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Abstract. In this paper we deal with the geometric properties of canal surfaces

in E3. Further, the first and second fundamental form of canal surfaces are

presented. By the use of the second fundamental form, the Gaussian and mean

curvature of canal surfaces are obtained. Finally, the visualization of canal

surfaces which their spine curves are unit circle and a straight line are presented.
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1. Introduction

A canal surface is defined as envelope of a one-parameter set of spheres, centered

at a spine curve () with radius (): When () is a constant function, the

canal surface is the envelope of a moving sphere and is called a pipe surface.

Canal surfaces have wide applications in CAGD, such as construction of blend-

ing surfaces, shape reconstruction, transition surfaces between pipes, robotic

path planning, etc. (see, [1], [2], [3]). Most of the literature on canal surfaces

within the CAGD context has been motivated by the observation that canal

surfaces with rational spine curve and rational radius function is rational, and

it is therefore natural to ask for methods which allow one to construct a rational

parametrization of canal surfaces from its spine curve and radius function. The

developable surface plays a important role in CAGD. It is well known that, at

regular points, the Gaussian curvature of a developable surface is identically

zero. In [3] it has been proved that developable canal surface is either a cylinder

or a cone.
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The paper is organized as follows. In section 2, we shall discuss geometric

properties of canal surfaces. The first and second fundamental forms of canal

surfaces are presented. By the second fundamental form, the Gaussian and

mean curvature of canal surfaces are given. In section 3, the visualization of

canal surfaces which their spine curves are unit circle and a straight line are

presented. All the figures in this paper were created using Maple programme.

2. Canal Surfaces

Recall definitions and results of [5]. In the present section we will consider canal

surfaces in E3 Canal surface is a surface formed as the envelope of a family of
spheres whose centers lie on a space curve.

Let () = (1() 2() 0) be a plane curve parametrized by arclength. The

corresponding Frenet formulas have the following form:

(2.1)

0() = 1()

1
0() = ()2()

2
0() = −()1()

where 1() and 2() are the tangent and normal vectors of the curve  re-

spectively. We choose a constant vector 3() of E3. The canal surface of the
planar curve  has the following parametrization (see, [6]):

(2.2)  : ( ) = () + () (2() cos  + 3() sin ) 

where () is the radius of the spheres from the definition of the canal surface.

The tangent space to  at an arbitrary point  = ( ) of  is spanned by

(2.3)
( ) = (1−  cos )1 + (

0 cos )2 + (0 sin )3

( ) = −( sin )2 + ( cos )3
Further, the coefficients of the first fundamental form become

(2.4)

 = hi = (0)2 + (1−  cos )2

 = hi = 0
 = hi = 2

The unit normal vector field of  is

(2.5)

 =
 ×

k ×k
=
1


{01 −  cos (1−  cos )2 −  sin (1−  cos )3}

where  2 = −  2

The second partial derivatives of ( ) are expressed as follows:

(2.6)

= − cos (20 + 0)1+(− 
2
cos  + 00 cos )2+(

00
sin )3

 = ( sin )1 − (0 sin )2 + (0 cos )3
 = −( cos )2 − ( sin )3
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Further, the coefficients of the second fundamental form become,

(2.7)

 =   

=
1


{cos (−2(0)2 − 200 −  + 200 sin2 )

+ cos2 (222) + cos3 (200 − 33)− 00}
 =   

=
20 sin 




 =   

=
2 − 3 cos 




The Gaussian and mean curvature of a regular patch are given by

(2.8)  =
 − 2

−  2


(2.9)  =
 +− 2
2(−  2)



respectively (see, [6]).

Summing up the following results are proved.

Theorem 2.1. Let  be a canal surface in E3 given with the parametrization
(2.2). Then the Gaussian and mean curvatures of  at point  are

(2.10)

 =
3

 4
{ cos (200 − 00−2(0)2 − )

+ cos2 (3(
0
)
2
2+200+32−2002)

+ cos3 (−323)+ cos4 (34)− 
00−(0)22}

and

(2.11)
 =

2

2 3
{cos (200 − 3(0)2 − 200 − 4)

+ cos2 (522) + cos3 (−233)− 00 + 1 + (0)2}

Corollary 2.1. Let  be a pipe surface (i.e. () is a constant function) in

E3 given with the parametrization (2.2). Then the Gauss and mean curvatures
of  at a point  are

 =
cos 

(1−  cos )4
{− + (32) cos  − (323) cos2  + (34) cos3 }

 =
1

2(1−  cos )3
{1− (4) cos  + (522) cos2  − (233) cos3 }
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Corollary 2.2. Let be a canal surface in E3 given with the parametrization
(2.2). If the spine curve  is a straight line then the Gauss and mean curvatures

of  at a point  are

(2.12)  =
−00

(1 + (0)2)2


(see, [6]) and

(2.13)  =
−00 + (0)2 + 1
2(1 + (0)2)32



Example 2.1. Consider the unit circle () = (cos sin 0) in E3 Then the
canal surface of the spine curve  in E3 has the following parametrization

(2.14)

( ) = ( cos ()− () cos ()() sin ()− () sin () cos () () sin ())

Example 2.2. Consider the straight line () = (1 + 1 2 + 2 0) in E3

where 21 + 22 = 1 Then the canal surface of the spine curve  in E3 has the
following parametrization

(2.15)

( ) = (1+ 1−2() cos () 2+ 2+1() cos () () sin ())

where 1 1 2 2 are real constants.

3. Visualization

We visualize the surfaces given with the patch( ) = (( ) ( ) ( ))

making use of Maple. Furthermore, we plot the graph of the given surface by

using maple plotting command

(3.1) 3([  ]  =   = );

In the sequel we construct some 3D geometric shape models of canal surfaces.

First, we construct the geometric model of the canal surface given in Example

2.1 We visualize some surface models of the patch (2.14) using the following

values respectively (see Figure 1) ;

(3.2)

) () = 

) () = 2

) () = sin
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Figure 1. The canal surfaces of a unit circle

Secondly, we construct the geometric model of the canal surface given in Exam-

ple 2.2. We visualize some surface models of the patch (2.15) using the values

1 =
4
5
; 2 =

3
5
; 1 = 4; 2 = 5 and () given in (3.2) respectively (see Figure

2);

Figure 2. The canal surfaces of a straight line

Finally, we visualize the graph of the flat and minimal canal surfaces given by

(2.15) using the following values of () respectively, (see Figure 3);

) () = 3+ 5

) () = cosh

Figure 3. The flat and minimal canal surfaces of a straight line
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4. Conclusion

In this paper, a method of canal surfaces is investigated. For demonstrating

the performance of the proposed method, parameters of canal surfaces models

were constructed from the spine curve . Infect, canal surfaces are solid models

that can fairly simple parametrization of representing a large variety of standard

geometric models. They have wide applications in CAGD, such as construction

of blending surfaces. This makes them much more convenient for representing

shape reconstruction, transition surfaces and pipe surfaces. By the use of main

results of differential geometry we calculated the Gaussian and mean curvatures

of canal surfaces in E3 Moreover, this frame work can be used for the modelling
of 3-D shapes in E3. For future work it will be necessary to improve the system
to allow for the canal surface in E4
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