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Rotational embeddings in E
4 with pointwise 1-type gauss map
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Abstract

In the present article we study the rotational embedded surfaces in �
4 . The rotational embedded surface

was first studied by G. Ganchev and V. Milousheva as a surface in �
4 . The Otsuki (non-round) sphere in

�
4 is one of the special examples of this surface. Finally, we give necessary and sufficient conditions for the

flat Ganchev-Milousheva rotational surface to have pointwise 1-type Gauss map.
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1. Introduction

Since the late 1970’s, the study of submanifolds of Euclidean space or pseudo-Euclidean space with the
notion of finite type immersion has been extensively carried out. An isometric immersion x : M → E

m of a
submanifold M in Euclidean m-space E

m is said to be of finite type if x identified with the position vector
field of M in E

m can be expressed as a finite sum of eigenvectors of the Laplacian Δ of M , that is,

x = x0 +
k∑

i=1

xi,

where x0 is a constant map x1, x2, ..., xk non-constant maps such that Δx = λixi, λi ∈ R , 1 ≤ i ≤ k. If
λ1, λ2, ..., λk are different, then M is said to be of k -type. Similarly, a smooth map φ of an n-dimensional
Riemannian manifold M of E

m is said to be of finite type if φ is a finite sum of E
m -valued eigenfunctions

of Δ ([4], [5]). Granted, this notion of finite type immersion is naturally extended in particular to the Gauss

map G on M in Euclidean space ([8]). Thus, if a submanifold M of Euclidean space has 1-type Gauss map

G , then G satisfies ΔG = λ(G + C) for some λ ∈ R and some constant vector C ([1], [2], [3], [11]). However,
the Laplacian of the Gauss map of some typical well-known surfaces such as a helicoid, a catenoid and a right

cone in Euclidean 3-space E
3 take a somewhat different form; namely, ΔG = f(G + C) for some non-constant

function f and some constant vector C . Therefore, it is worth studying the class of solution surfaces satisfying
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ARSLAN, KILIÇ BAYRAM, BULCA, KIM, MURATHAN, ÖZTÜRK

such an equation. A submanifold M of a Euclidean space E
m is said to have pointwise 1-type Gauss map if

its Gauss map G satisfies

ΔG = f(G + C) (1)

for some non-zero smooth function f on M and a constant vector C . A pointwise 1-type Gauss map is called
proper if the function f defined by (1) is non-constant. A submanifold with pointwise 1-type Gauss map is said

to be of the first kind if the vector C in (1) is zero vector. Otherwise, the pointwise 1-type Gauss map is said to

be of the second kind ([6], [9], [12], [13]). In [9], one of the present authors characterized the minimal helicoid
in terms of pointwise 1-type Gauss map of the first kind. Also, together with B.-Y. Chen, they proved that
surfaces of revolution with pointwise 1-type Gauss map of the first kind coincides with surfaces of revolution
with constant mean curvature. Moreover, they characterized the rational surfaces of revolution with pointwise
1-type Gauss map ([6]).

In [16], D. W. Yoon studied Vranceanu rotation surfaces in Euclidean 4-space E
4. He obtained the

complete classification theorems for the flat Vranceanu rotation surfaces with 1-type Gauss map and an equation
in terms of the mean curvature vector. For more details see also [15].

In this article we will investigate rotational embedded surface with pointwise 1-type Gauss map in

Euclidean 4-space E
4.

The rotational embedded surface was studied by G. Ganchev and V. Milousheva as a surface in E
4 which

is defined by the following surface patch with respect to an orthonormal system of coordinates

X(s, t) = (f1(s), f2(s), f3(s) cos t, f3(s) sin t), (2)

where α(s) = (f1(s), f2(s), f3(s)) is a space curve parametrized by the arc-length, i.e., (f1
′)2+(f2

′)2+(f3
′)2 = 1

and f3(s) > 0 ([10]).

We prove the following theorem.

Theorem A. Let M be a flat rotational embedded surface in Euclidean 4-space E
4 . Then M has

pointwise 1-type Gauss map if and only if

f1(s) =
∫

μ cos(
λ

aμ
ln |as + b|)ds,

f2(s) =
∫

μ sin(
λ

aμ
ln |as + b|)ds,

f3(s) = as + b.

for some constants λ �= 0, μ > 0, a �= 0 and b .

