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Abstract: Venom from the endoparasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) contains a mixture 

of biologically active components, which display potent paralytic, cytotoxic, and cytolytic eff ects towards hosts. Here, 

we further investigate if parasitism or envenomation by P. turionellae alters total protein of its host Galleria mellonella 

L. (Lepidoptera: Pyralidae). Various venom concentrations representing doses previously determined to yield host 

responses yet fall below the calculated LD99 were used for pupae and larvae. Parasitization was only assayed for host 

pupa since P. turionellae females normally parasitize host prepupae and pupae in nature. Hemolymph total protein 

concentration remained relatively steady at all doses and at all time points tested in parasitized and venom-injected 

host pupae and larvae. Th e only exception to this trend was with the highest dose of venom (0.5 VRE) at 24 h for larvae 

that almost 2 times higher amount of protein were detected with regard to untreated ones. It is likely that the increase 

in protein concentration in a non-permissive host stage in the present study was induced by venom and/or general 

injury because the same trend was also observed in null- and PBS-injected larvae. However, neither of the treatments 

increased the protein concentration of G. mellonella larvae to the same extent that 0.5 VRE injection did, indicating that 

the increase observed in the latter treatment was not simply the result of wounding or injection of fl uid. Th us, we favor 

the possibility that stress proteins may play a role in this event.  
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Pimpla turionellae (Hymenoptera: Ichneumonidae) parazitlemesi ve zehir 

enjeksiyonu sonrası konak Galleria mellonella (Lepidoptera: Pyralidae) hemolenf 

toplam proteinindeki değişiklikler

Özet: Endoparazitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) zehiri konak türü üzerinde felç edici, 

sitotoksik ve sitolitik etkiler gösteren biyolojik olarak aktif bileşenlerin karışımıdır. Bu çalışmada, P. turionellae 

dişilerinden elde edilen zehir salgısının ve doğal parazitlemenin konak tür, Galleria mellonella L. (Lepidoptera: 

Pyralidae) hemolenfi  toplam protein miktarına etkileri belirlendi. Konak pupa ve larvaları için daha önce tepki verdikleri 

hesaplanan LD
99 

dozu altındaki farklı zehir dozları kullanıldı. P. turionellae dişileri doğada sadece konak prepupa ve 
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Introduction 

Insect parasitoids are highly effi  cient at 

manipulating the physiology, metabolism, 

and endocrinological state of their hosts. Host 

conditioning can result from injection of factors of 

maternal origin derived from ovarian secretions (1-4) 

or venom glands (5-9), and/or rely on cells and fl uids 

released from eggs and developing parasitoid progeny 

(10-12). Endoparasitic koinobiont parasitoids 

regulate the nutritional and physiological states of 

their hosts to ensure the successful development of 

eggs and larvae (13-15). Th e precise mechanisms used 

to alter the hosts have not been fully revealed, but for 

many koinobiont species, venom and viruses (e.g., 

polydnaviruses, entomopox virus) are used alone or 

synergistically to alter the nutritional content of the 

host (13,15). 

Parasitism-mediated manipulation of the host 

nutritional condition is frequently manifested 

through changes in the hemolymph content of the 

host. More specifi cally, host plasma commonly 

displays quantitative and qualitative changes in 

protein and amino acid profi les when endoparasitic 

wasps parasitize their insect hosts (16,17). In several 

instances, the eff ects of parasitism and venom on 

the host hemolymph protein profi le are species-

specifi c. For example, the concentration of several 

host hemolymph proteins decreased when Hyposoter 

exiguae (Viereck) (Hymenoptera: Ichneumonidae) 

parasitized larvae of the cabbage looper, Trichoplusia 

ni (Hübner) (Lepidoptera: Noctuidae) (18,19). 

Similarly, parasitism of larvae of Pieris rapae (L.) 

(Lepidoptera: Pieridae) by Apanteles glomeratus 

L. (Hymenoptera: Braconidae) (20) resulted in a 

decrease in the concentration of host hemolymph 

storage proteins. When Cotesia (= Apanteles) 

congregata (Say) (Hymenoptera: Braconidae) 

parasitizes Manduca sexta (L.) (Lepidoptera: 

Sphingidae), expression of several hemolymph 

proteins is dramatically altered, including a decrease 

in the storage protein arylphorin (21). By contrast, 

arylphorin levels increased in T. ni parasitized by 

Chelonus sp. (Hymenoptera: Braconidae) (22,23). 

