppler effect in thermal and rotational
motions. Another aspect of the modelling involves tabulating statistical distribution functions for the line
opacities in dependence on temperature and pressure over suitably wide ranges of values for various assigned
abundances. The third aspect is the spectral sampling, using a relatively small number of wavelength points
that do not resolve the spectrum in detail. In computing an atmospheric model, the relevant quantity of
interest is a spectral integral, where detailed broadening effects have been smoothed out. This is referred to
as ‘opacity sampling’. The twelfth edition of the program ATLAS [27] computes Rosseland mean opacities
at given temperatures and densities using iterative procedures incorporating these three procedures.

Iglesias and Rogers constructed the OPAL code to calculate Rosseland mean opacities [3]. They gave
extensive results for the mixture of [28], which allow accurate interpolation in (log) temperature and den-
sity, with given hydrogen with various metal mass fractions. They used temperature as the basic variable
and also R o density/(temperature)? (see above). The range of R and temperature are such as to cover
typical stellar conditions from the interior through the envelope to extended outer regions. Iglesias and
Rogers did not review cool atmospheres, because, at that time, they were unable to revise photoabsorption
by molecules [3]. Only radiative processes were taken into account, so that electron conduction was also
neglected. Their approach regarded distant many-particle correlations as highly classical, and their detailed
radiative interaction calculations were applied to regions where the de Broglie wavelength is less than the
plasma screening length. Here, they introduced systematic quantum mechanical methods for many-particle
correlations. Their model calculations are generally accepted to be accurate, both for valence electrons and
photon absorptions involving inner core electrons, as well as multiply excited ions. Bound-bound transitions
were calculated for every subshell in each configuration of the various ion stages explicitly.
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The Cox and Stewart [12] opacity tables, sometimes known as the (older) Los Alamos data, presented
Rosseland mean opacities also without allowance for electron conduction. These tables have provided a
basis for many stellar structure calculations, including the original GOB program. They include molecular-
hydrogen and free-electron absorption of radiation by the free-free process from [29]. Rayleigh scattering
of photons by molecular hydrogen, using a formula given by [30] was also included. The older Los Alamos
tables were presented in an updated form by [2] (the Los Alamos Opacity Library — LAOL), and in this
form appeared in the original versions of the Paczyniski code available to our group.

Creation of full two-dimensional interpolated tables needed for GOB involves a two-step procedure: first
interpolating density values from the source (in their format) to the required (GOB) table format, e.g.
first for the required densities at set temperatures. These opacities are then interpolated to the required
temperatures at the new tabular densities.

—¢—logrho=-10 @ logg=-4 —— logg=2
—=— logg=-8 — logg=-2
—A— Jogg=-6 —— logg=0
6
5
23
52 Iglesias & Rogers 1996
M ] 1*5'5._
2o
-1 4 1 2 3 4 5
2
-3

log T(K)

Figure 3. Iglesias and Rogers (1996) opacity values (in cm? g™ '), for X = 0.70, Y = 0.27, Z = 0.03, with changing
temperatures at different densities.

The inset in Figure 3 shows the density values for each run of opacities. The high density region, to the
right of the opacity peak, shows reversion to a Kramers’ type form. This seems most clear for the log p = —4
curve. This declines to the simple electron scattering constant form (k ~ constant) for high temperatures.
At the low density side, there is the expected decline to very low opacities near the surface. Peak values of
the opacity in the tables occur at about log p ~ —2.5 and log T' ~ 4.5 and are typically around log x ~ 5.5.
Newer opacity calculations show this peak occurring at somewhat lower temperatures than the older tables.

Figure 4 shows three dimensional presentation of different opacity tables we have used in GOB pro-
gramme.

It can be seen that the Iglesias and Rogers opacities are basically similar to the LAOL ones, except
in the outer parts of the atmosphere where densities and temperatures are low. The Kurucz [1] opacities
also show differences in the outer envelope. This can be associated with the more detailed treatment of
line absorptions by Kurucz. Our presentation reflects some discontinuity towards the higher densities and
temperatures for the Kurucz opacities. This is because the available tabulations did not cover the complete
ranges of variables required for all feasible stellar conditions, but they are sufficient for the important outer
ranges of the envelope.

