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In this paper, we study canal surfaces imbedded in 4-dimensional Euclidean
space E4. We investigate these surface curvature properties with respect to the
variation of the normal vectors and ellipse of curvature. Some special canal
surface examples are constructed in E

4. Furthermore, we obtain necessary and
sufficient condition for canal surfaces to become superconformal in E

4. At the
end, we present the graphs of projections of canal surfaces in E

3.
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Given a space curve γ (u) called spine curve, a
canal surface associated to this curve is defined
as a surface swept by a family of spheres of vary-
ing radius r(u). If r(u) is constant, the canal
surface is called a tube or a pipe surface. Apart
from being used in pure mathematics, canal sur-
faces are widely used in many areas especially in
CAGD, e.g. construction of blending surfaces, i.e.
canal surface with a rational radius, shape recon-
struction or robotic path planning (see, [5], [11],
[12]). Greater part of the studies on canal sur-
faces within the CAGD context is related to the
search of canal surfaces with rational spine curve
and rational radius function. Canal surfaces are
also useful in visualising long thin objects such
as poles, 3D fonts, brass instruments or internal
organs of the body in solid/surface modeling and
CG/CAD. A national question is when the canal
surface is developable. It is well known that, at
regular points, the Gaussian curvature of a devel-
opable surface is identically zero. In [14] it has
been proved that developable canal surface is ei-
ther a cylinder or a cone.

This study consists of 5 sections: In section 2,
we explain some well-known properties of the sur-
faces in E

4. In section 3, we give the canal surfaces
in E

4 and some examples are presented. Section 4
investigates the ellipse of curvature of canal sur-
faces in E

4. Additionally we prove necessary and
sufficient condition of canal surfaces to become
superconformal in E

4. In Section 5, the visualiza-
tion of canal surfaces are given with using Maple
programme.

1. Basic concepts

Let M be a regular surface in E
4 given with

the parametrization X(u, v) : (u, v) ∈ D ⊂ E
2.

The tangent space of M at an arbitrary point
p = X(u, v) is spanned by the vectors Xu and
Xv. The first fundamental form coefficients of M
are computed by

E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 , G = 〈Xv, Xv〉 , (1)

where 〈, 〉 is the scalar product of the Euclidean
space. We consider the surface patch X(u, v) is
regular, which implies that W 2 = EG− F 2 6= 0.

For the point p ∈ M , we can take the decompo-
sition TpE

4 = TpM ⊕ T⊥
p M , where T⊥

p M is the
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orthogonal component of TpM in E
4 with the Rie-

mannian connection
∼
∇.

The induced Riemannian connection ∇ on M for
any given local vector fields X1, X2 tangent to M ,
is given by

∇X1
X2 = (∇̃X1

X2)
T , (2)

where T expresses the tangential part.

Let us consider the spaces of the smooth vector
fields χ(M) and χ⊥(M) which are tangent and
normal to M , respectively. The second funda-
mental map is defined as follows:

h : χ(M)× χ(M) → χ
⊥(M)

h(Xi, Xj
) = ∇̃X

i
X

j
−∇X

i
X

j
1 ≤ i, j ≤ 2. (3)

This map is well-defined, symmetric and bilinear.

If we take the orthonormal frame field {N1, N2} of
M , then the shape operator which is self-adjoint
and bilinear can be given by

A : χ⊥(M)× χ(M) → χ(M)

ANiXi = −(∇̃XiNi)
T , Xi ∈ χ(M) (4)

which satisfies the equation:

〈ANk
Xj , Xi〉 = 〈h(Xi, Xj), Nk〉 = ckij , 1 ≤ i, j, k ≤ 2

(5)

for any X1, X2 ∈ TpM .

The equality (3) is known as the Gaussian equa-
tion, where

∇XiXj =
2∑

k=1

Γk
ijXk , 1 ≤ i, j ≤ 2 (6)

and

h(Xi, Xj) =

2∑

k=1

ckijNk 1 ≤ i, j ≤ 2. (7)

Here Γk
ij are Christoffel symbols and ckij are the

coefficients of the second fundamental form.

