T.C.

BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

# BETONARME KOLONLARIN EKSENEL YÜK ALTINDAKİ DAVRANIŞI VE ELASTİSİTE MODÜLÜ ÖNERİSİ

DOKTORA TEZİ

İnş.Yük.Müh. Barış ÖZKUL

Balıkesir, Temmuz-2009

## T.C.

# BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

# BETONARME KOLONLARIN EKSENEL YÜK ALTINDAKİ DAVRANIŞI VE ELASTİSİTE MODÜLÜ ÖNERİSİ

## DOKTORA TEZİ

İnş. Yük.Müh. Barış ÖZKUL

Tez Danışmanı: Prof. Dr. Şerif SAYLAN

Sinav Tarihi: 10/07/2009

Jüri Üyeleri: Prof. Dr. Şerif SAYLAN

Prof. Dr. Hasan KAPLAN

Yrd. Doç. Dr. Mehmet TERZİ

Yrd. Doç. Dr. Fehmi ÇİVİCİ

Yrd. Doç. Dr. Salih YILMAZ

(Danışman-BAÜ) (PAÜ) (BAÜ) (BAÜ) (PAÜ)

Bahkesir, Temmuz-2009

# ÖZET

## BETONARME KOLONLARIN EKSENEL YÜK ALTINDAKİ DAVRANIŞI ve ELASTİSİTE MODÜLÜ ÖNERİSİ

## Barış ÖZKUL Bahkesir Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dah

### (Doktora Tezi / Tez Danışmanı: Prof. Dr. Şerif SAYLAN)

#### Balıkesir, 2009

Günümüzde yürürlükte olan standartlarda Beton ve Çelik malzemeler için ayrı ayrı elastisite modülü değerleri verilmektedir. Betonarme kesitler için belirlenmiş bir elastisite modülü değeri bulunmamaktadır. Yer değiştirme hesaplarında yalnızca betonun basınç dayanımına bağlı olarak hesaplanmış elastisite modülü kullanılmaktadır. Ancak kesit içerisinde çelik donatı da bulunmaktadır. Bu çalışmada betonarme bir kesitte bulunan donatı oranına bağlı olarak, kesitin elastisite modülü belirlenmeye çalışılmıştır. BAÜ Müh-Mim Fakültesi İnşaat Mühendisliği Bölümü Yapı Laboratuarı'nda 100 ton eksenel basınç kapasiteli bir deney düzeneği geliştirilmiş, hazırlanan kolon numuneler eksenel olarak yüklenerek kırılmıştır.

Deney sonuçları ve Response–2000 bilgisayar programıyla elde edilen analitik çözümler karşılaştırılmış, donatı oranına bağlı olarak elde edilen elastisite modülünün deplasmanlara olan etkisi incelenmiştir.

Çalışmanın sonuçlarında; Elastisite modülünün, kesit içerisindeki donatı oranına bağlı olarak arttığı ve deneysel olarak elde edilen  $\sigma$ - $\epsilon$  eğrileri ile analitik olarak elde edilen eğrilerin dikkate değer biçimde yakın olduğu görülmüştür.

Elde edilen sonuçlar yardımıyla regresyon analizi yapılarak; Betonarme kesit içindeki donatı oranına bağlı olarak bulunan elastisite modülü için,  $E_{rc} = 10270\sqrt{f_{ck}} + 300000\rho + 130000 (kg/cm^2)$  formülü önerilmiştir.

ANAHTAR SÖZCÜKLER: Betonarme Kolonlar / Elastisite Modülü / Gerilme-Şekil Değiştirme Grafiği / Donatı Oranı / Yer değiştirme

#### ABSTRACT

### BEHAVIOUR OF AXIALLY LOADED REINFORCED CONCRETE COLUMNS AND A SUGGESTION FOR ELASTICITY MODULUS

### Barış ÖZKUL Balıkesir University, Institute of Science, Department of Civil Engineering

#### (Ph.D. Thesis/Supervisor: Prof. Dr. Şerif SAYLAN)

#### Balıkesir, 2009

According to the current standards, Elasticity Modulus (Young's modulus) of concrete and steel materials is given individually. There is no established elasticity modulus exists for reinforced concrete sections. For the displacement calculations, the elasticity modulus is used which is calculated by considering only the compressive strength of concrete. However, the section contains steel reinforcements too. In this study, the elasticity modulus of a reinforced concrete section is tried to be determined depending on the reinforcement ratio. A 100 tons capacity axial compression test setup is constructed at the BAU, Engineering and Architecture Faculty, Civil Engineering Department, Structural Laboratory and the prepared column specimens are fractured by axial loading.

Experimental results and the analytical solutions that are calculated by means of a commercial package program Response-2000 are compared with each other and the effect of the calculated elasticity modulus -which dependent on the ratio of the reinforcement- to displacements are examined.

It is observed from the experimental results of this thesis that the elasticity modulus increases with the ratio of the reinforcement existent in the section, and also it is observed that the  $\sigma$ - $\epsilon$  curves that are obtained by empirically and by analytically are considerably closed to each other.

By the help of the experimental results regression analysis is performed and for the calculated elasticity modulus -which dependent on the ratio of the reinforcement- the formula defined as  $E_{rc} = 10270\sqrt{f_{ck}} + 300000\rho + 130000$  (kg/cm<sup>2</sup>) is proposed.

**KEYWORDS:** Reinforced Concrete / Elasticity Modulus / Stress-Strain Curve / Reinforcement Ratio/ Displacement

| • •   | •       |
|-------|---------|
| ICIND | FVII FD |
| ισινρ | ENILER  |
| 5     |         |

| ÖZET, ANAHTAR SÖZCÜKLER | <u>Sayfa</u><br>ii |
|-------------------------|--------------------|
| ABSTRACT, KEYWORDS      | iii                |
| İÇİNDEKİLER             | iv                 |
| SEMBOL LİSTESİ          | ix                 |
| ŞEKİL LİSTESİ           | X                  |
| TABLO LİSTESİ           | xix                |
| ÖNSÖZ                   | XX                 |
|                         |                    |
|                         | 1                  |

| 1.  | GIRIŞ                                           | I  |
|-----|-------------------------------------------------|----|
| 1.1 | Betonarme Davranışı                             | 2  |
| 1.2 | Elastisite Modülü                               | 4  |
| 1.3 | Dinamik Elastisite Modülü                       | 8  |
| 1.4 | Betonun Elastisite Modülünü Etkileyen Faktörler | 8  |
| 1.5 | Literatür Araştırması                           | 11 |
| 1.6 | Amaç ve Kapsam                                  | 22 |
|     |                                                 |    |

| 2.    | EKSENEL YÜKLÜ KOLONLAR                          | 23 |
|-------|-------------------------------------------------|----|
| 2.1   | Kolonlar için Elastik Teori                     | 25 |
| 2.2   | Eksenel Yüklü Kolonların Davranışı              | 26 |
| 2.3   | Sargılı Beton ve Sarılma Fikri                  | 30 |
| 2.3.1 | Sargı Donatısının Avantajları                   | 30 |
| 2.3.2 | Sargı Donatısına Etki Eden Parametreler         | 31 |
| 2.3.3 | Etriyelerle Sarılma                             | 32 |
| 2.4   | Betonarme Kolonlarda Oluşan Hasarlar            | 33 |
| 2.4.1 | Kolonlarda Donatı Yerleşim ve Birleşim Hataları | 33 |
| 2.4.2 | Kiriş-Kolon Sarılma Bölgeleri                   | 36 |

| 3.    | GERİLME-ŞEKİL DEĞIŞTİRME EĞRİSİ İÇİN ANALİTİK                 |    |
|-------|---------------------------------------------------------------|----|
|       | MODELLER                                                      | 38 |
| 3.1   | Beton Modelleri                                               | 38 |
| 3.1.1 | Hognestad Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi | 39 |

