Turk J Math
35 (2011) , 493 — 499.
LY © TUBITAK
TUBITAK doi:10.3906 /mat-0910-59

Rotational embeddings in E* with pointwise 1-type gauss map

Kadri Arslan, Bengti Kili¢ Bayram, Betil Bulca,
Young Ho Kim*, Cengizhan Murathan and Ginay Oztirk

Abstract

In the present article we study the rotational embedded surfaces in E'. The rotational embedded surface
was first studied by G. Ganchev and V. Milousheva as a surface in E*. The Otsuki (non-round) sphere in

E* is one of the special examples of this surface. Finally, we give necessary and sufficient conditions for the

flat Ganchev-Milousheva rotational surface to have pointwise 1-type Gauss map.
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1. Introduction

Since the late 1970’s, the study of submanifolds of Euclidean space or pseudo-Euclidean space with the
notion of finite type immersion has been extensively carried out. An isometric immersion z : M — E™ of a
submanifold M in Euclidean m-space E™ is said to be of finite type if x identified with the position vector

field of M in E™ can be expressed as a finite sum of eigenvectors of the Laplacian A of M, that is,

k
r=2x9+ E i,
i=1

where zg is a constant map x1,xs, ..., £y non-constant maps such that Az = \jz;, A e R, 1 < ¢ < k. If
A1, A2y .evy A are different, then M is said to be of k-type. Similarly, a smooth map ¢ of an n-dimensional
Riemannian manifold M of E™ is said to be of finite type if ¢ is a finite sum of E"-valued eigenfunctions
of A ([4], [5]). Granted, this notion of finite type immersion is naturally extended in particular to the Gauss
map G on M in Euclidean space ([8]). Thus, if a submanifold M of Euclidean space has 1-type Gauss map
G, then G satisfies AG = A(G + C) for some A € R and some constant vector C' ([1], [2], [3], [11]). However,
the Laplacian of the Gauss map of some typical well-known surfaces such as a helicoid, a catenoid and a right
cone in Euclidean 3-space E? take a somewhat different form; namely, AG = f(G + C) for some non-constant

function f and some constant vector C'. Therefore, it is worth studying the class of solution surfaces satisfying
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such an equation. A submanifold M of a Euclidean space E™ is said to have pointwise 1-type Gauss map if

its Gauss map G satisfies

AG = f(G +C) (1)

for some non-zero smooth function f on M and a constant vector C'. A pointwise 1-type Gauss map is called
proper if the function f defined by (1) is non-constant. A submanifold with pointwise 1-type Gauss map is said
to be of the first kind if the vector C' in (1) is zero vector. Otherwise, the pointwise 1-type Gauss map is said to
be of the second kind ([6], [9], [12], [13]). In [9], one of the present authors characterized the minimal helicoid
in terms of pointwise 1-type Gauss map of the first kind. Also, together with B.-Y. Chen, they proved that
surfaces of revolution with pointwise 1-type Gauss map of the first kind coincides with surfaces of revolution
with constant mean curvature. Moreover, they characterized the rational surfaces of revolution with pointwise
1-type Gauss map ([6]).

In [16], D. W. Yoon studied Vranceanu rotation surfaces in Euclidean 4-space E*. He obtained the
complete classification theorems for the flat Vranceanu rotation surfaces with 1-type Gauss map and an equation

in terms of the mean curvature vector. For more details see also [15].

In this article we will investigate rotational embedded surface with pointwise 1-type Gauss map in
Euclidean 4-space E*.

The rotational embedded surface was studied by G. Ganchev and V. Milousheva as a surface in E* which

is defined by the following surface patch with respect to an orthonormal system of coordinates
X(Sa t) = (fl(s)a f2(8)a fd(s) CoS ta fd(s) Sint)a (2)

where a(s) = (fi(s), f2(s), f3(s)) is a space curve parametrized by the arc-length, i.e., (f1")2+(f2")2+(f3')? =1
and f3(s) >0 ([10]).
We prove the following theorem.

Theorem A. Let M be a flat rotational embedded surface in Fuclidean 4-space E*. Then M has
pointwise 1-type Gauss map if and only if

fils) = /ucos(ﬁln|as+b|)ds,
fa(s) = /usin(%ln|as+b|)ds,
fa(s) = as+b.

for some constants A # 0, > 0,a # 0 and b.

2. Preliminaries

Let z: M — E™ be an isometric immersion from an n-dimensional connected Riemannian manifold M

into an m-dimensional Euclidean space E™. Let V be the Levi-Civita connection of E™ and V the induced
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connection on M . Then the Gaussian and Weingarten formulas are given, respectively, by
VxY = VxY +h(X,Y), (3)

Vx€&=—AeX + Dx¢€ (4)

for vector fields X,Y tangent to M and a vector field £ normal to M , where h denotes the second fundamental

form, D the normal connection and A¢ the shape operator in the direction of ¢ that is related with h by
<h(Xa Y)a £> = <A§Xa Y>a

where (-,-) is the standard inner product in E* and that in the submanifold M as well.