3. Results of Different Opacities in Model Integrations

Schwarzschild’s book [6] considered 10, 5 and 2.5 solar mass models (at zero age), and for the lower Main
Sequence, 1 and 0.6 solar masses. We follow the same selection in Table 1, where corresponding SCH output
boundary radii, luminosities and effective temperatures have been tabulated in Table 1(c) for comparison.
We also list GOB base-of-atmosphere radii corresponding to these luminosities and effective temperatures.
Three sub-tables are given corresponding to a selectable (mean) interpolation step used in the numerical
integration of the outer envelope. Actually, there are separate interpolation step limits set for each of the
main structural variables, and that for log p, for example, will be greater than that for log T, given the range
of variation of the corresponding values. The values shown, however, represent a user-set control over the
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Figure 4. Three-dimensional representation of opacity tables: (a) Huebner et al. (1977); (b) Iglesias and Rogers
(1991); and (c) Kurucz (1998).

inherent accuracy of the quadrature. There appears no exact basis for the selection of this control. In some
regions, the underlying variables are changing relatively slowly and the cumulative effects of departures from
linearity over small integration steps should be small, perhaps even self-cancelling. It is in the regions close
to absorption edges, where changes are rapid and non-linear, that opacity calculations are most difficult.
Twenty percent differences between the opacities of different sources, together with admitted theoretical
uncertainties of this order, imply that decreasing the interpolation steps to very small values cannot increase
the inherent accuracy of the model. We have presented the subtables in order to view the effect of the
selected interpolation step size in relation to the scale of effects from different opacity tables.

It is clear from Table 1 that the significantly greater opacities in the outer layers of the models increases
the corresponding temperature gradient in these layers, as can be anticipated from equation (3). The
tables show that the differences between corresponding base layer values of the variables resulting from the
different opacity tables are re of the order several percent (of their values). It is noticeable, however, that
these differences are comparable to numerical effects in the way the integration may be performed in relation
to step sizes. A similar point was made by Stothers [31].

The base values in Table 1 result from inward integrations with different opacities, but from the same
outer boundary. For a complete model, the atmospheric base and perimeter of the SCH integration values
should join up, as indicated in Figure 1, although this requires some adjustment of the outer boundary
temperature. What happens when more recent, increased, opacities are put into the GOB program is that
the base layer temperature increases and locates itself further out in the envelope. If the original GOB and
SCH integrations had matched at the base layer, therefore, we would have to decrease the value of Ty for the
GOB integration with the new opacities (at given luminosity) to achieve the same base temperature. This
decrease of Ty for constant L means that the effective radius of the star should expand [7]. The proportional
effect is of the same order as the proportional changes to the base temperatures for small changes, i.e. 5-10
%. Calculated radial changes produced in this way for the examples given are also provided in Table 1.

From Stothers and Chin [32] it follows that about the same increase in radius (5-10%) between the
older [12] and newer [2] Los Alamos opacities is given by a 50% increase in metallicity. We did not study
changes of metallicity for the present work, but Stothers and Chin’s finding is in keeping with Andersen’s
[20] point that if the metallicity can be correctly assigned to within 25%, and we know the age of the star
(i.e. its probable evolution), then it should be possible independently to check the effects of opacity. In this
connection, it is interesting that this scale of radial increase (5-10% — for intermediate-low mass stars) was
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Table 1. GOB and SCH results for base layer radii using different opacity tables: (a) for mean interpolation step =
0.1; (b) for step size = 0.05; and (c) for step size = 0.02.

(a) Parameter Value
M 0.60 1 2.5 5 10
5 (Huebner) 0.3287 0.4836 0.982 1.7216 2.3481
5 (Igl. 1991) 0.3287 0.4886 0.982 1.7216 2.3481
5 (Igl. 1996) 0.3589 0.5318 1.0656 1.8286 2.4540
RB (Kurucz) 0.3529 0.5263 1.0231 1.7311 2.3575
log L -0.8276 0.0409 1.6068 2.8296 3.6749
10g T, 3.652  3.7692 4.0115 4.2085 4.3545

R (OB Huebner) 0.5680 0.6131 1.127  1.966  3.349
OB Igl. 1991) 0.5680 0.6131 1.127 1966  3.349

B (
R (OB Igl. 1996) 0.6335 0.6896 1.719  2.527  3.418
R (OB Kurucz) 0.598 0.6232 1.714  2.316 3.401
(b) Parameter Value
M@ 0.6 1 25 5 10
5 (Huebner) 0.3741 0.5523 1.0300 1.7317 2.3565
5 (Igl. 1991) 0.3741 0.5523 1.0300 1.7317 2.3565
5 (Igl. 1996) 0.3805 0.5592 1.1092 1.8317 2.4610
RB (Kurucz) 0.3742 0.5459 1.0384 1.7423 2.3604
log L -0.8276 0.0409 1.6068 2.8296 3.6749
10gTe 3.652  3.7692 4.0115 4.2085 4.3545

R (OB Huebner) 0.5736  0.6301 1.166  1.968  3.389

R (OB Igl. 1991) 0.5736  0.6301 1.166  1.968  3.389
R (OB Igl. 1996) 0.6414 0.7380 1.879  2.638  3.926
R (OB Kurucz) 0.6398 0.7221 1.792 2413  3.517
(c) Parameter Value
M@ 0.6 1 25 5 10