The Gaussian curvature are given by

K =
〈h(X1, X1), h(X2, X2)〉 − ‖h(X1, X2)‖2

g
(8)

and the mean curvature are given by

‖H‖ =
1

4g2
〈h(X1, X1)+h(X2, X2), h(X1, X1)+h(X2, X2)〉

(9)

where

g = ‖X1‖2 ‖X2‖2 − 〈X1, X2〉2 .

If the mean curvature of M vanishes identically
in E

n, then M is said to be minimal [3]. See also
[1].

2. Canal surfaces in E
4

Let γ(u) = (f1(u), f2(u), f3(u), 0) be a curve given
with arclength parameter. Then the Frenet for-
mulae have the following form:

γ′(u) = e1(u),

e1
′(u) = κ(u)e2(u),

e2
′(u) = −κ(u)e1(u) + τ(u)e3(u), (10)

e3
′(u) = −τ(u)e2(u),

e4
′(u) = 0,

where {e1(u), e2(u), e3(u), e4(u)} is the Frenet or-
thonormal basis of γ. The canal surface in E

4 has
the following parametrization (see [6]):

M : X(u, v) = γ(u) + r(u) (e3(u) cos v + e4(u) sin v) .
(11)

Example 1. Consider the helix γ(u) =
(a cos u

c
, a sin u

c
, bu

c
) in E

3. Then the canal sur-

face of γ in E
4 has the following parametrization

X(u, v) = (a cos
u

c
+

b

c
r(u) sin

u

c
cos v,

a sin
u

c
− b

c
r(u) cos

u

c
cos v, (12)

bu

c
+

a

c
r(u) cos v, r(u) sin v).

Example 2. Consider the generalized helix

γ(u) = ( (1+u)
3
2

3 ,
(1−u)

3
2

3 , u√
2
) in E

3. Then the canal

surface of γ in E
4 has the following parametriza-

tion

X(u, v) = (
(1 + u)

3

2

3
− r(u)

(1 + u)
1

2

2
cos v,

(1− u)
3

2

3
+ r(u)

(1− u)
1

2

2
cos v, (13)

u√
2
+

1√
2
r(u) cos v, r(u) sin v).
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The space which is tangent to M is spanned by

Xu = e1(u)− rτ cos ve2

+r′ cos ve3+r′ sin ve4, (14)

Xv = −r sin ve3+r cos ve4.

The first fundamental form coefficients become

E = 1 + (r′)2 + r2τ2 cos2 v,

F = 0, (15)

G = r2.

The Christoffel symbols Γk
ij are given by

Γ1
11 =

1

2E
∂u(E) =

1

E
〈Xuu, Xu〉 ,

Γ2
11 = − 1

2G
∂v(E) = − 1

G
〈Xvu, Xu〉 ,

Γ1
12 =

1

2E
∂v(E) =

1

E
〈Xvu, Xu〉 , (16)

Γ2
12 =

1

2G
∂u(G) =

1

G
〈Xvu, Xv〉 ,

Γ1
22 = − 1

2E
∂u(G) = − 1

E
〈Xvu, Xv〉 ,

Γ2
22 =

1

2G
∂v(G) =

1

G
〈Xvv, Xv〉 = 0.

and they are symmetric according to the covari-
ant indices ([7], p.398).

If we take the second partial derivatives of
X(u, v), we find:

Xuu = κrτ cos ve1 + (κ− (rτ)′ cos v − r′τ cos v)e2

+cos v(r′′ − rτ2)e3 + r′′ sin ve4,

Xuv = rτ sin ve2 − r′ sin ve3 + r′ cos ve4, (17)

Xvv = −r cos ve3 − r sin ve4,

Hence, by using (3), we find the Gaussian equa-
tions;

∇̃XuXu = Xuu = ∇XuXu + h(Xu, Xu),

∇̃XuXv = Xuv = ∇XuXv + h(Xu, Xv),(18)

∇̃XvXv = Xvv = ∇XvXv + h(Xv, Xv),

where

∇XuXu = Γ1
11Xu + Γ2

11Xv,

∇XuXv = Γ1
12Xu + Γ2

12Xv, (19)

∇XvXv = Γ1
22Xu + Γ2

22Xv.