Parasitism of Spodoptera frugiperda (J.E. Smith) 

(Lepidoptera: Noctuidae) by C. marginiventris 

(Cresson) (Hymenoptera: Braconidae) also caused 

elevations in hemolymph proteins as evidenced 

by the early production of several high molecular 

weight proteins (24). In the C. kariyai Watanabe 

(Hymenoptera: Braconidae) – Pseudaletia separata 

Walker (Lepidoptera: Noctuidae) system, the 

protein concentration in the hemolymph of larvae 

injected with calyx fl uid and venom increased, yet 

in parasitized hosts, protein levels dropped (25). 

Th e free amino acid profi le of Lymantria dispar L. 

(Lepidoptera: Lymantriidae) larvae parasitized by 

Glyptapanteles liparidis Bouche (Hymenoptera: 

Braconidae) did not change qualitatively; however, 

levels of some single amino acids were reduced 

and those of others were elevated (26). Th ompson 

and Lee (1993) (27) reported no eff ect on amino 

acid concentration in M. sexta parasitized by C. 

congregata. It is clear from these observations that, 

though the wasps induce an array of changes in the 

host hemolymph content, the alterations in host 

condition depend on multiple factors being injected 

or secreted into the host. 

Venoms from these koinobiont species are 

frequently associated with temporary paralysis, and 

parasitized hosts continue to grow and develop even 

aft er parasitization (28). By contrast, most idiobiont 

parasitoids paralyze their hosts permanently, and 

pupalarını parazitlediğinden doğal parazitleme sadece konak pupalarında çalışıldı. Hemolenf toplam protein miktarı 

parazitlenen ve zehir enjekte edilen tüm konak pupa ve larvalarında tüm dozlarda ve tüm zamanlarda fazla değişiklik 

göstermedi. Sadece, larvalarda 24 saat sonunda en yüksek zehir dozunda (0,5 kese eşdeğeri zehir) hiçbir işleme tabi 

tutulmayan kontrol grubundakilere oranla protein miktarında iki kata varan bir artış görüldü. Protein miktarındaki 

bu artış eğilimi boş enjeksiyon ve sadece fi zyolojik su enjekte edilen larvalarda da görüldüğünden hedef konak evresi 

olmayan larva evresinde bu artışın zehir ve/veya yaralanmadan kaynaklanmış olabileceği düşünülmektedir. Ancak, 

diğer hiçbir uygulamada larva protein miktarının 0,5 kese eşdeğeri zehirdekine benzer derecede artış göstermemesi bu 

artışın sadece yaralanma ve/veya zehir enjeksiyonundan kaynaklanmadığını göstermektedir. Protein artışına konağa 

enjeksiyon sonucu salgılanan stres proteinlerinin yol açabileceği olasılığı değerlendirilmektedir.  

Anahtar sözcükler: Parazitoid zehiri, parazitleme, hemolenf, toplam protein
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thus preserve the hosts while the parasitoid progeny 
feed and develop (29). Such diff erences in the action 
of venoms from koinobiont and idiobiont wasps 
argue that changes in the nutritional content of the 
hosts (i.e. hemolymph proteins and amino acids) 
are more likely to be associated with hosts that 
continue to feed and grow during parasitism, and not 
when the host is paralyzed. Despite this prediction, 
almost nothing is known about the role of idiobiont 
endoparasitoid venoms in altering the hemolymph 
profi le of proteins of their hosts. In this study, the 
solitary idiobiont pupal endoparasitoid Pimpla 
turionellae L. (Hymenoptera: Ichneumonidae) was 
used to examine the impact of venom on the host 
nutritional condition. Changes in the hemolymph 
total protein were examined in pupae and larvae 
of Galleria mellonella L. (Lepidoptera: Pyralidae) 
following parasitism and envenomation. 

Materials and methods

Parasitoid and host rearing

Pimpla turionellae were reared on pupae (1- or 
2-day-old) of G. mellonella at 25 ± 1 °C, 60 ± 5% 
RH, and with a photoperiod of 12:12 h, L:D. Adult 
parasitoids were fed a 30% (v/v) honey solution 
and provided with host pupae (4 pupae for every 
10 female wasps once every 3 days). Host colony 
was maintained by feeding the insects with natural 
blackened comb (30) to maintain similarity to their 
natural media in bee hives. 