5 (Huebner) 0.3871 0.5733 1.1357 1.8710 2.5258
5 (Igl. 1991) 0.3871 0.5733 1.1357 1.8710 2.5258
5 (Igl. 1996) 0.3869 0.5728 1.1379 1.8755 2.5345
RB (Kurucz) 0.3869 0.5728 1.1381 1.8768 2.5340
log L -0.8276 0.0409 1.6068 2.8296 3.6749
10gTe 3.652  3.7692 4.0115 4.2085 4.3545

R (OB Sch. 1958)  0.644 1.021 1.591 2381  3.622
R (OB Huebner) 0.6484 0.6998 1.176  1.978  3.457
R (OB Igl. 1991) 0.6484 0.6998 1.176  1.978  3.457
R (OB Igl. 1996) 0.6716 0.7590 1.963 2.736  3.996
R (OB Kurucz) 0.6511 0.7988 1.896  2.517  3.687

sufficient to resolve remaining apparent discrepencies between observations and theory, according to Stothers
and Chin [32] (given appropriate masses[33]). In Table 2 we present results for these radial increases as given
by Stothers and Chin [32] and also Claret and Gimenez [34].

A key question is whether the measured values of luminosity and effective temperature, at given mass and
(surface) composition, are sufficient uniquely to resolve the internal run of all parameters affecting the heat
flow (in particular, radiative opacities) as well as the age. It has been argued by [21] that, given detached
eclipsing binaries with separately measurable radial velocities and no interactive evolution, the age can be
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Table 2. Comparison of radial increases associated with increase in opacity.

(a) Parameter Value

Mo, 0.6 1 25 5 10

S & C (1991) — — 0.10 0.07  0.05

C & G (1992) — — 0.08 0.07 0.10

Present 0.092 0.088 0.085 0.062 0.045
1.005 T T T T T

0.995

Relative flux

0.99

0.985

098 L L L L L
-20 -25 -10 -5 0 5 10

Phase (deg)

Figure 5. B light curve combining data from three transits across the disk of V376 Peg by its ‘planetary’ companion
as observed by Sullivan and Sullivan (2003).

effectively eliminated by combining one pair of measures (luminosities, say), leaving the other pair (e.g. ratio
of effective temperatures) to fix the heat-flow regime. But since approximations used in the calculations of
opacities are in a process of steady refinement, this question cannot be regarded as having a fixed answer,
although at any particular time the latest models can be tested.

4. Observational Tests

It is well-known that, regarding the properties of pulsating stars, the opacity distribution has a sensitive
relationship to behaviour [35]). But applications of data on eclipsing binary stars to general tests of theory
have also been discussed, at least since H.N. Russell’s [36] centennial symposium on the ‘Royal Road’ to
determine absolute stellar properties, and with much more precision available in recent years. The coeval
origin of binary stars also offers special convenience, as mentioned before.

A significant part of our present article is to assess how well currently available data are able to relate
to the results of improved opacity tabulations. We have selected V376 Peg = HD 209458 as an interesting
test case. In Figure 5, B photometry of the ‘planetary’ transits in this system observed from Hawaii in
1999 and 2000 have been combined and shown together with an optimal curve fit. Background information
about these observations was given by [37]. HD 209458 was one of a small number of selected stars showing
spectral evidence of low mass companions with reasonably short periods, some proportion of which would
be likely to show eclipses [38]). These particular data were considered previously, as individual light curves,
by Budding [39].

The data in Figure 5 were analysed using the CURVEFIT package [40]. The fitting function in this
package comes from an approximate solution, using spherical harmonics, to the underlying Poisson equation
for the distortion of figure caused by tidal interactions and rotation, along classical lines. Speed of evaluation
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of an algebraic form of fitting function is an advantage when exploring a wide range of parameter space and
evaluating the corresponding error matrix. That this matrix corresponds, geometrically, to a closed ellipsoid
is sufficient and necessary for formal determinacy of the underlying model. The properties of the error matrix
allow us to check that the parametrization neither surpasses nor under-utilizes the information content of
the data (hence the general name ‘information limit optimization technique’ (ILOT) cf., e.g. Banks and
Budding [41]). Initial guidelines for the parameters of V376 Peg were taken from [42] and [17].

Table 3. V376 Peg (a) curve-fit details: optimal parameters and errors; (b) absolute parameters.

