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Abstract. We present a new example of a finitely presented monoid, namely
Bruck-Reilly extension of generalized Bruck-Reilly *-extension of free group with
infinite rank, the group of units of which is not finitely generated.
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1. Introduction and Preliminaries

In combinatorial group and semigroup theory, the relationship between prop-
erties of a monoid M and the group of units U(M) has often been subject to
research. In this direction in [1], the author studied the properties of finite
presentability and solvable word problem for the special monoids and the group
of units. After that in [11], the author showed that the conjugacy problem
for a special monoid was reducible to the conjugacy problem for its group of
units. Then the same author in [12] proved that the group of units of every
special monoid was finitely presented. But for any finitely presented monoid it
is natural to ask the following question.

Question: Does the group of units of a finitely presented monoid have to be
finitely generated?

This question was answered negatively in [3]. In that paper the authors have
given an explicit example that has the form of a double Bruck-Reilly extension
of the free group with infinite rank. In this short paper, we also answer the
question given above with negatively as giving a similar example to [3] by con-
sidering the Bruck-Reilly extension of the generalized Bruck-Reilly *-extension
(its presentation has been firstly given in [4]) of free group with infinite rank.



Definition 1.1. Let M be a monoid and 6 : M — M be an endomorphism.
Then the Bruck-Reilly extension BR(M, #) is the set

NO x M x N = {(p,m,q) : p,q > 0,m &€ M}

with multiplication

(p1,m1,q1) (P2, m2,q2) = (p1 —q1 +t, (M0 ) (ma0""7?), g2 — pa + 1),
t = max(qi,p2).

BR(M,0) is a monoid with identity (0, 1;,0).
If M is defined by the presentation < A; R >, then BR(M, 0) is defined by
(1) < A,b,c; R, bc =1, ba = (ad)b, ac = c(ab)(a € A) >

in terms of generators (0,a,0) (a € A), (0,157,1) and (1, 157,0) [5].

This extension is considered a fundamental construction in the theory of semi-
groups. Many classes of regular semigroups are characterized by Bruck-Reilly
extensions; any bisimple regular w-semigroups is isomorphic to a Reilly exten-
sion of a group [9] and any simple regular w-semigroup is isomorphic to a Bruck-
Reilly extension of a finite chain of groups [6, 7, 8]. Then in [2], the author have
obtained a monoid which is called generalized Bruck-Reilly *-extension and then
given the structure of the x-bisimple type A w-semigroup in which D* = D was
obtained. After that motivated by this paper, in [10] the authors defined w?-
chain of idempotents and then studied the structure theorem of the *-bisimple
type A w?-semigroups as generalized Bruck-Reilly *-extension. Therefore, by
considering these studies, in [4] the authors have found a presentation for the
generalized Bruck-Reilly *-extension.

Definition 1.2. [10] Let T be a monoid with Hi and Hy as the H*- and
H- class which contains the identity 17 of T, respectively. Then let 3, be
morphisms from T into Hy. Let u be an element in Hy and A, the inner
automorphism of H; defined by x — uxu~' such that v\, = Bvy. Now we can
make S = N° x N x T x N° x N° into a semigroup by defining

(m7 n’ a7p7 q)(ml7 nl? a/l7pl7 ql) =

(m, n—p+ max(p, n/)’ (aﬁmamt(p,n')—p)(a/BTrLaz(p,n’)—n/)7

- _ i

p' —n' +mazx(p,n’),q), ifg=m

(m,n, a((uw™" (@' y)uP )y~ =1BP),p, ¢ —m/ + q), if ¢ >m'
(m —q+m', 0, ((u ™ (ay)u?)y™ =0 5" Va! ) ), if q<m’

where B°,7° are interpreted as the identity map of T and u° is interpreted as
the identity 10 of T. The monoid S = N0 x N® x T x N° x N° constructed
above is called generalized Bruck-Reilly x-extension of T determined by 53,,u
and will be denoted by S = GBR*(T; 3,7v;u).



Theorem 1.1. [4] Let T be the monoid defined by the presentation < X; R >,
and let B,~ be morphisms from T into Hy ( H*-class which contains the identity
17 of T'). The monoid S = GBR*(T; 3,v;u) is then defined by the presentation

< X,y,z,a,b; R, yz=1, ba =1,
(2) yr = (x7)y, vz = z(zvy), bz = (28)b, za = a(zf)
yb=uy, bz = zu, uya =y, azu =z >

The following properties of GBR*(T; 8,v;u) are easy to derive from Definition
1.2

(GBR1) GBR*(T; 3,7;u) is a monoid with identity (0,0, 17,0, 0).

(GBR2) T =2 {0} x {0} x T'x {0} x {0} < GBR*(T; B3,v;u).

(GBR3) U(GBR*(T; 3,v;u)) = {0} x {0} x U(T) x {0} x {0} 2 U(T).
In this note since we provide a negative answer to question given above by means
of Bruck-Reilly extension of generalized Bruck-Reilly x-extension of free group
with infinite rank F'G ., firstly, we define presentation of F'G, as a monoid as
follows

(3) <gi3q; ‘g5 = e==£1,i>0)>.

2. Main Result

Theorem 2.1. Let M be the monoid given as Bruck-Reilly extension of gener-
alized Bruck-Reilly x-extension of FGo defined by (3). The group of units of
the monoid M defined by the finite presentation (16) is not finitely generated.