Preparation of P. turionellae venom and 
injection into G. mellonella

Venom reservoir contents were isolated from 
honey- and host-fed 15- to 20-day-old females as 
described (31). Following centrifugation (3000 
×g for 10 min at 25 ± 1 °C) to remove cell debris, 
fi nal venom concentrations were adjusted to 0.05, 
0.02, 0.01, and 0.005 venom reservoir equivalents 
(VREs) for pupae and 0.5, 0.1, 0.05, and 0.02 VREs 
for larvae with PBS (0.138 M NaCl and 0.0027 M KCl 
in 0.01 M PBS, pH 7.4). Th ese venom concentrations 
represent doses previously determined to yield host 
responses yet fall below the calculated LD

99
 for 

pupae and larvae (32), respectively. A 5 μL solution 
of the venom preparation was injected between the 
last 2 lateral abdominal segments of 1- to 2-day-old 

host pupae (140 ± 20 mg) and on the fi rst hind leg 
of last instar larvae (260 ± 10 mg) by using a 10 μL 
Hamilton microsyringe (Hamilton, Reno, NV, USA). 
Vaseline was applied to the injection area to prevent 
hemolymph loss. Controls consisted of pupae and 
larvae untreated, null-injected, and those injected 
with only 5 μL of PBS. 

Parasitization of G. mellonella pupae

Parasitization was performed on 1- or 2-day-old 

host pupae by exposing an individual host pupa (140 

± 20 mg) to an individual 15- to 20-day-old wasp 

female. Parasitized pupae were held at 25 ± 2 °C, 60 ± 

5% RH under a photoperiod of 12:12 h LD, as were the 

controls and venom-treated pupae, until hemolymph 

collection. P. turionellae females normally parasitize 

host prepupae and pupae in nature (33); therefore, 

parasitization was not used as an experimental assay 

for larvae of G. mellonella.

Hemolymph collection and total protein 

determination

Hemolymph collection was performed at 4-, 8-, 

and 24-h post-treatments from venom-injected, 

parasitized and control host pupae and larvae. Pupae 

were bled by piercing the cuticle at the abdomen and 

larvae on the fi rst hind leg with a sterile 19-gauge needle. 

Five microliters of hemolymph from each individual 

pupa and larva were collected at each time period 

and for each treatment with a glass microcapillary 

tube (Sigma Chemical Co., St. Louis, MO, USA) and 

ejected into an ice cold Eppendorf tube containing 1 

mg of phenylthiourea (Sigma Chemical) to prevent 

melanization (34). Th e hemolymph was spun at 3000 

rpm for 10 min at 4 °C to remove hemocytes. Th e 

supernatant was transferred to a clean Eppendorf 

tube and vortexed with a pipette. Th ree microliters 

of hemolymph suspension was used for total protein 

analysis and the remaining sample was kept at –20 

°C for further analyses. Th e resultant supernatant 

containing plasma was diluted 1:500 with distilled 

water. Total protein concentration in hemolymph 

was measured according to the Lowry method (35) 

using an UNICAM Heλios-α spectrophotometer 

(Cambridge, UK) at 750 nm wavelength. A standard 

curve was prepared by using bovine serum albumin 

(BSA, Merck). Protein determinations were repeated 

3 times for each experimental and control group.
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Statistical analysis

Means were compared using one- or two-way 
analysis of variance (ANOVA) and subsequently, 
means were separated using Tukey’s Honestly 
Signifi cant Diff erence (HSD) post hoc test. SPSS 
(version 15.0 for Windows, SPSS Science, Chicago, 
IL, USA) was used for data analysis. Results were 
considered statistically signifi cant when P < 0.05.

Results and discussion

Eff ects of parasitization and venom injection on 
the protein concentration of pupae

Total protein concentration of G. mellonella pupae 
did not diff er signifi cantly among treatments at 4 (F = 
0.539; df = 7, 16; P = 0.793), 8 (F = 0.754; df = 7, 16; 
P = 0.632), and 24 (F = 1.049; df = 7, 16; P = 0.437) 
h post-treatments (Table 1). Similarly, hemolymph 
total protein concentration remained relatively 
steady at all time points tested in parasitized and 
venom-injected host pupae, regardless of the venom 
concentration injected into G. mellonella (Table 1). 
Analyses using two-way ANOVA indicated that the 

eff ect of venom injection and parasitization on the 
total protein concentration of host pupae was not 
treatment (P = 0.701) and time (P = 0.083) dependent, 
and the relationship between treatment and the total 
protein concentration was not infl uenced by time (P 
= 0.737) (Table 2). 