| 3.1.2                                                                                                                                                                                       | Chan (1955) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 3.1.3                                                                                                                                                                                       | Roy ve Sözen (1964) Tarafından Önerilen Gerilme–Şekil Değiştirme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1                                                                                                            |
| 214                                                                                                                                                                                         | Eğrisi<br>Səlimən və Vy (1967) Tərəfindən Önərilən Cərilmə, Səlril Dəžiətirmə                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                             |
| 3.1.4                                                                                                                                                                                       | Sonnan ve Yu (1907) Tarannuan Onemen Gernme–Şekir Degiştirme<br>Eğrisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                             |
| 315                                                                                                                                                                                         | Sargın (1971) Tarafından Önerilen Gerilme–Sekil Değiştirme Eğrişi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44                                                                                                             |
| 3.1.6                                                                                                                                                                                       | Kent ve Park (1971) Tarafından Önerilen Gerilme–Sekil Değiştirme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |
|                                                                                                                                                                                             | Eğrisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46                                                                                                             |
| 3.1.7                                                                                                                                                                                       | Park, Priestly ve Gill Tarafından Değiştirilen Kent ve Park Gerilme-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
|                                                                                                                                                                                             | Şekil Değiştirme Eğrisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                                             |
| 3.1.8                                                                                                                                                                                       | Thompson ve Park Tarafından Onerilen Gerilme–Şekil Değiştirme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>5</b> 1                                                                                                     |
| 210                                                                                                                                                                                         | Egrisi<br>Vallance Dentana an Denser (1077) Tensforden Örseilen Carilare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                                                                                                             |
| 3.1.9                                                                                                                                                                                       | valienas, Bertero ve Popov (1977) Tarafindan Onerlien Gerlime–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                             |
| 3 1 10                                                                                                                                                                                      | Şekil Degiştillile Egilsi<br>Sheikh ve Üzümeri (1980) Tarafından Önerilen Gerilme-Sekil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                             |
| 5.1.10                                                                                                                                                                                      | Değiştirme Förişi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55                                                                                                             |
| 3.1.11                                                                                                                                                                                      | Mander (1988) Tarafından Önerilen Gerilme–Sekil Değiştirme Eğrişi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63                                                                                                             |
| 3.1.12                                                                                                                                                                                      | Kappos (1991) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65                                                                                                             |
| 3.1.13                                                                                                                                                                                      | Saatçioğlu&Razvi (1992) Tarafından Önerilen Gerilme–Şekil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |
|                                                                                                                                                                                             | Değiştirme Eğrisi Modeli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68                                                                                                             |
| 3.2                                                                                                                                                                                         | Donatı Modeli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70                                                                                                             |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| 4                                                                                                                                                                                           | MATERVAL VE METOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72                                                                                                             |
| 4.1                                                                                                                                                                                         | Materval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72                                                                                                             |
| 4.1.1                                                                                                                                                                                       | Agrega Özellikleri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72                                                                                                             |
| 4.1.2                                                                                                                                                                                       | Beton Karma Suyunun Özellikleri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72                                                                                                             |
| 4.1.3                                                                                                                                                                                       | Çimento'nun Özellikleri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73                                                                                                             |
| 4.1.4                                                                                                                                                                                       | Beton Katkısı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73                                                                                                             |
| 4.0                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| 4.2                                                                                                                                                                                         | Metot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74                                                                                                             |
| 4.2                                                                                                                                                                                         | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74<br>74                                                                                                       |
| 4.2<br>4.2.1<br>4.2.2                                                                                                                                                                       | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74<br>74<br>75                                                                                                 |
| 4.2<br>4.2.1<br>4.2.2<br>4.3                                                                                                                                                                | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Palizlanmasi                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74<br>74<br>75                                                                                                 |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4                                                                                                                                                         | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi                                                                                                                                                                                                                                                                                                                                                                                            | 74<br>74<br>75<br>77<br>78                                                                                     |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5                                                                                                                                                  | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması                                                                                                                                                                                                                                                                                                                                                          | 74<br>74<br>75<br>77<br>78<br>79                                                                               |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6                                                                                                                                           | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi                                                                                                                                                                                                                                                                                                | 74<br>74<br>75<br>77<br>78<br>79<br>83                                                                         |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7                                                                                                                                    | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler                                                                                                                                                                                                                                                             | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84                                                                   |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1                                                                                                                           | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri                                                                                                                                                                                                                                       | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85                                                             |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1                                                                                                                | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi                                                                                                                                                                                                                | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86                                                       |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2                                                                                                     | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi                                                                                                                                                                                         | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87                                                 |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.1.3                                                                                          | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi                                                                                                                                                                                         | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87<br>88                                           |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.1.3<br>4.7.1.4                                                                               | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi<br>K1D211 Kolon Deneyi                                                                                                                                                                  | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90                               |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.1.3<br>4.7.1.4<br>4.7.1.5                                                                    | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi<br>K1D212 Kolon Deneyi<br>K1D212 Kolon Deneyi                                                                                                                                           | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90                               |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.1.3<br>4.7.1.4<br>4.7.1.5<br>4.7.1.6                                                         | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi<br>K1D113 Kolon Deneyi<br>K1D211 Kolon Deneyi<br>K1D213 Kolon Deneyi                                                                                                                    | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92                   |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.1.3<br>4.7.1.3<br>4.7.1.4<br>4.7.1.5<br>4.7.1.6<br>4.7.1.7<br>4.7.1.8                        | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi<br>K1D211 Kolon Deneyi<br>K1D212 Kolon Deneyi<br>K1D213 Kolon Deneyi<br>K1D311 Kolon Deneyi                                                                                             | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93             |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.1.3<br>4.7.1.4<br>4.7.1.5<br>4.7.1.6<br>4.7.1.7<br>4.7.1.8<br>4.7 1.9                        | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi<br>K1D212 Kolon Deneyi<br>K1D213 Kolon Deneyi<br>K1D213 Kolon Deneyi<br>K1D311 Kolon Deneyi<br>K1D312 Kolon Deneyi<br>K1D312 Kolon Deneyi                                               | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94       |
| 4.2<br>4.2.1<br>4.2.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.1.3<br>4.7.1.3<br>4.7.1.4<br>4.7.1.5<br>4.7.1.6<br>4.7.1.7<br>4.7.1.8<br>4.7.1.9<br>4.7.1.10 | Metot<br>Deneylerde Kullanılan Betonların Hazırlanması<br>Deney Numunelerinin Hazırlanması ve Kür Koşulları<br>Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın<br>Belirlenmesi<br>Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi<br>Deney Düzeneğinin Hazırlanması<br>Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi<br>Kolon Deneylerine Ait Grafikler<br>K1 Grubu Deneyleri<br>K1D111 Kolon Deneyi<br>K1D112 Kolon Deneyi<br>K1D211 Kolon Deneyi<br>K1D212 Kolon Deneyi<br>K1D213 Kolon Deneyi<br>K1D311 Kolon Deneyi<br>K1D312 Kolon Deneyi<br>K1D312 Kolon Deneyi<br>K1D313 Kolon Deneyi<br>K1D313 Kolon Deneyi | 74<br>74<br>75<br>77<br>78<br>79<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95 |