Substituting (16) and (18) in (19), we obtain

h(Xu, Xu) = Xuu − 1

E
〈 Xuu, Xu〉Xu

+
1

G
〈Xuv, Xu〉Xv,

h(Xu, Xv) = Xuv −
1

E
〈Xuv, Xu〉Xu (20)

− 1

G
〈Xuv, Xv〉Xv,

h(Xv, Xv) = Xvv +
1

E
〈Xuv, Xv〉Xu.

Further using (20)
〈h(Xu, Xu), h(Xv, Xv)〉 = 〈Xuu, Xvv〉

−
1

E
〈Xuu, Xu〉 〈Xvv, Xu〉 ,

〈h(Xu, Xv), h(Xu, Xv)〉 = 〈Xuv, Xuv〉

−
1

E
〈Xuv, Xu〉

2

−
1

G
〈Xvu, Xv〉

2
,

〈h(Xu, Xv), h(Xv, Xv)〉 = 〈Xuv, Xvv〉

−
1

E
〈Xuv, Xu〉 〈Xvv, Xu〉 , (21)

〈h(Xu, Xu), h(Xu, Xu)〉 = 〈Xuu, Xuu〉

−
1

E
〈Xuu, Xu〉

2

+
〈Xuv, Xu〉

G
(2 〈Xuu, Xv〉

+ 〈Xuv, Xu〉) ,

〈h(Xv, Xv), h(Xv, Xv)〉 = 〈Xvv, Xvv〉

+
1

E
〈Xuv, Xv〉 (1 + 2 〈Xvv, Xu〉),

〈h(Xu, Xu), h(Xu, Xv)〉 = 〈Xuu, Xuv〉 −
1

E
〈Xuv, Xu〉

−
1

G
〈Xuu, Xv〉 〈Xuv, Xv〉

Thus, using (14) with (17) we get

〈Xuu, Xvv〉 = r2τ2 cos2 v − rr′′,

〈Xuv, Xuv〉 = r2τ2 sin2 v + (r′)2,

〈Xuu, Xuu〉 = (κrτ cos v)2

+(κ− (rτ)′ cos v − r′τ cos v)2 +

+cos2 v(r′′ − rτ2)2 + (r′′)2 sin2 v,

〈Xvv, Xvv〉 = r2, (22)

〈Xuu, Xu〉 = rτ(rτ)′ cos2 v + r′r′′,

〈Xuu, Xv〉 = r2τ2 cos v sin v,

〈Xvv, Xu〉 = −rr′,

〈Xuv, Xu〉 = −r2τ2 cos v sin v,

〈Xuv, Xv〉 = rr′,

〈Xuv, Xvv〉 = 0

〈Xuu, Xuv〉 = rτ sin v(κ− (rτ)′ cos v)

Proposition 1. The Gaussian curvature of the
canal surface M with the parametrization (11) in
E
4 is given by

K =
1

g
(〈Xuu, Xvv〉 −

1

E
〈Xuu, Xu〉 〈Xvv, Xu〉 (23)

−〈Xuv, Xuv〉+
1

E
〈Xuv, Xu〉

2 +
1

G
〈Xuv, Xv〉

2)

where g = EG− F 2.

Proof. By using the equation (8), we find

K =
1

g
(〈h(Xu, Xu), h(Xv, Xv)〉 − 〈h(Xu, Xv), h(Xu, Xv)〉) ,

(24)

which is the Gaussian curvature of the canal sur-
face M . Taking into account (21) and (24) we
obtain (23). �

From the equations (22) with (23) we obtain;
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Corollary 1. The Gaussian curvature of the
canal surface M with the parametrization (11) in
E
4 is given by

K =
r

gE
{r cos2 v(2τ2 + 2(r′)2τ2 − rr

′′
τ
2 + r

′
τ(rτ)′)

+r
3
τ
4 cos4 v − r

′′ − rτ
2(1 + (r′)2)}, (25)

where

E = 1 + (r′)2 + r2τ2 cos2 v,

g = r2(1 + (r′)2 + r2τ2 cos2 v).