If we define a covariant differentiation VA of the second fundamental form A on the direct sum of the
tangent bundle and the normal bundle TM & T+M of M by

(Vxh)(Y,Z) = Dxh(Y,Z) = M(VxY, Z) = h(Y,VxZ)

then we have the Codazzi equation
(Vxh)(Y. 2) = (Vyh)(X, Z). ()
Let us now define the Gauss map G of a submanifold M into G(n,m) in A"E™, where G(n,m) is the

Grassmannian manifold consisting of all oriented n-planes through the origin of E™ and A™E™ is the vector

space obtained by the exterior product of n vectors in E™. In a natural way, we can identify A"E™ with some

m

Euclidean space EN where N = ( n ) Let {e1,..., €n, €nt1,..., €m} be an adapted local orthonormal

frame field in E™ such that e, es, ..., e, are tangent to M and e,41,€p42..., €, normal to M. The map
G : M — G(n,m) defined by G(p) = (e1 Aea A ..A ey)(p) is called the Gauss map of M, that is a smooth
map which carries a point p in M into the oriented n-plane in E™ obtained from the parallel translation of
the tangent space of M at p in E™.

For any real valued function f on M the Laplacian of f is defined by the relation

Af =- Z(ﬁelﬁelf - ﬁveieif) (6)
3. Proof of Theorem

Let M be a rotational embedded surface in E* defined by the patch (2). We choose a moving frame

e1, ea, €3, e4 such that e, es are tangent to M and es,eq are normal to M in the the following ([10]):

TR CTTET
€ = %(fl"(s),fz"(s),fg"(s)cost,f3”(s)sint),
e = (RO~ ) (5), 1S (6) = ()16 (5),

(f1' () 2" (s) = 11" (s) /2" (s)) cost, (f1'(5) f2"(s) = " (s) [ (5)) sin®),
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where

k= V("2 + ()2 + (fs")? #0 (7)
is the curvature of the space curve a.

Hence, the coefficients of the first fundamental form of the surface are

E = (X(st), Xs(s,1)) =1,
F = <X8(Sat)aXt(8at)> =0,
G = <Xt(8at)aXt(sat)< = f32(8)

Since EG — F? = f;2(s) does not vanish, the surface patch X(s,t) is regular.

We denote by a the projection of o on the 2-dimensional plane Oejes. So the curvature of « is defined
by k1 = fi'fo”" — fo' f1”. Then with respect to the frame field {ej,eq,es,e4}, the Gaussian and Weingarten
formulas (3)-(4) of M look like [10]:

Ve,e1 = Kes,
66‘162 = 0; (8)
6 62 = 7fi 1 — fi”eg — K 64
“ f3 Kf3 kfs
~ :,
Ve = e, (9)
I3
and
68163 = —Ke€] t+ Tey,
. f3//
Ve,€3 = n_f362’ (10)
68164 = —TEs3,
~ K1
Ve = —es.
264 /‘Gf3e2

Where, 7 is the second curvature of space curve «. The Gauss curvature of M is obtained by equating

__ B
K= 7 (11)
Putting
f' " 2+ 2
A(s) = - </<o2+ (S 3/{32]? ﬂl) ,
_ PN 40 CY )
B(s) = (IiJr ng Jrf), (12)
D(s) = - </<n'+ l:]]:; ) ,
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we get, by using (6), (8) and (10),
—AG = A(s)e; Neg + B(s)ez Aes + D(s)ea A ea. (13)

We now suppose that the rotational embedded surface M is of pointwise 1-type Gauss map in E*. From
(1) and (13),

f+f ( Cene)=—A(s),
J ( C,eaNes)=—DB(s), (14)
f ( CieaNes)=—D(s).

Since AG is a linear combination of e; A ey, ey Aes, e Aesg, es Aeg, ea ANeg and ez A ey, we also have

f ( CietNes)=0,
f ( CietNeq) =0, (15)
f { Ciesnhes) =0.

By differentiating (15) covariantly with respect to s, we get

13! c 13" o B
E < ’62/\63>+I<&_f3< ,e1 Neg >=0,
’
k K
% < C,esNey >+/<;—;3 < C,e1 Aey >=0, (16)
"
k K
I‘}%f < C,€2/\€4>*j<c,62/\63>:0.
3 3

Since M is flat, (11) implies f3”” = 0. Thus f3(s) = as + b for some constants a # 0 and b. Hence,
substituting f3” = 0 into (16) and using (14) we obtain,

fSIB(S) = 0,
BD+ T AB) ) = 0, (7)
k1B(s) = 0.

Suppose @ = {p € M : B(s) # 0} is a non-empty set. Then, from the third formula of (16) we
have k1 = fi'fo” — fo' f1"” = 0. Consequently, using this equality with (f1’)? + (f2')% + (f3')? = 1, we get
(f1")2+ (f2')? = 1 —a?. Therefore, fi’, fo', f3' are constant functions and k = /(f1”)? + (f2")2 + (f3")? =0,

which is a contradiction. So, B(s) = 0. Furthermore, if we make use of the second equation of (12) with

f3” =0, then we obtain k = where A is a nonzero constant. We may put

A
as+b?’
fi' = pcosf(s), fo' = psind(s) (18)
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for some function 6(s), where 1 —a? = p?. Furthermore, substituting (18), k = #er and f3 =as+ b into (7)

with

obtain

some computation implies g—z = g(a;b) > 0. Solving this equation, we get 0(s) = ﬁ Injas +b|. So, we
fi6s) = [ meos(= tulas + by
1(s) = 14 COS ” nlas s,
fa(s) = / sin(lln|as+b|)ds
2 - W ap )
fa(s) = as+b.

The converse is easily verified. Thus, our theorem is proved.

Corollary 3.1 Let M be a rotational embedded surface in Fuclidean 4-space given by the surface patch (2).

Then the Gauss map of M cannot be harmonic.

Proof.  Suppose the Gauss map of the rotational embedded surface is harmonic. Then by (13), A(s) =

B(s)

(7]

(8]

(9]
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= D(s) = 0. Thus, from the first equation of (12) we get x = 0, which is a contradiction. O
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