| 4.7.1.11 K1D412 Kolon Deneyi | 96  |
|------------------------------|-----|
| 4.7.1.12 K1D413 Kolon Deneyi | 97  |
| 4.7.2 K2 Grubu Deneyleri     | 98  |
| 4.7.2.1 K2D111 Kolon Deneyi  | 99  |
| 4.7.2.2 K2D112 Kolon Deneyi  | 100 |
| 4.7.2.3 K2D113 Kolon Deneyi  | 101 |
| 4.7.2.4 K2D211 Kolon Deneyi  | 102 |
| 4.7.2.5 K2D212 Kolon Deneyi  | 103 |
| 4.7.2.6 K2D213 Kolon Deneyi  | 104 |
| 4.7.2.7 K2D311 Kolon Deneyi  | 105 |
| 4.7.2.8 K2D312 Kolon Deneyi  | 106 |
| 4.7.2.9 K2D313 Kolon Deneyi  | 107 |
| 4.7.2.10 K2D411 Kolon Deneyi | 109 |
| 4.7.2.11 K2D412 Kolon Deneyi | 110 |
| 4.7.2.12 K2D413 Kolon Deneyi | 111 |
| 4.7.2.13 K2D121 Kolon Deneyi | 112 |
| 4.7.2.14 K2D122 Kolon Deneyi | 113 |
| 4.7.2.15 K2D123 Kolon Deneyi | 114 |
| 4.7.2.16 K2D221 Kolon Deneyi | 115 |
| 4.7.2.17 K2D222 Kolon Deneyi | 116 |
| 4.7.2.18 K2D223 Kolon Deneyi | 117 |
| 4.7.2.19 K2D321 Kolon Deneyi | 118 |
| 4.7.2.20 K2D322 Kolon Deneyi | 119 |
| 4.7.2.21 K2D323 Kolon Deneyi | 120 |
| 4.7.2.22 K2D421 Kolon Deneyi | 121 |
| 4.7.2.23 K2D422 Kolon Deneyi | 122 |
| 4.7.2.24 K2D423 Kolon Deneyi | 123 |
| 4.7.3 K3 Grubu Deneyleri     | 124 |
| 4.7.3.1 K3D111 Kolon Deneyi  | 125 |
| 4.7.3.2 K3D112 Kolon Deneyi  | 126 |
| 4.7.3.3 K3D113 Kolon Deneyi  | 127 |
| 4.7.3.4 K3D211 Kolon Deneyi  | 128 |
| 4.7.3.5 K3D212 Kolon Deneyi  | 129 |
| 4.7.3.6 K3D213 Kolon Deneyi  | 130 |
| 4.7.3.7 K3D311 Kolon Deneyi  | 131 |
| 4.7.3.8 K3D312 Kolon Deneyi  | 132 |
| 4.7.3.9 K3D313 Kolon Deneyi  | 133 |
| 4.7.3.10 K3D411 Kolon Deneyi | 134 |
| 4.7.3.11 K3D412 Kolon Deneyi | 135 |
| 4.7.3.12 K3D413 Kolon Deneyi | 136 |
| 4.7.3.13 K3D121 Kolon Deneyi | 137 |
| 4.7.3.14 K3D122 Kolon Deneyi | 138 |
| 4.7.3.15 K3D123 Kolon Deneyi | 139 |
| 4.7.3.16 K3D221 Kolon Deneyi | 140 |
| 4.7.3.17 K3D222 Kolon Deneyi | 141 |
| 4.7.3.18 K3D223 Kolon Deneyi | 142 |
| 4.7.3.19 K3D321 Kolon Deneyi | 143 |
| 4.7.3.20 K3D322 Kolon Deneyi | 144 |
| 4.7.3.21 K3D323 Kolon Deneyi | 145 |

| 4.7.3.22 | 2 K3D421 Kolon Deneyi                         | 146 |
|----------|-----------------------------------------------|-----|
| 4.7.3.23 | K3D422 Kolon Deneyi                           | 147 |
| 4.7.3.24 | K3D423 Kolon Deneyi                           | 148 |
| 4.8      | Beton Başlıklı Kolon Numunelere Ait Grafikler | 149 |
| 4.8.1    | KB1 Grubu Deneyleri                           | 150 |
| 4.8.1.1  | KB1D11 Kolon Deneyi                           | 151 |
| 4.8.1.2  | KB1D12 Kolon Deneyi                           | 152 |
| 4.8.1.3  | KB1D13 Kolon Deneyi                           | 153 |
| 4.8.1.4  | KB1D14 Kolon Deneyi                           | 154 |
| 4.8.1.5  | KB1D15 Kolon Deneyi                           | 155 |
| 4.8.1.6  | KB1D16 Kolon Deneyi                           | 156 |
| 4.8.2    | KB2 Grubu Deneyleri                           | 157 |
| 4.8.2.1  | KB2D21 Kolon Deneyi                           | 158 |
| 4.8.2.2  | KB2D22 Kolon Deneyi                           | 159 |
| 4.8.2.3  | KB2D23 Kolon Deneyi                           | 160 |
| 4.8.2.4  | KB2D24 Kolon Deneyi                           | 161 |
| 4.8.2.5  | KB2D25 Kolon Deneyi                           | 162 |
| 4.8.2.6  | KB2D26 Kolon Deneyi                           | 163 |
|          |                                               |     |

| 5.   | DENEY SONUCLARININ ANALİTİK OLARA | AK  |
|------|-----------------------------------|-----|
|      | İNCELENMESİ                       | 165 |
| 5.1  | K1D1 Kolonları                    | 166 |
| 5.2  | K1D2 Kolonları                    | 167 |
| 5.3  | K1D3 Kolonları                    | 168 |
| 5.4  | K1D4 Kolonları                    | 169 |
| 5.5  | K2D1 Kolonları                    | 170 |
| 5.6  | K2D2 Kolonları                    | 171 |
| 5.7  | K2D3 Kolonları                    | 172 |
| 5.8  | K2D4 Kolonları                    | 173 |
| 5.9  | K3D1 Kolonları                    | 174 |
| 5.10 | K3D2 Kolonları                    | 175 |
| 5.11 | K3D3 Kolonları                    | 176 |
| 5.12 | K3D4 Kolonları                    | 177 |
| 5.13 | KB1D1 Kolonları                   | 178 |
| 5.14 | KB2D2 Kolonları                   | 179 |

| 6.  | ELASTİSİTE MODÜLÜNÜN YAPI DAVRANIŞINA ETKİSİ  | 180 |
|-----|-----------------------------------------------|-----|
| 6.1 | Elastisite Modülünün Deplasmanlara Etkisi     | 180 |
| 6.2 | Elastisite Modülünün Kesit Tesirlerine Etkisi | 185 |
|     |                                               |     |

# **7. SONUÇLAR** 190

| EK-A. | <b>DENEY SONU</b> | LARININ REGRESYON ANALİZİ | 194 |
|-------|-------------------|---------------------------|-----|
|       |                   |                           | -   |

# EK-B. DENEY SONUÇLARINDAN ELDE EDİLEN ORTALAMA 196 GERİLME-ŞEKİL DEĞİŞTİRME EĞRİLERİ

8. KAYNAKLAR

203

# SEMBOL LİSTESİ

| Simge             | Adı                                                            |
|-------------------|----------------------------------------------------------------|
| W                 | Betonun Ağırlığı, kg/m <sup>3</sup>                            |
| E <sub>cj</sub>   | j Günlük Betonun Elastisite Modülü, kgf/cm <sup>2</sup>        |
| $\mathbf{f}_{cj}$ | j Günlük Betonun Silindir Basınç Dayanımı, kgf/cm <sup>2</sup> |
| $E_{ch}$          | Sertleşmiş Çimento Hamurunun Elastisite Modülü                 |
| E <sub>0</sub>    | Porozitesi Sıfır Olan Çimento Hamurundaki Elastisite Modülü    |
| Pç                | "Jel/Boşluk" Oranı                                             |
| Ea                | Agreganın Elastisite Modülü                                    |
| $V_{ch}$          | Çimento Hamuru Hacminin Betondaki Fraksiyonu                   |
| Va                | Agrega Hacminin Betondaki Fraksiyonu                           |
| Ν                 | Eksenel Yük                                                    |
| $\sigma_{c}$      | Betondaki Gerilme                                              |
| $\sigma_{s}$      | Donatıdaki Gerilme                                             |
| A <sub>c</sub>    | Brüt Beton Alanı                                               |
| A <sub>st</sub>   | Kesitteki Toplam Boyuna Donatı Alanı                           |
| n                 | Modüler Oran, $\begin{bmatrix} E_s \\ E_c \end{bmatrix}$       |
| $f_{ck} \\$       | Betonun Basınç Dayanımı                                        |
| Ac                | Betonun Kesit Alanı                                            |
| $\mathbf{f}_{yk}$ | Boyuna Donatının Karakteristik Akma Dayanımı                   |
| 3                 | Birim Şekil Değiştirme                                         |
| ρ                 | Donati Orani                                                   |
| $\rho_{sw}$       | Yatay Donatı Oranı                                             |
| sp                | Etriye Aralığı                                                 |
| η                 | Kesitin Boyut Etkisi                                           |
| c                 | Boyuna Çubukların Merkezden Merkeze Uzaklığı                   |
| f1                | Yanal Sargi Basıncı                                            |