Proposition 2. The mean curvature of the canal
surface M with the parametrization (11) in E

4 is
given by

4 ‖H‖
2

=
〈Xuu, Xuu〉

E2
+ 2

〈Xuu, Xvv〉

EG
+

〈Xvv, Xvv〉

G2

+
〈Xuv, Xv〉

EG2
(2 〈Xvv, Xu〉 + 〈Xuv, Xv〉) (26)

+
〈Xuv, Xu〉

E2G
(2〈Xuu, Xv〉 + 〈Xuv, Xu〉)

−
2

E2G
〈Xuu, Xu〉〈Xvv, Xu〉 −

〈Xuu, Xu〉
2

E3
.

Proof. By considering (9) the mean curvature of
the canal surface M becomes

‖H‖ =
1

4g2
(〈h(Xu, Xu) + h(Xv, Xv), h(Xu, Xu) + h(Xv, Xv)〉) ,

(27)

Taking into account (21) and (27) we get the
result. �

By the use of (22) and Proposition 2, we have the
following results:

Corollary 2. The mean curvature of the canal
surface M with the parametrization (11) in E

4 is
given by

‖H‖
2

=
1

4E2r2
[−

r2

E
(rτ(rτ)

′

cos
2
v + r

′

r
′′

)
2

+r
2
cos

2
v((τkr)

2
+

((rτ)
′

+ r
′

τ)
2
− r

2
τ
4
+ 4τ

2
+

+3(r
′

)
2
τ
2
− 2rτ

2
r
′′

+ 2r
′

τ(rτ)
′

)

+4r
4
τ
4
cos

4
v − 2kr

2
cos v((rτ)

′

+ r
′

τ) +

+k
2
r
2
− 2rr

′′

+ 1 + (r
′

)
2
].

Corollary 3. If the base curve γ of the canal sur-
face M is a straight line, then the Gaussian and
mean curvatures of M are

K =
−r′′

r(1 + (r′)2)2
,

and

‖H‖2 =
−1

4r2(1 + (r′)2)3
{
(rr′r′′)2

+(2rr′′ − 1)(1 + (r′)2)
}
,

respectively.

3. Ellipse of curvature of the canal

surfaces in E
4

Let M be a regular surface given with the
parametrization X (u, v) : (u, v) ∈ D ⊆ E

2. Con-
sider a circle given with the angle θ ∈ [0, 2π]

in the tangent space TpM . The intersection of
the direct sum of the tangent direction of X =
cos θX1+sin θX2 and the normal space T⊥

p M with
the surface M forms a curve. Such a curve is
called as a normal section curve in the direction
θ. Denote this curve by γθ. Normal curvature vec-
tor ηθ of γθ lies in T⊥

p M . When θ changes from 0
to 2π, the normal curvature vector constitutes an
ellipse called as a ellipse of curvature of M at p in
T⊥
p M . Thus, the curvature ellipse of M at point

p is given as follows with the second fundamental
form h:

E(p) = {h(X,X) | X ∈ TpM, ‖X‖ = 1} .
To see that this shows an ellipse, it is enough to
have a look at the formulas

X = cos θX1 + sin θX2

and

h(X,X) =
−→
H + cos 2θ

−→
B + sin 2θ

−→
C . (28)

Here,

−→
B =

1

2
(h(X1, X1)− h(X2, X2)),

−→
C = h(X1, X2),

(29)

are normal vectors and
−→
H = 1

2 (h(X1, X1) +

h(X2, X2)) is the mean curvature vector. This im-
plies that, the vector h(X,X) goes twice around

the ellipse of curvature centered at
−→
H , while X

goes once around the unit tangent circle [9].

From the equation (28), one can get that E(p) is
a circle if and only if for some orthonormal basis
of Tp(M) it holds that

〈h(X1, X2), h(X1, X1)− h(X2, X2)〉 = 0, (30)

and

‖h(X1, X1)− h(X2, X2)‖ = 2 ‖h(X1, X2)‖ .
(31)

General aspects of the ellipse of curvature for sur-
faces in E

4 studied by Wong [13]. (See also [2],
[8], [9] and [10])

Definition 1. The surface M with the
parametrization X (u, v) in E

4 is superconformal
if and only if its ellipse of curvature is a circle,

i.e.
〈−→
B,

−→
C
〉
= 0 and

∥∥∥
−→
B
∥∥∥ =

∥∥∥
−→
C
∥∥∥ holds [4]. If

the equality
〈−→
B,

−→
C
〉
= 0, the surface M is called

weak superconformal.