Eff ects of venom injection on the protein 
concentration of larvae 

Total protein concentration of G. mellonella larvae 
did not diff er signifi cantly among treatments at 4 (F = 
1.096; df = 6, 14; P = 0.411) and 8 (F = 1.744; df = 6, 14; 
P = 0.183) h post-treatments, but was diff erent at 24 (F 
= 2.883; df = 6, 14; P = 0.05) h (Table 3). Hemolymph 
total protein concentration remained relatively steady 
at all time points tested in venom-injected host larvae, 
regardless of the venom concentration injected into G. 
mellonella except for 0.5 VRE at 24 h (Table 3). Analyses 
using two-way ANOVA indicated that the eff ect of 
venom injection on the total protein concentration 
of host larvae was treatment (P = 0.037) but not time 
(P = 0.101) dependent, and the relationship between 
treatment and the total protein concentration was 
infl uenced by time (P = 0.030) (Table 2). 

Table 1. Hemolymph total protein concentration (mg/mL) of G. mellonella pupae experimentally envenomated and parasitized by P. 

turionellae.

Treatment

Total Protein (mg/mL) (Mean ± SEM) *

Statistics

(ANOVA)
Time post-treatment (h)**

4 8 24 F df P

Untreated 111.12 ± 5.6a x 148.12 ± 37.3a x 125.59 ± 12.4a x 0.663 2, 6 0.549

Null-injected 110.32 ± 10.4a x 150.25 ± 12.2a x 103.52 ± 14.1a x 4.191 2, 6 0.073

PBS-injected 111.32 ± 2.5a x 117.72 ± 23.4a x 92.52 ± 13.6a x 0.695 2, 6 0.535

0.005 VRE-injected 120.12 ± 3.8a x 100.45 ± 12.6a x 113.45 ± 7.2a x 1.337 2, 6 0.331

0.01 VRE-injected 121.32 ± 18.0a x 133.25 ± 20.4a x 106.72 ± 8.3a x 0.655 2, 6 0.553

0.02 VRE-injected 102.92 ± 18.4a x 123.85 ± 22.3a x 93.19 ± 10.2a x 0.782 2, 6 0.499

0.05 VRE-injected 147.52 ± 43.3a x 113.52 ± 9.2a x 105.59 ± 9.5a x 0.725 2, 6 0.522

Parasitized 114.72 ± 0.9a x 113.92 ± 4.1a x 107.12 ± 3.5a x 1.769 2, 6 0.249

* Each represents the mean and standard error of mean of 3 replicates with 25 μL hemolymph obtained from 5 individuals (140 ± 20 mg).
** Numbers in rows (a) and columns (x) followed by the same letter are not signifi cantly diff erent (P > 0.05).
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Table 3. Hemolymph total protein concentration (mg/mL) of G. mellonella larvae experimentally envenomated by P. 

turionellae.

Treatment

Total Protein (mg/mL) 

(Mean ± SEM) *
Statistics

(ANOVA)
Time post-treatment (h)**

4 8 24 F df P

Untreated 225.2 ± 19.8a x 187.3 ± 31.7a x 155.1 ± 11.3a xy 2.417 2, 6 0.170

Null-injected 205.9 ± 36.0a x 172.6 ± 17.1a x 202.9 ± 29.8a xy 0.411 2, 6 0.680

PBS-injected 176.1 ± 9.3a x 229.4 ± 17.1a x 199.7 ± 21.7a xy 2.508 2, 6 0.162

0.02 VRE-injected 203.1 ± 5.9a x 203.6 ± 2.0a x 207.3 ± 31.0a xy 0.016 2, 6 0.984

0.05 VRE-injected 207.8 ± 14.4a x 213.9 ± 10.8a x 265.3 ± 37.4a xy 1.741 2, 6 0.253

0.1 VRE-injected 226.9 ± 20.1a x 227.6 ± 17.5a x 257.4 ± 44.1a xy 0.351 2, 6 0.717

0.5 VRE-injected 173.1 ± 21.0a x 239.6 ± 18.6ab x 330.1 ± 47.0b y 6.215 2, 6 0.035

* Each represents the mean and standard error of mean of 3 replicates with 25 μL hemolymph obtained from 5 individuals 

(260 ± 10 mg).
** Numbers in rows (a-b) and columns (x-y) followed by the same letter are not signifi cantly diff erent (P > 0.05).