# ŞEKİL LİSTESİ

# Şekil

| Numarası   | Adı Sa                                                                                                  | <u>ayfa</u> |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Şekil 1.1  | Tipik Gerilme-Şekil Değiştirme Eğrisi                                                                   | 4           |  |  |  |
| Şekil 1.2  | Elastisite Modülleri                                                                                    |             |  |  |  |
| Şekil 2.1  | Kolon Türleri                                                                                           |             |  |  |  |
| Şekil 2.2  | Etriyeli ve Fretli Kolonun Yük-Deformasyon Eğrisi                                                       |             |  |  |  |
| Şekil 2.3  | Eksenel Yük Taşıyan Etriyeli Bir Kolonun Kırılması                                                      |             |  |  |  |
| Şekil 2.4  | Genel Sargı Tipleri                                                                                     | 32          |  |  |  |
| Şekil 2.5  | Farklı Miktarlardaki Etriyeler ile Sarılmış Beton İçin Gerilme<br>Şekil Değiştirme Grafikleri           |             |  |  |  |
| Şekil 2.6  | Boyuna Donatıların Bindirme Şekilleri                                                                   | 34          |  |  |  |
| Şekil 2.7  | (a)Kenetlenme Boyları Kısa Filizler (b)Rasgele Uzunluklarda<br>Bırakılmış ve Korozyona Uğramış Filizler | 35          |  |  |  |
| Şekil 2.8  | Çekme Kuvveti Altında Betona Aktarılan Kuvvetler                                                        | 35          |  |  |  |
| Şekil 2.9  | Basınca Çalışan Kolon Donatılarının Ucunda Kanca<br>Yapılması Sonucu Betonda Oluşan Hasar               | 36          |  |  |  |
| Şekil 2.10 | Sarılma Bölgesinde Etriye Eksikliği<br>(Gölcük–1999, Ceyhan–1998)                                       | 37          |  |  |  |
| Şekil 2.11 | Kolon-Kiriş Birleşiminde Donatı Kusurları                                                               | 37          |  |  |  |
| Şekil 3.1  | Hognestad Tarafından Önerilen Gerilme-Şekil Değiştirme<br>Eğrisi                                        | 40          |  |  |  |
| Şekil 3.2  | Chan Tarafından Önerilen Gerilme-Şekil Değiştirme Eğrisi                                                | 41          |  |  |  |
| Şekil 3.3  | Roy ve Sözen Tarafından Önerilen Gerilme-Şekil Değiştirme<br>Eğrisi                                     | 42          |  |  |  |
| Şekil 3.4  | Soliman ve Yu Tarafından Önerilen Gerilme-Şekil Değiştirme İlişkisi                                     | 44          |  |  |  |
| Şekil 3.5  | Sargın Tarafından Önerilen Gerilme-Şekil Değiştirme Eğrisi                                              | 46          |  |  |  |
| Şekil 3.6  | Sargılı ve Sargısız Beton İçin Önerilen Gerilme-Şekil<br>Değiştirme Bağıntısı                           | 47          |  |  |  |
| Şekil 3.7  | Etriyeli Kolonun Eksenel Olarak Yüklenmesi                                                              | 48          |  |  |  |
| Şekil 3.8  | Etriye Miktarının Beton Gerilme-Şekil Değiştirme Bağıntısına Etkisi                                     | 49          |  |  |  |
| Şekil 3.9  | Park, Priestly ve Gill Tarafından Değiştirilen Kent ve Park<br>Gerilme–Şekil Değiştirme Eğrisi          | 51          |  |  |  |
| Şekil 3.10 | Thompson ve Park Tarafından Değiştirilen Kent ve Park<br>Gerilme–Şekil Değiştirme Eğrisi                | 51          |  |  |  |
| Şekil 3.11 | Vallenas, Bertero ve Popov (1977) Tarafından Önerilen<br>Gerime–Şekil Değiştirme Eğrisi                 | 54          |  |  |  |
| Şekil 3.12 | Sheikh ve Üzümeri Tarafından Önerilen Betonun Genel Gerilme-Şekil Değiştirme Eğrisi                     | 57          |  |  |  |
| Şekil 3.13 | Etriye Seviyelerindeki Sarılmamış Beton                                                                 | 58          |  |  |  |

| Şekil 3.14                                            | Sarılmamış Betonun Alanının Belirlenmesi 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| Şekil 3.15                                            | Etriye Seviyeleri Arasındaki Sarılmamış Beton 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |
| 0.1.1.2.10                                            | Kritik Kesitlerin Belirlenmesi-Sarılmış ve Sarılmamış                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1  |  |  |  |  |
| Şekil 3.16                                            | Betonun Üc Boyutlu Görünüsü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61  |  |  |  |  |
|                                                       | Etrive Aralığının Bir Fonksivonu Olarak Etkili Sarılmıs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |  |  |  |
| Sekil 3 17                                            | Beton Alanı ve Cesitli Kare Donatı Konfigürasyonları İçin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63  |  |  |  |  |
| ş • • • • • • • • •                                   | Cekirdek Alanı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02  |  |  |  |  |
|                                                       | Mander Tafından Önerilen Betonun Genel Gerilme-Sekil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
| Şekil 3.18                                            | Dağıştırma Făriai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64  |  |  |  |  |
|                                                       | Vannag Tafından Önarilan Datanın Canal Carilma Sakil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |
| Şekil 3.19                                            | Deviction of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the | 67  |  |  |  |  |
| ,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |
| Sekil 3.20                                            | Saatçıoglu&Razvi I afından Ünerilen Betonun Genel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68  |  |  |  |  |
|                                                       | Gerilme-Şekil Değiştirme Eğrisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |
| Şek1l 3.21                                            | Çelik İçin Gerilme-Şekil Değiştirme Modeli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70  |  |  |  |  |
| Sekil 4 1                                             | Araştırmada Kullanılan Karışık Agreganın Granülometri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75  |  |  |  |  |
| Şekir 1.1                                             | Eğrisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15  |  |  |  |  |
| Şekil 4.2                                             | Beton Karışımının Hazırlanması                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76  |  |  |  |  |
| Şekil 4.3                                             | Beton Karışımının Kalıplara Yerleştirilmesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76  |  |  |  |  |
| Şekil 4.4                                             | Deney Numuneleri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76  |  |  |  |  |
| Şekil 4.5                                             | Kür Havuzunda Tutulan Silindir, Kolon ve Küp Numuneler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77  |  |  |  |  |
| Şekil 4.6                                             | Eksenel Basınç Dayanımı Belirlenen Küp Numuneler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77  |  |  |  |  |
| Şekil 4.7                                             | Numunelerin Başlıklanması 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |  |  |
| Elastisite Modülünün Belirlenmesi İcin Olusturulan De |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |
| Şekii 4.8                                             | Düzeneği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /9  |  |  |  |  |
| Şekil 4.9                                             | Yükleme Çerçevesinin Oluşturulması                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80  |  |  |  |  |
| Sekil 4.10                                            | Numuneye Sabitlenen LVDT'ler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81  |  |  |  |  |
| Śekil 4.11                                            | Deney Düzeneği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82  |  |  |  |  |
| Sekil 4.12                                            | Donati Yerlesim Plani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84  |  |  |  |  |
| ,                                                     | K1 Grubu Numunelere Ait Ortalama Gerilme-Sekil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5 |  |  |  |  |
| Şekil 4.13                                            | Değistirme Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85  |  |  |  |  |
| Sekil 4.14                                            | K1D111 Numunesine Ait Yük-Deplasman Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86  |  |  |  |  |
| ,<br>Sekil 4.15                                       | K1D111 Numunesine Ait Gerilme-Sekil Değistirme Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86  |  |  |  |  |
| Sekil 4 16                                            | K1D111 Numunesinin Denev Sonundaki Görünüsü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86  |  |  |  |  |
| Sekil 4 17                                            | K1D112 Numunesine Ait Yük-Denlasman Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87  |  |  |  |  |
| Sekil 4 18                                            | K1D112 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87  |  |  |  |  |
| Şekil 4 19                                            | K1D112 Numunesinin Deney Sonundaki Görünüsü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87  |  |  |  |  |
| Selvil 1 20                                           | K1D112 Numunesine Ait Vik-Denlasman Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88  |  |  |  |  |
| Şekil 4.20<br>Səlril 4.21                             | K1D113 Numunosino Ait Gorilmo Solvil Doğiştirmo Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00  |  |  |  |  |
| Şekii 4.21<br>Səlril 4.22                             | K1D113 Numunesinin Deney Senundelri Cärönösö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00  |  |  |  |  |
| $\operatorname{SeKII} 4.22$                           | K1D115 Numunesinin Deney Sonundaki Oorunuşu<br>K1D211 Numun sçine, Ait Vült Denleşmen, Crefi ži                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00  |  |  |  |  |
| Şekii 4.25                                            | K1D211 Numunesine Alt Carilara Salai Dažiatimus Casfiži                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09  |  |  |  |  |
| Şekii 4.24                                            | K1D211 Numunesine Alt Gerlime-Şekil Degiştirme Grangi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89  |  |  |  |  |
| Şekil 4.25                                            | K1D211 Numunesinin Deney Sonundaki Gorunuşu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89  |  |  |  |  |
| Şekil 4.26                                            | KID212 Numunesine Ait Yuk-Deplasman Grafigi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90  |  |  |  |  |
| Şekil 4.27                                            | K1D212 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90  |  |  |  |  |
| Şek1l 4.28                                            | K1D212 Numunesının Deney Sonundaki Görünüşü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90  |  |  |  |  |
| Şekil 4.29                                            | K1D213 Numunesine Ait Yük-Deplasman Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91  |  |  |  |  |
| Şekil 4.30                                            | K1D213 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91  |  |  |  |  |
| Şekil 4.31                                            | K1D213 Numunesinin Deney Sonundaki Görünüşü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91  |  |  |  |  |
| Şekil 4.32                                            | K1D311 Numunesine Ait Yük-Deplasman Grafiği 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |

| Şekil 4.33      | K1D311 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 92  |  |  |  |  |  |
|-----------------|--------------------------------------------------------|-----|--|--|--|--|--|
| Şekil 4.34      | K1D311 Numunesinin Deney Sonundaki Görünüşü92          |     |  |  |  |  |  |
| Şekil 4.35      | K1D312 Numunesine Ait Yük-Deplasman Grafiği            | 93  |  |  |  |  |  |
| Şekil 4.36      | K1D312 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 93  |  |  |  |  |  |
| Şekil 4.37      | K1D312 Numunesinin Deney Sonundaki Görünüşü9           |     |  |  |  |  |  |
| Şekil 4.38      | K1D313 Numunesine Ait Yük-Deplasman Grafiği            | 94  |  |  |  |  |  |
| Şekil 4.39      | K1D313 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 94  |  |  |  |  |  |
| Şekil 4.40      | K1D313 Numunesinin Deney Sonundaki Görünüşü            | 94  |  |  |  |  |  |
| ,<br>Sekil 4.41 | K1D411 Numunesine Ait Yük-Deplasman Grafiği            | 95  |  |  |  |  |  |
| ,<br>Sekil 4.42 | K1D411 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 95  |  |  |  |  |  |
| ,<br>Sekil 4.43 | K1D411 Numunesinin Deney Sonundaki Görünüsü            | 95  |  |  |  |  |  |
| ,<br>Sekil 4.44 | K1D412 Numunesine Ait Yük-Deplasman Grafiği            | 96  |  |  |  |  |  |
| Sekil 4.45      | K1D412 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 96  |  |  |  |  |  |
| Sekil 4.46      | K1D412 Numunesinin Denev Sonundaki Görünüsü            | 96  |  |  |  |  |  |
| Sekil 4.47      | K1D413 Numunesine Ait Yük-Deplasman Grafiği            | 97  |  |  |  |  |  |
| Sekil 4.48      | K1D413 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 97  |  |  |  |  |  |
| Sekil 4.49      | K1D413 Numunesinin Denev Sonundaki Görünüsü            | 97  |  |  |  |  |  |
| ~               | K2 Grubu Numunelere Ait Ortalama Gerilme-Sekil         |     |  |  |  |  |  |
| Şek1l 4.50      | Değiştirme Grafiği                                     | 98  |  |  |  |  |  |
| Sekil 4.51      | K2D111 Numunesine Ait Yük-Deplasman Grafiği            | 99  |  |  |  |  |  |
| Sekil 4.52      | K2D111 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 99  |  |  |  |  |  |
| Sekil 4.53      | K2D111 Numunesinin Denev Sonundaki Görünüsü            | 99  |  |  |  |  |  |
| Sekil 4.54      | K2D112 Numunesine Ait Yük-Deplasman Grafiği            | 100 |  |  |  |  |  |
| Sekil 4.55      | K2D112 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 100 |  |  |  |  |  |
| Sekil 4 56      | 2D112 Numunesinin Denev Sonundaki Görünüsü 100         |     |  |  |  |  |  |
| Sekil 4 57      | K2D113 Numunesine Ait Yük-Deplasman Grafiği            | 101 |  |  |  |  |  |
| Sekil 4.58      | K2D113 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 101 |  |  |  |  |  |
| Sekil 4.59      | K2D113 Numunesinin Denev Sonundaki Görünüsü            | 101 |  |  |  |  |  |
| Sekil 4.60      | K2D211 Numunesine Ait Yük-Deplasman Grafiği            | 102 |  |  |  |  |  |
| Sekil 4.61      | K2D211 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 102 |  |  |  |  |  |
| Sekil 4.62      | K2D211 Numunesinin Denev Sonundaki Görünüsü            | 102 |  |  |  |  |  |
| Sekil 4.63      | K2D212 Numunesine Ait Yük-Deplasman Grafiği            | 103 |  |  |  |  |  |
| Sekil 4.64      | K2D212 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 103 |  |  |  |  |  |
| Sekil 4 65      | K2D212 Numunesinin Denev Sonundaki Görünüsü            | 103 |  |  |  |  |  |
| Sekil 4 66      | K2D213 Numunesine Ait Yük-Deplasman Grafiği            | 104 |  |  |  |  |  |
| Sekil 4 67      | K2D213 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği | 104 |  |  |  |  |  |
| Sekil 4.68      | K2D213 Numunesinin Denev Sonundaki Görünüsü            | 104 |  |  |  |  |  |
| Sekil 4.69      | K2D311 Numunesine Ait Yük-Deplasman Grafiği            | 105 |  |  |  |  |  |
| Sekil 4.70      | K2D311 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 105 |  |  |  |  |  |
| Sekil 4.71      | K2D311 Numunesinin Denev Sonundaki Görünüsü            | 105 |  |  |  |  |  |
| Sekil 4.72      | K2D312 Numunesine Ait Yük-Deplasman Grafiği            | 106 |  |  |  |  |  |
| Sekil 4.73      | K2D312 Numunesine Ait Gerilme-Sekil Değistirme Grafiği | 106 |  |  |  |  |  |
| Sekil 4.74      | K2D312 Numunesinin Denev Sonundaki Görünüsü            | 106 |  |  |  |  |  |
| Sekil 4 75      | K2D313 Numunesine Ait Yük-Deplasman Grafiği            | 107 |  |  |  |  |  |
| Sekil 4 76      | K2D313 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği | 107 |  |  |  |  |  |
| Sekil 4 77      | K2D313 Numunesinin Denev Sonundaki Görünüsü            | 107 |  |  |  |  |  |
| Şekil 4.78      | LVDT Kelepçesinin Kaynaklarının Kopması ile Oluşan     | 108 |  |  |  |  |  |
| Sekil 4 79      | K2D411 Numunesine Ait Yük-Denlasman Grafiği            | 109 |  |  |  |  |  |
| 3               |                                                        |     |  |  |  |  |  |