2. Preliminaries

Let x : M → E
m be an isometric immersion from an n-dimensional connected Riemannian manifold M

into an m-dimensional Euclidean space E
m. Let ∇̃ be the Levi-Civita connection of E

m and ∇ the induced
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connection on M . Then the Gaussian and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X, Y ), (3)

∇̃Xξ = −AξX + DXξ (4)

for vector fields X, Y tangent to M and a vector field ξ normal to M , where h denotes the second fundamental
form, D the normal connection and Aξ the shape operator in the direction of ξ that is related with h by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉,

where 〈·, ·〉 is the standard inner product in E
4 and that in the submanifold M as well.

If we define a covariant differentiation ∇h of the second fundamental form h on the direct sum of the
tangent bundle and the normal bundle TM ⊕ T⊥M of M by

(∇Xh)(Y, Z) = DXh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ)

then we have the Codazzi equation

(∇Xh)(Y, Z) = (∇Y h)(X, Z). (5)

Let us now define the Gauss map G of a submanifold M into G(n, m) in ∧n
E

m , where G(n, m) is the
Grassmannian manifold consisting of all oriented n-planes through the origin of E

m and ∧n
E

m is the vector
space obtained by the exterior product of n vectors in E

m. In a natural way, we can identify ∧n
E

m with some

Euclidean space E
N where N =

(
m
n

)
. Let {e1, ..., en, en+1, ..., em} be an adapted local orthonormal

frame field in E
m such that e1, e2, ..., en are tangent to M and en+1, en+2..., em normal to M. The map

G : M → G(n, m) defined by G(p) = (e1 ∧ e2 ∧ ...∧ en)(p) is called the Gauss map of M, that is a smooth
map which carries a point p in M into the oriented n-plane in E

m obtained from the parallel translation of
the tangent space of M at p in E

m.

For any real valued function f on M the Laplacian of f is defined by the relation

Δf = −
∑

i

(∇̃ei∇̃eif − ∇̃∇ei
eif). (6)

3. Proof of Theorem

Let M be a rotational embedded surface in E
4 defined by the patch (2). We choose a moving frame

e1, e2, e3, e4 such that e1, e2 are tangent to M and e3, e4 are normal to M in the the following ([10]):

e1 =
∂X
∂s∥∥∂X
∂s

∥∥ , e2 =
∂X
∂t∥∥∂X
∂t

∥∥ ,

e3 =
1
κ

(f1
′′(s), f2

′′(s), f3
′′(s) cos t, f3

′′(s) sin t),

e4 =
1
κ

(f2
′(s)f3

′′(s) − f2
′′(s)f3

′(s), f1
′′(s)f3

′(s) − f1
′(s)f3

′′(s),

(f1
′(s)f2

′′(s) − f1
′′(s)f2

′(s)) cos t, (f1
′(s)f2

′′(s) − f1
′′(s)f2

′(s)) sin t),
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where

κ =
√

(f1
′′)2 + (f2

′′)2 + (f3
′′)2 �= 0 (7)

is the curvature of the space curve α.

Hence, the coefficients of the first fundamental form of the surface are

E = 〈Xs(s, t), Xs(s, t)〉 = 1,

F = 〈Xs(s, t), Xt(s, t)〉 = 0,

G = 〈Xt(s, t), Xt(s, t)〈 = f 2
3 (s).

Since EG − F 2 = f 2
3 (s) does not vanish, the surface patch X(s, t) is regular.

We denote by α̃ the projection of α on the 2-dimensional plane Oe1e2. So the curvature of α̃ is defined
by κ1 = f1

′f2
′′ − f2

′f1
′′. Then with respect to the frame field {e1, e2, e3, e4} , the Gaussian and Weingarten

formulas (3)–(4) of M look like [10]:

∇̃e1e1 = κe3,

∇̃e1e2 = 0, (8)

∇̃e2e2 = −f3
′

f3
e1 −

f3
′′

κf3
e3 − κ1

κf3
e4,

∇̃e2e1 =
f3

′

f3
e2 (9)

and

∇̃e1e3 = −κe1 + τe4,

∇̃e2e3 =
f3

′′

κf3
e2, (10)

∇̃e1e4 = −τe3,

∇̃e2e4 =
κ1

κf3
e2.