(a) Parameter Value Err. (o)
U 1.0012 0.0009
71 0.1172 0.001
79 0.0145 0.0006
1 86.3 0.4
u 0.574
Al 0.001
X2 /v 0.93
(b) Parameter Value p.e.
Period 3.52474d 0.00001 d
Epoch (HID) 2451497.7993
A 9.837  0.04 Ry
R 1.15  0.01 Ro
Ro 139 0.03 Ryup
i 86.3 0.3 deg
U 0.57 0.14
M, 1.03 Mg, *
Mo 0.62 Myup *
Vabs 4.31
v 7.653
B-V 0.594
T 5920 K
Dist. 46.7 0.8 pc

* cf. Henry et al. 2000

CURVEFIT provides radii, in terms of the separation of the component stars, as well as the orbital
inclination, from the eclipse photometry. Results are given in the upper part of Table 3. These parameters
can be combined with the high quality radial velocity data of [42]. Since the projected velocities are measured
in absolute units (e.g. km-sec™!) and the orbital period is known independently, the orbital radius can be
deduced in km. Kepler’s law will then furnish the masses of the components. In this way we calculated
the absolute radii in the lower part of Table 3. From the goodness of fit measure x2, the stellar radius is
estimated probably to within 1 percent of its true value.

The results given in Table 3 are within their error limits of those of Brown et al. [43], using the much more
sophisticated facilities of the Hubble Space Telescope. They are a thus a fair indication of generally available
good observational accuracy of the present time, when sufficient precautions are taken. It is worth noting that
the ~millimag accuracy presented by [17] was achievable even with a 0.6 m telescope and 2 min integrations
from a ground-based site, although at an altitude of ~4000 m, so advantageous for photometry. On this
basis, longer integrations with a >1 m telescope from similar locations would approach pmag accuracy data
for brighter stars. Analysis of eclipsing binary light curves with such an accuracy should allow sensitive tests
of theoretical results on stars, and, for the present context, the opacity of stellar material
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5. Discussion and Summary

The present study supports the point that changes in schemes for carrying out the numerical integration
of structure equations, say of order a few per cent, may have as great, or greater, effect then some of the
earlier changes to opacity tables (see also [44]). On the face of it, this looks at variance with the implication of
opacity model predictions, testable, in principle, to very high accuracy when suitable observational material
is available. Parameters thought to be within ~10~% of their real values have been specified [45], but this
was when a detailed vibration spectrum also was known. In general, information about stars obtained from
direct measurement is less specific: but a useful broad range of data comes from eclipsing binary stars with
double-lined spectra, to which the present article is closely related.

Our main findings concern the increase of radius associated with increasing envelope opacity. In this
study, changes from the earlier LAOL opacity tables to later ones that include more detailed line absorption
effects, have changed calculated radii by up to ~5-10%. This scale of effect in the radius is now able to
be checked by careful analysis of good observations of eclipsing binary stars, even taking into account the
interdependence of parameters in the fitting of their light curves. In this way, detailed atomic modelling
becomes open to empirical testing from observations. It is interesting that the small difference between the
older Iglesias and Rogers opacities and the observations in Figure 1 of Stothers and Chin [32] is about the
same as the difference between the effects of opacity from the 1992 to the 1996 OPAL opacities (including
more line absorption effects). However, alternative possibilities exist that can also account for changes of
this order, in particular the role of convective ‘overshooting’ [46-48, 21].

On this point, Claret and Gimenez [34, 49] showed that a moderate core overshoot improves the compari-
son between theoretical apsidal motion constants and observational data. Results for the structural constant
(a weighted average of both stars) coming from analysis of apsidal motions observed in certain close binary
systems with eccentric orbits were often found to be too large in earlier studies, implying that observed
mean radii were greater than predicted by models. But here it should be noted that the radii in the relevant
formulae are raised to the fifth power. A 2% error of estimation in the radius would therefore become a 10%
error in the estimation of the mean structural constant. This should render the mean structural constant
too insensitive to test opacity models on the basis of, say, the Andersen [20] criteria. The role of the most
appropriate dynamically stable mean rotation rate for the stars in such eccentric binaries is also likely to be
underestimated if the mean orbital angular velocity were used [50]. Light curve analysis models also have
often referred to ‘Roche model’ configurations for the stars, (for example with the Wilson-Devinney 1972
code, or its later developments). But, strictly speaking, there is no ‘Roche model’ for an eccentric binary
system, a point stressed already by [51]. Such comments aside, there will remain the issue of whether any
model of a continuum of heat-flow related variables can be uniquely established by observables dependent
only on the integrals of such variables.

We note some limitations about the generality of our findings: (a) the role of numerical accuracy effects
in the calculations (particularly where there have been some discontinuities in tailoring the Kurucz envelope
opacities into the general run of values throughout the star (cf. Figure 4c¢); and (b) the application of the
changed opacities only in the GOB program. In addition to opacity-related effects the GOB+SCH program
results show some small effects associated with the location of the internal fitting point and also the adopted
convective mixing-length parameter ‘alpha’. Nevertheless, we contend that more recent opacities, including
fuller treatment of line absorptions, produce effects that can be discriminated from detailed analysis of
double-lined eclipsing binary systems observed with modern, high-quality facilities.
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