| Şekil 4.80                     | K2D411 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği                                                    | 109 |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| Şekil 4.81                     | K2D411 Numunesinin Deney Sonundaki Görünüşü 1                                                             |     |  |  |  |  |  |
| Şekil 4.82                     | K2D412 Numunesine Ait Yük-Deplasman Grafiği                                                               | 110 |  |  |  |  |  |
| Şekil 4.83                     | K2D412 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği                                                    | 110 |  |  |  |  |  |
| Şekil 4.84                     | K2D412 Numunesinin Deney Sonundaki Görünüşü                                                               | 110 |  |  |  |  |  |
| Şekil 4.85                     | K2D413 Numunesine Ait Yük-Deplasman Grafiği                                                               | 111 |  |  |  |  |  |
| Şekil 4.86                     | K2D412 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği                                                    | 111 |  |  |  |  |  |
| Şekil 4.87                     | K2D413 Numunesinin Deney Sonundaki Görünüşü                                                               | 111 |  |  |  |  |  |
| Şekil 4.88                     | K2D121 Numunesine Ait Yük-Deplasman Grafiği                                                               | 112 |  |  |  |  |  |
| ,<br>Sekil 4.89                | K2D121 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 112 |  |  |  |  |  |
| ,<br>Şekil 4.90                | K2D121 Numunesinin Deney Sonundaki Görünüşü                                                               | 112 |  |  |  |  |  |
| ,<br>Sekil 4.91                | K2D122 Numunesine Ait Yük-Deplasman Grafiği                                                               | 113 |  |  |  |  |  |
| ,<br>Sekil 4.92                | K2D122 Numunesine Ait Gerilme-Sekil Değistirme Grafiği                                                    | 113 |  |  |  |  |  |
| ,<br>Sekil 4.93                | K2D122 Numunesinin Denev Sonundaki Görünüsü                                                               | 113 |  |  |  |  |  |
| Sekil 4.94                     | K2D123 Numunesine Ait Yük-Deplasman Grafiği                                                               | 114 |  |  |  |  |  |
| Sekil 4.95                     | K2D123 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 114 |  |  |  |  |  |
| Sekil 4 96                     | K2D123 Numunesinin Denev Sonundaki Görünüsü                                                               | 114 |  |  |  |  |  |
| Sekil 4 97                     | K2D221 Numunesine Ait Yük-Deplasman Grafiği                                                               | 115 |  |  |  |  |  |
| Sekil 4 98                     | K2D221 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 115 |  |  |  |  |  |
| Sekil 4 99                     | K2D221 Numunesinin Denev Sonundaki Görünüsü                                                               | 115 |  |  |  |  |  |
| Sekil 4 100                    | K2D222 Numunesine Ait Yük-Deplasman Grafiği                                                               | 116 |  |  |  |  |  |
| Şekil 4 101                    | K2D222 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 116 |  |  |  |  |  |
| Sekil 4 102                    | K2D222 Numunesinin Denev Sonundaki Görünüsü                                                               | 116 |  |  |  |  |  |
| Sekil 4 103                    | K2D222 Numunesine Ait Yük-Denlasman Grafiği                                                               | 117 |  |  |  |  |  |
| Sekil 4 104                    | X2D223 Numunesine Ait Gerilme-Sekil Değistirme Grafiği 1                                                  |     |  |  |  |  |  |
| Sekil 4 105                    | C2D223 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği 11                                                 |     |  |  |  |  |  |
| Sekil 4 106                    | C2D223 Numunesinin Deney Sonundaki Gorunuşu 1.<br>C2D321 Numunesine Ait Yük-Deplasman Grafiği 1           |     |  |  |  |  |  |
| Sekil 4 107                    | K2D321 Numunesine Alt Yuk-Deplasman Grafigi 1<br>K2D321 Numunesine Ait Gerilme-Sekil Değistirme Grafiği 1 |     |  |  |  |  |  |
| Sekil 4 108                    | K2D321 Numunesinin Denev Sonundaki Görünüsü                                                               |     |  |  |  |  |  |
| Sekil 4 109                    | K2D322 Numunesine Ait Yük-Denlasman Grafiği                                                               | 119 |  |  |  |  |  |
| Sekil 4 110                    | K2D322 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 119 |  |  |  |  |  |
| Sekil 4 111                    | K2D322 Numunesinin Denev Sonundaki Görünüsü                                                               | 119 |  |  |  |  |  |
| Sekil 4 112                    | K2D323 Numunesine Ait Yük-Denlasman Grafiği                                                               | 120 |  |  |  |  |  |
| Şekil 4 113                    | K2D323 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 120 |  |  |  |  |  |
| Şekil 4 114                    | K2D323 Numunesinin Denev Sonundaki Görünüsü                                                               | 120 |  |  |  |  |  |
| Şekil 4 115                    | K2D421 Numunesine Ait Yük-Denlasman Grafiği                                                               | 120 |  |  |  |  |  |
| Şekil 4 116                    | K2D421 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 121 |  |  |  |  |  |
| Şekil 4 117                    | K2D 121 Numunesinin Denev Sonundaki Görünüsü                                                              | 121 |  |  |  |  |  |
| Şekil 4 118                    | K2D422 Numunesine Ait Vük-Denlasman Grafiği                                                               | 121 |  |  |  |  |  |
| Şekil 4 119                    | K2D422 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 122 |  |  |  |  |  |
| Şekil 4 120                    | K2D 122 Numunesinin Deney Sonundaki Görünüsü                                                              | 122 |  |  |  |  |  |
| Şekil 4 120<br>Sekil 4 121     | K2D422 Numunesine Ait Vük-Denlasman Grafiği                                                               | 122 |  |  |  |  |  |
| Şekil 4 122                    | K2D423 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 123 |  |  |  |  |  |
| Şekil 4 122<br>Sekil 4 123     | K2D423 Numunesinin Deney Sonundaki Görünüsü                                                               | 123 |  |  |  |  |  |
| ŞCKII 4.125                    | K2 Grubu Numunelere Ait Ortalama Gerilme-Sekil                                                            | 123 |  |  |  |  |  |
| Şekil 4.124                    | Değiştirme Grafiği                                                                                        | 124 |  |  |  |  |  |
| Sekil 4 125                    | K3D111 Numunesine Ait Viik-Denlasman Grafiči                                                              | 125 |  |  |  |  |  |
| Sekil 4 126                    | K3D111 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği                                                    | 125 |  |  |  |  |  |
| Sekil 4 127                    | K3D111 Numunesinin Deney Sonundaki Görünüsü                                                               | 125 |  |  |  |  |  |
| Ç€K11 <b>-T</b> . 1 <i>∠</i> / | NEET I Muhanoshini Deney Sonunaaki Ooranaşa                                                               | 140 |  |  |  |  |  |