Table 2. ANOVAs of the eff ects of diff erent treatments, time, and their interactions on the hemolymph 

protein concentration of G. mellonella pupae and larvae.

Stage Source df MS F P r2

Pupa

Treatment 7 566.729 0.664 0.701

0.30

Time 2 2234.084 2.618 0.083

Treatment × time 14 620.528 0.727 0.737

Error 48 853.488

Larva

Treatment 6 4714.996 2.497 0.037

0.52

Time 2 4577.291 2.424 0.101

Treatment × time 12 4140.198 2.193 0.030

Error 42 1888.176



Changes in the hemolymph total protein of Galleria mellonella (Lepidoptera: Pyralidae) aft er parasitism and envenomation

by Pimpla turionellae (Hymenoptera: Ichneumonidae)

430

Parasitism- and venom-related changes in 

hemolymph protein profi les and total or specifi c 

protein levels have been detected in numerous 

parasitoid-host model systems. Not surprisingly, the 

impact of the parasitoids on the host hemolymph has 

been variable, and in many cases, the hemolymph 

protein changes seem to be part of the host 

conditioning necessary for the parasitoid’s larvae 

to successfully complete development (2,5,25,26). 

Altering the host nutritional condition for the benefi t 

of wasp off spring is generally thought to be most 

common for koinobionts, and would presumably not 

be expected for a solitary idiobiont like P. turionellae 

(36). Consistent with this prediction are the 

observations in this study that protein concentrations 

of hemolymph from G. mellonella pupae did not 

diff er among controls, parasitized, or those injected 

with isolated venom. 

However, the present result contradicts an 

earlier study (37)  describing a dramatic decrease 

in the total protein concentration of G. mellonella 

pupae parasitized by P. turionellae at 1 and 6 h, and 

a signifi cant decrease at 12 and 36 h. On the other 

hand, the authors reported considerable increases at 

48 and 72 h post-parasitism, whereas no signifi cant 

changes were observed at 3, 24, and 60 h between total 

protein levels of parasitized and unparasitized hosts 

(37). We do not expect diff erences in protein quantity 

since idiobiont parasitoids like P. turionellae usually 

paralyze their host, inhibiting continued host growth 

and lacking the ability to regulate host metabolism. 

Venom from this idiobiotic wasp contains several 

mid to high range molecular weight proteins, as 

well as noradrenalin, apamin, and melittin (31), 

phospholipase B, histamine, and serotonin (38). Th e 

last of these are also consistent with the apparent 

nonspecifi c paralytic action of the venom (39). 

An alternative explanation for the absence of 

variation in the hemolymph protein concentration 

may be associated with the host stage being attacked 

since the pupae cannot feed and represent a closed 

nutritional container for the parasitoid progeny. On 

the other hand, protein concentration of hemolymph 

from G. mellonella larvae showed an extensive increase 

at all venom doses and was considerably higher at 

the end of 24 h at the highest dose of 0.5 VRE with 

respect to untreated larvae. Previous reports have 

also documented the production of storage proteins 

and an increase of the titer of those storage proteins 

in the hemolymph of parasitized lepidopteran larvae 

(25,40,41). Th ese types of host alterations are perhaps 

more likely to occur when host larvae are attacked 

by ectoparasitoids that rely entirely on venom to alter 

the development of their insect hosts and cause an 

arrestment of the larval-larval molting process in the 

host (42). It would seem, however, that P. turionellae 

would be predicted to induce similar host changes, 

unless those factors other than venom also participate 

in host conditioning, or the venom operates by a 

diff erent mode of action than these ectoparasitic 

species.  Considering that the composition of venom 

from P. turionellae appears to be unique from that 

reported for other parasitic wasps (31,43,44), the latter 

scenario is a likely explanation for the diff erential 

venom eff ects on host hemolymph protein content.

It is likely that the increase in protein concentration 

in a non-permissive host stage in the present study 

was induced by venom and/or general injury since 

the same trend was also observed in null- and PBS-

injected larvae. However, neither of the treatments 

increased the protein concentration of G. mellonella 

larvae to the same extent that 0.5 VRE injection did, 

indicating that the increase observed in the latter 

treatment was not simply the result of wounding 

or injection of fl uid. Although, at present, there 

are insuffi  cient data to determine which of these 

scenarios is correct, we favor the possibility that 

stress proteins may play a role in this event.  
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