Theorem 1. The canal surface M with the
parametrization (11) in E

4 is superconformal if
and only if the equalities

〈 1
E
h(Xu, Xu)−

1

G
h(Xv, Xv),

1√
EG

h(Xu, Xv)〉 = 0

(32)
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and

2

∥∥∥∥
1√
EG

h(Xu, Xv)

∥∥∥∥ =

∥∥∥∥
1

E
h(Xu, Xu)−

1

G
h(Xv, Xv)

∥∥∥∥
(33)

hold.

Proof. If we use the orthonormal frame

X1 =
Xu

‖Xu‖
=

Xu√
E
,X2 =

Xv

‖Xv‖
=

Xv√
G
, (34)

we get

h(X1, X1) =
1

E
h(Xu, Xu),

h(X1, X2) =
1√
EG

h(Xu, Xv), (35)

h(X2, X2) =
1

G
h(Xv, Xv) .

Therefore, from (29) the normal vectors
−→
B and−→

C become
−→
B =

1

2
(
1

E
h(Xu, Xu)−

1

G
h(Xv, Xv)) (36)

and −→
C =

1√
EG

h(Xu, Xv). (37)

Suppose M is superconformal then by Definition

1 〈−→B,
−→
C 〉 = 0 and

∥∥∥
−→
B
∥∥∥ =

∥∥∥
−→
C
∥∥∥ hold. Thus by

the use of the equalities (36) and (37) we get the
result.

Conversely, if the equations (32) and (33) hold
then by the use of the equalities (36) and (37)

we obtain 〈−→B,
−→
C 〉 = 0 and

∥∥∥
−→
B
∥∥∥ =

∥∥∥
−→
C
∥∥∥ , which

shows that M is superconformal. �

Substituting (21) and (22) into (32) we obtain the
following results.

Corollary 4. Let M be a canal surface in E
4

given with the parametrization (11). Then M is
weak superconformal if and only if the equality

0 = r3τ sin v((k − (rτ)′ cos v)(1 + (r′)2)

+rτ cos v(r′r′′ + krτ cos v))

holds.

Corollary 5. Every canal surface whose spine
curve is a straight line of the form γ(u) = (a1u+
b1, a2u + b2, a3u + b3, 0) is weak superconformal,
where a1, a2, a3, b1, b2, b3 are real constants.

4. Visualization

The 3D-surfaces geometric modeling are very im-
portant in the surface modeling systems such
as; CAD/CAM systems and NC-processing. We
give the visualization of the surfaces with the
parametrization

X(u, v) = (x(u, v), y(u, v), z(u, v), w(u, v))

in E
4 by use of Maple Software Program. We plot

the graph of the surface with plotting command

plot3d([x, y, z + w], u = a..b, v = c..d). (38)

We construct the geometric model of the canal
surfaces defined in Example 1 for the following
values (see, Figure 1);

(a) (b)

(c)

Figure 1. The projections of canal surfaces of helix in E
3
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(a) (b)

(c)

Figure 2. The projections of canal surfaces of general helix in E
3

(a) (b)

Figure 3. The projections of canal surfaces of straight line in E
3

a) r(u) = e
u/3

,

b) r(u) = u
2
,

c) r(u) = 3u+ 5.

Further, we construct the geometric model of the canal
surfaces defined in Example 2 for the following values (see,
Figure 2);

a) r(u) = e
u2

,

b) r(u) = 5u2
,

c) r(u) = 3u+ 5.

Additionally, we construct the geometric model of the canal
surfaces defined in Corollary 3 for the following values (see,
Figure 3);

a) r(u) = e
u
,

b) r(u) = sinhu.

5. Conclusion

In this manuscript, we considered canal surfaces in the 4-
dimensional Euclidean space E

4. Most of the literature on
canal surfaces within the CAGD context has been moti-
vated by the observation that canal surfaces with rational
spine curve. We have proved this property mathematically
and also illustrated with some nice examples.
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Günay Öztürk is currently an associate professor at
Kocaeli University in Turkey. His research interests
include curves and surfaces.

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

	1. Basic Concepts
	2. Canal Surfaces in E4
	3. Ellipse of Curvature of the Canal Surfaces in E4
	4. Visualization
	5. Conclusion
	References