| Şekil 4.128      | K3D112 Numunesine Ait Yük-Deplasman Grafiği            | 126 |
|------------------|--------------------------------------------------------|-----|
| Şekil 4.129      | K3D112 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 126 |
| Şekil 4.130      | K3D112 Numunesinin Deney Sonundaki Görünüşü            | 126 |
| Şekil 4.131      | K3D113 Numunesine Ait Yük-Deplasman Grafiği            | 127 |
| Şekil 4.132      | K3D113 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 127 |
| Şekil 4.133      | K3D113 Numunesinin Deney Sonundaki Görünüşü            | 127 |
| Şekil 4.134      | K3D211 Numunesine Ait Yük-Deplasman Grafiği            | 128 |
| Şekil 4.135      | K3D211 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 128 |
| Şekil 4.136      | K3D211 Numunesinin Deney Sonundaki Görünüşü            | 128 |
| Şekil 4.137      | K3D212 Numunesine Ait Yük-Deplasman Grafiği            | 129 |
| Şekil 4.138      | K3D212 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 129 |
| Şekil 4.139      | K3D212 Numunesinin Deney Sonundaki Görünüşü            | 129 |
| Şekil 4.140      | K3D213 Numunesine Ait Yük-Deplasman Grafiği            | 130 |
| Sekil 4.141      | K3D213 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği | 130 |
| Şekil 4.142      | K3D213 Numunesinin Deney Sonundaki Görünüşü            | 130 |
| Şekil 4.143      | K3D311 Numunesine Ait Yük-Deplasman Grafiği            | 131 |
| Şekil 4.144      | K3D311 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 131 |
| Şekil 4.145      | K3D311 Numunesinin Deney Sonundaki Görünüşü            | 131 |
| ,<br>Sekil 4.146 | K3D312 Numunesine Ait Yük-Deplasman Grafiği            | 132 |
| ,<br>Sekil 4.147 | K3D312 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği | 132 |
| ,<br>Şekil 4.148 | K3D312 Numunesinin Deney Sonundaki Görünüşü            | 132 |
| Şekil 4.149      | K3D313 Numunesine Ait Yük-Deplasman Grafiği            | 133 |
| Şekil 4.150      | K3D313 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 133 |
| Şekil 4.151      | K3D313 Numunesinin Deney Sonundaki Görünüşü            | 133 |
| Şekil 4.152      | K3D411 Numunesine Ait Yük-Deplasman Grafiği            | 134 |
| Şekil 4.153      | K3D411 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 134 |
| Şekil 4.154      | K3D411 Numunesinin Deney Sonundaki Görünüşü            | 134 |
| Şekil 4.155      | K3D412 Numunesine Ait Yük-Deplasman Grafiği            | 135 |
| Şekil 4.156      | K3D412 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 135 |
| Şekil 4.157      | K3D412 Numunesinin Deney Sonundaki Görünüşü            | 135 |
| Şekil 4.158      | K3D413 Numunesine Ait Yük-Deplasman Grafiği            | 136 |
| Şekil 4.159      | K3D413 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 136 |
| Şekil 4.160      | K3D413 Numunesinin Deney Sonundaki Görünüşü            | 136 |
| Şekil 4.161      | K3D121 Numunesine Ait Yük-Deplasman Grafiği            | 137 |
| Şekil 4.162      | K3D121 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 137 |
| Şekil 4.163      | K3D121 Numunesinin Deney Sonundaki Görünüşü            | 137 |
| Şekil 4.164      | K3D122 Numunesine Ait Yük-Deplasman Grafiği            | 138 |
| Şekil 4.165      | K3D122 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 138 |
| Şekil 4.166      | K3D122 Numunesinin Deney Sonundaki Görünüşü            | 138 |
| Şekil 4.167      | K3D123 Numunesine Ait Yük-Deplasman Grafiği            | 139 |
| Şekil 4.168      | K3D123 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 139 |
| Şekil 4.169      | K3D123 Numunesinin Deney Sonundaki Görünüşü            | 139 |
| Şekil 4.170      | K3D221 Numunesine Ait Yük-Deplasman Grafiği            | 140 |
| Şekil 4.171      | K3D221 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 140 |
| Şekil 4.172      | K3D221 Numunesinin Deney Sonundaki Görünüşü            | 140 |
| Şekil 4.173      | K3D222 Numunesine Ait Yük-Deplasman Grafiği            | 141 |
| Şekil 4.174      | K3D222 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği | 141 |
| Şekil 4.175      | K3D222 Numunesinin Deney Sonundaki Görünüşü            | 141 |
| Şekil 4.176      | K3D223 Numunesine Ait Yük-Deplasman Grafiği            | 142 |

| Şekil 4.177      | K3D223 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği    | 142 |  |  |  |  |  |
|------------------|-----------------------------------------------------------|-----|--|--|--|--|--|
| Şekil 4.178      | K3D223 Numunesinin Deney Sonundaki Görünüşü 14            |     |  |  |  |  |  |
| Şekil 4.179      | K3D321 Numunesine Ait Yük-Deplasman Grafiği               | 143 |  |  |  |  |  |
| Şekil 4.180      | K3D321 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği 14 |     |  |  |  |  |  |
| Şekil 4.181      | K3D321 Numunesinin Deney Sonundaki Görünüşü               |     |  |  |  |  |  |
| Şekil 4.182      | K3D322 Numunesine Ait Yük-Deplasman Grafiği               | 144 |  |  |  |  |  |
| Şekil 4.183      | K3D322 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği    | 144 |  |  |  |  |  |
| Sekil 4.184      | K3D322 Numunesinin Deney Sonundaki Görünüşü               | 144 |  |  |  |  |  |
| ,<br>Sekil 4.185 | K3D323 Numunesine Ait Yük-Deplasman Grafiği               | 145 |  |  |  |  |  |
| ,<br>Sekil 4.186 | K3D323 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 145 |  |  |  |  |  |
| ,<br>Sekil 4.187 | K3D323 Numunesinin Deney Sonundaki Görünüsü               | 145 |  |  |  |  |  |
| ,<br>Sekil 4.188 | K3D421 Numunesine Ait Yük-Deplasman Grafiği               | 146 |  |  |  |  |  |
| Sekil 4.189      | K3D421 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 146 |  |  |  |  |  |
| Sekil 4.190      | K3D421 Numunesinin Denev Sonundaki Görünüsü               | 146 |  |  |  |  |  |
| Sekil 4 191      | K3D422 Numunesine Ait Yük-Deplasman Grafiği               | 147 |  |  |  |  |  |
| Sekil 4 192      | K3D422 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği    | 147 |  |  |  |  |  |
| Sekil 4.193      | K3D422 Numunesinin Denev Sonundaki Görünüsü               | 147 |  |  |  |  |  |
| Sekil 4 194      | K3D423 Numunesine Ait Yük-Deplasman Grafiği               | 148 |  |  |  |  |  |
| Sekil 4 195      | K3D423 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği    | 148 |  |  |  |  |  |
| Sekil 4 196      | K3D422 Numunesinin Denev Sonundaki Görünüsü               | 148 |  |  |  |  |  |
| Sekil 4 197      | Silindir ve Kolon numunelerde oluşan kırılma şekli        | 149 |  |  |  |  |  |
| Sekil 4 198      | Beton Başlıklı Kolon Numunelere Ait Donatı Yerlesim Planı | 150 |  |  |  |  |  |
|                  | KB1 Grubu Numunelere Ait Ortalama Gerilme-Sekil           | 100 |  |  |  |  |  |
| Şekil 4.199      | Değiştirme Grafiği                                        | 150 |  |  |  |  |  |
| Sekil 4 200      | KB1D11 Numunesine Ait Yük-Deplasman Grafiği               | 151 |  |  |  |  |  |
| Sekil 4 201      | KB1D11 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 151 |  |  |  |  |  |
| Sekil 4.202      | KB1D11 Numunesinin Denev Sonundaki Görünüsü               | 151 |  |  |  |  |  |
| Sekil 4.203      | KB1D12 Numunesine Ait Yük-Deplasman Grafiği               | 152 |  |  |  |  |  |
| Sekil 4.204      | KB1D12 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 152 |  |  |  |  |  |
| Sekil 4.205      | KB1D12 Numunesinin Denev Sonundaki Görünüsü               | 152 |  |  |  |  |  |
| Sekil 4 206      | KB1D13 Numunesine Ait Yük-Deplasman Grafiği               | 153 |  |  |  |  |  |
| Sekil 4 207      | KB1D13 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği    | 153 |  |  |  |  |  |
| Sekil 4 208      | KB1D13 Numunesinin Deney Sonundaki Görünüsü               | 153 |  |  |  |  |  |
| Sekil 4 209      | KB1D14 Numunesine Ait Yük-Deplasman Grafiği               | 154 |  |  |  |  |  |
| Sekil 4 210      | KB1D14 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 154 |  |  |  |  |  |
| Sekil 4 211      | KB1D14 Numunesinin Deney Sonundaki Görünüsü               | 154 |  |  |  |  |  |
| Sekil 4 212      | KB1D15 Numunesine Ait Yük-Deplasman Grafiği               | 155 |  |  |  |  |  |
| Sekil 4 213      | KB1D15 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 155 |  |  |  |  |  |
| Sekil 4 214      | KB1D14 Numunesinin Deney Sonundaki Görünüsü               | 155 |  |  |  |  |  |
| Sekil 4 215      | KB1D16 Numunesine Ait Yük-Deplasman Grafiği               | 156 |  |  |  |  |  |
| Sekil 4 216      | KB1D16 Numunesine Ait Gerilme-Sekil Değiştirme Grafiği    | 156 |  |  |  |  |  |
| Sekil 4 217      | KB1D16 Numunesinin Deney Sonundaki Görünüsü               | 156 |  |  |  |  |  |
| Şenni 1.21,      | KB2 Grubu Numunelere Ait Ortalama Gerilme-Sekil           | 100 |  |  |  |  |  |
| Şekil 4.218      | Değiştirme Grafiği                                        | 157 |  |  |  |  |  |
| Sekil 4 219      | KB2D21 Numunesine Ait Viik-Denlasman Grafiği 159          |     |  |  |  |  |  |
| Sekil 4 220      | KB2D21 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 158 |  |  |  |  |  |
| Sekil 4 221      | KB2D21 Numunesinin Denev Sonundaki Görünüsü               | 158 |  |  |  |  |  |
| Sekil 4 222      | KB2D22 Numunesine Ait Viik-Denlasman Grafiči 14           |     |  |  |  |  |  |
| Sekil 4 223      | KB2D22 Numunesine Ait Gerilme-Sekil Değistirme Grafiği    | 159 |  |  |  |  |  |
| 3                |                                                           |     |  |  |  |  |  |