Proof: Let us consider generalized Bruck-Reilly x-extension of F'G, defined
by (3), under the homomorphism 53,7 : FGo — Hy (where Hy is the H*-class
which contains the identity of F'G,) such that ¢f ~— ¢5,; (e = £1, i > 0). Thus
by considering (2) we get the following presentation

< qf7y727a7b; qz_eqf = 1, Yz = 1, ba = 1’
(4) yb = uy, bz = zu, uya =y, azu = z,
Y45 = di1Ys> 4i% = 24541, 045 = qiab, gia = agiy, >

for GBR*(FGu; 3,7;u). Then by considering ba = 1, bgf = g5, b we obtain
Gip1 = bgja and yz =1, ygi = qi, 1y we get ¢i, = yg;z.

For i = 0, we get ¢f = bg§a and ¢} = yq§2.

For i = 1, we obtain ¢5 = bgta = b?g§a’ and q§ = yqfz = y?q5a’.

Thus by inductive argument we have

(5) g5 = biqgai = yiqui(e ==+1,i>0).



Now we can use the equation (5) to eliminate all generators ¢ from (4). For fa-
cility in working, we rename gg as ¢¢, thus we get the following finitely generated
(but not finitely presented) presentation for GBR*(FGwo; f, 7; ):

6)  <a gty 2ab; bVga'b'qa" =1, ba=1, yz =1,
yb =uy, bz = zu, uya =y, azu = z,
bigcal = yig2t, bitlgeal = bitlgeaitlh, bigtait! = abitlgfait!,
yiJrlqui — yiJrlquiJrly, yiqezi+1 — ZyiJrlquH»l > .

We note that it is not possible to obtain a finitely presented presentation for

GBR*(FGyo; 8,7; u) even if we apply some reductions on relations. So we define
second endomorphism ¢ : GBR*(FG; 8,7;u) — GBR*(FGw; 8,7;u) by:

¢ ¢ —bg'a=yqz
b b, a— a,
Yy, Z— z.
Now we check ¢ defines an endomorphism from GBR*(FG; 3,7;u) to itself.

To do that we must control that ¢ maps the defining relations in (6) into relations
that are valid in GBR*(FGw; 8,7; u):

(b'qa’b'q ca’)p = bbgfa.a’.b .bg a.a’ = b gfa TV T g T = 1 = 14,
(bzqeaz)¢ _ bi.bqea.ai _ bi+1q6ai+1 —_ yi+1qezi+1 —_ (yl EZi)¢,
(yi+1qezi)¢ — yi+1.yqez.zi — yi+2qézi+1 — yi+2qézi+2y — (yi+lqezi+ly)¢
(yvqezH-l)(b — yi.yqezlzi-&-l — yi+1qezi+2 — zyi+2qezi+2 — (Zyi+1q62i+1)¢,
(bz+1qeaz)¢ _ b”‘l.bqea.cﬁ _ bz+2qeaz+1 _ bz+2qeaz+2b _ (bz+1q6al+1b)¢7
(biqeai+1)¢ _ bi.bqea.a”l _ bi+1q6a’i+2 _ abi+2q6ai+2 _ (abi+1qeai+1)¢7
(ba)p = ba=1=1¢, (yz)p =y.z=1=1¢.

The check for the remaining relations is trivial/analogous.
Thus we have monoid BR(GBR*(FGw; 8,7;u), ¢) and the following presenta-
tion

(7) <q¢,q "y, za,b,ab 5 bga’biq e’ =1,
(8) ba=1, yz=1,
(9) yb = uy, bz = zu, uya =y, azu = z,

(10) blga’ =y'q2,



(11) Yitlgeat = it gy, yigtaitl = ayitlge Lt
(12) bl gcal = b lgcaith, bgtai ! = abtlgtaitt,
(13) ab =1, aq® = bg‘aa, ¢°b = bbg‘a,

(14) ay = ya, az = za, aa = aa, ab = ba,

(15) yb = by, zb="0bz, ab=a, bb=bb >

where € = &1 and 7 > 0.

Now we consider a relation (7) and multiply it by @ from the left and by b from
the right, and then use relations (13) — (15). Thus we get

ab'qca’bq Ca’b=ab = b'.bg‘a.a’b’.bg “aa’ab =1
o it it gt = 1.

So it is easily seen that all relations (7) are consequences of ¢°¢¢ = 1 and
relations (13) — (15). A similar argument gives that all relations (10) are con-
sequences of the relations (10) for ¢ = 1 and relations (13) — (15). Analo-
gously all relations of the form (11) and (12) are the consequences of these
relations for ¢ = 0 and (13) — (15). Therefore we conclude that our monoid

BR(GBR*(FGwo; 8,7;u), ¢) is defined by

<q,97 Y y,2,a,b,a,b; qq*

=q¢ l¢g=ba=yz=ab=1,

yb =uy, bz = zu, uya =y, azu = z,

bg‘a = yq°z,

(16) Ya© = yqzy, ¢°z = zyq°z,
bq® = bgab, q°a = abqta,
aq® = bg¢aa, ¢°b = bbg‘a,
ay = ya, az = za, aa = aa, ab = ba,
yb= by, zb=bz, ab=a, bb="bb (¢ = £1) >,

which is finitely presented. By the property (GBR3) it is seen that

U(M) =U(BR(GBR"(FGoo; B,7;u), ¢))

~

1%

U(GBR"(FGe; 8,7;u))
{0} x {0} x U(FGw) x {0} x {0}
U(FGOO) = FG,



and so the group of units of M is not finitely generated.
Hence the result.
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