Where, τ is the second curvature of space curve α. The Gauss curvature of M is obtained by equating

K = −f3
′′

f3
. (11)

Putting

A(s) = −
(

κ2 +
(f3

′′)2 + κ2
1

κ2f2
3

)
,

B(s) = −
(

κ′ +
f3

′′f3
′

κf2
3

+
κf3

′

f3

)
, (12)

D(s) = −
(

κτ +
κ1f3

′

κf2
3

)
,
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we get, by using (6), (8) and (10),

−ΔG = A(s)e1 ∧ e2 + B(s)e2 ∧ e3 + D(s)e2 ∧ e4. (13)

We now suppose that the rotational embedded surface M is of pointwise 1-type Gauss map in E
4 . From

(1) and (13),

f + f 〈 C, e1 ∧ e2〉 = −A(s),

f 〈 C, e2 ∧ e3〉 = −B(s), (14)

f 〈 C, e2 ∧ e4〉 = −D(s).

Since ΔG is a linear combination of e1 ∧ e2 , e1 ∧ e3, e1 ∧ e4 , e2 ∧ e3 , e2 ∧ e4 and e3 ∧ e4 , we also have

f 〈 C, e1 ∧ e3〉 = 0,

f 〈 C, e1 ∧ e4〉 = 0, (15)

f 〈 C, e3 ∧ e4〉 = 0.

By differentiating (15) covariantly with respect to s , we get

f3
′

f3
< C, e2 ∧ e3 > +

f3
′′

κf3
< C, e1 ∧ e2 >= 0,

f3
′

f3
< C, e2 ∧ e4 > +

κ1

κf3
< C, e1 ∧ e2 >= 0, (16)

f3
′′

κf3
< C, e2 ∧ e4 > − κ1

κf3
< C, e2 ∧ e3 >= 0.

Since M is flat, (11) implies f3
′′ = 0. Thus f3(s) = as + b for some constants a �= 0 and b . Hence,

substituting f3
′′ = 0 into (16) and using (14) we obtain,

f3
′B(s) = 0,

f3
′D +

κ1

κ
(A(s) + f) = 0, (17)

κ1B(s) = 0.

Suppose Q = {p ∈ M : B(s) �= 0} is a non-empty set. Then, from the third formula of (16) we

have κ1 = f1
′f2

′′ − f2
′f1

′′ = 0. Consequently, using this equality with (f1
′)2 + (f2

′)2 + (f3
′)2 = 1, we get

(f1
′)2 + (f2

′)2 = 1− a2. Therefore, f1
′, f2

′, f3
′ are constant functions and κ =

√
(f1

′′)2 + (f2
′′)2 + (f3

′′)2 = 0,

which is a contradiction. So, B(s) = 0. Furthermore, if we make use of the second equation of (12) with

f3
′′ = 0, then we obtain κ = λ

as+b
, where λ is a nonzero constant. We may put

f1
′ = μ cos θ(s), f2

′ = μ sin θ(s) (18)
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for some function θ(s), where 1− a2 = μ2. Furthermore, substituting (18), κ = λ
as+b and f3 = as + b into (7)

with some computation implies dθ
ds

= λ
μ
( 1

as+b
) > 0. Solving this equation, we get θ(s) = λ

aμ
ln |as + b| . So, we

obtain

f1(s) =
∫

μ cos(
λ

aμ
ln |as + b|)ds,

f2(s) =
∫

μ sin(
λ

aμ
ln |as + b|)ds,

f3(s) = as + b.

The converse is easily verified. Thus, our theorem is proved.

Corollary 3.1 Let M be a rotational embedded surface in Euclidean 4-space given by the surface patch (2).
Then the Gauss map of M cannot be harmonic.

Proof. Suppose the Gauss map of the rotational embedded surface is harmonic. Then by (13), A(s) =

B(s) = D(s) = 0. Thus, from the first equation of (12) we get κ = 0, which is a contradiction. �
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