| Şekil 4.224                           | KB2D22 Numunesinin Deney Sonundaki Görünüşü              | 159 |  |  |  |
|---------------------------------------|----------------------------------------------------------|-----|--|--|--|
| Şekil 4.225                           | KB2D23 Numunesine Ait Yük-Deplasman Grafiği 1            |     |  |  |  |
| Şekil 4.226                           | KB2D23 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği 1 |     |  |  |  |
| Şekil 4.227                           | KB2D23 Numunesinin Deney Sonundaki Görünüşü 1            |     |  |  |  |
| Şekil 4.228                           | KB2D24 Numunesine Ait Yük-Deplasman Grafiği 1            |     |  |  |  |
| Şekil 4.229                           | KB2D24 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği 1 |     |  |  |  |
| Şekil 4.230                           | KB2D24 Numunesinin Deney Sonundaki Görünüşü 1            |     |  |  |  |
| Şekil 4.231                           | KB2D25 Numunesine Ait Yük-Deplasman Grafiği              |     |  |  |  |
| Şekil 4.232                           | KB2D25 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği   | 162 |  |  |  |
| Şekil 4.233                           | KB2D25 Numunesinin Deney Sonundaki Görünüşü              | 162 |  |  |  |
| Şekil 4.234                           | KB2D26 Numunesine Ait Yük-Deplasman Grafiği              | 163 |  |  |  |
| Şekil 4.235                           | KB2D26 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği   | 163 |  |  |  |
| Şekil 4.236                           | KB2D26 Numunesinin Deney Sonundaki Görünüşü              | 163 |  |  |  |
| Salvil 5 1                            | K1D1 Kolonlarının Response–2000 Programı Kullanılarak    | 166 |  |  |  |
| Şekii 5.1                             | Çözümü                                                   | 100 |  |  |  |
| $Q_{a} = 1 = 1 = 2$                   | K1D1 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 166 |  |  |  |
| Şekii 5.2                             | σ-ε Eğrileri                                             | 100 |  |  |  |
| Salvil 5 2                            | K1D2 Kolonlarının Response–2000 Programı Kullanılarak    | 167 |  |  |  |
| Şekii 5.5                             | Çözümü                                                   | 107 |  |  |  |
| Sabil 5 1                             | K1D2 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 167 |  |  |  |
| Şekii J.4                             | σ-ε Eğrileri                                             | 107 |  |  |  |
| Sabil 5 5                             | K1D3 Kolonlarının Response–2000 Programı Kullanılarak    | 168 |  |  |  |
| Şekii 5.5                             | Çözümü                                                   | 100 |  |  |  |
| Sekil 5 6                             | K1D3 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 168 |  |  |  |
| Şekii 5.0                             | σ-ε Eğrileri                                             | 100 |  |  |  |
| Sekil 5 7                             | K1D4 Kolonlarının Response–2000 Programı Kullanılarak    | 169 |  |  |  |
| ÇCKII 5.7                             | Çözümü                                                   | 107 |  |  |  |
| Sekil 5 8                             | K1D4 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 169 |  |  |  |
| Şekii 5.6                             | σ-ε Eğrileri                                             | 107 |  |  |  |
| Sekil 5 9                             | K2D1 Kolonlarının Response–2000 Programı Kullanılarak    | 170 |  |  |  |
| Şekii 5.5                             | Çözümü                                                   | 170 |  |  |  |
| Sekil 5 10                            | K2D1 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 170 |  |  |  |
| Şekir 5.10                            | σ-ε Eğrileri                                             | 170 |  |  |  |
| Sekil 5 11                            | K2D2 Kolonlarının Response–2000 Programı Kullanılarak    | 171 |  |  |  |
| Şenn e.i i                            | Çözümü                                                   | 1,1 |  |  |  |
| Sekil 5 12                            | K2D2 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 171 |  |  |  |
| ş•                                    | σ-ε Eğrileri                                             | 1,1 |  |  |  |
| Sekil 5 13                            | K2D3 Kolonlarının Response–2000 Programı Kullanılarak    | 172 |  |  |  |
| ş enn e ne                            | Çözümü                                                   |     |  |  |  |
| Sekil 5 14                            | K2D3 Kolonlarının Analıtık ve Deneysel Olarak Belirlenen | 172 |  |  |  |
| Şenn e.i i                            | σ-ε Eğrileri                                             | 1,2 |  |  |  |
| Sekil 5 15                            | K2D4 Kolonlarının Response–2000 Programı Kullanılarak    | 173 |  |  |  |
| Şenn ö.re                             | Çözümü                                                   | 175 |  |  |  |
| Sekil 5 16                            | K2D4 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 173 |  |  |  |
| · · · · · · · · · · · · · · · · · · · | σ-ε Eğrileri                                             |     |  |  |  |
| Sekil 5.17                            | K3D1 Kolonlarının Response–2000 Programı Kullanılarak    | 174 |  |  |  |
| ,                                     | Çözümü                                                   |     |  |  |  |
| Sekil 5.18                            | K3D1 Kolonlarının Analitik ve Deneysel Olarak Belirlenen | 174 |  |  |  |
| Şenn e.re                             | σ-ε Eğrileri                                             |     |  |  |  |

| Şekil 5.19                            | K3D2 Kolonlarının Response–2000 Programı Kullanılarak                | 175   |
|---------------------------------------|----------------------------------------------------------------------|-------|
|                                       | Çozumu<br>K3D2 Kolonlarının Analitik ve Denevsel Olarak Belirlenen   |       |
| Şekil 5.20                            | σ-ε Eğrileri                                                         | 175   |
| 0.1.1.5.01                            | K3D3 Kolonlarının Response–2000 Programı Kullanılarak                | 1     |
| Şekil 5.21                            | Çözümü                                                               | 176   |
| S alvil 5 22                          | K3D3 Kolonlarının Analitik ve Deneysel Olarak Belirlenen             | 176   |
| Şekii 5.22                            | σ-ε Eğrileri                                                         | 1/0   |
| Sehil 5 23                            | K3D4 Kolonlarının Response–2000 Programı Kullanılarak                | 177   |
| Şekii 5.25                            | Çözümü                                                               | 1//   |
| Sekil 5 24                            | K3D4 Kolonlarının Analitik ve Deneysel Olarak Belirlenen             | 177   |
| Şekir 2.2 î                           | σ-ε Eğrileri                                                         | 177   |
| Sekil 5.25                            | KB1D1 Kolonlarının Response–2000 Programı Kullanılarak               | 178   |
| · · · · ·                             |                                                                      |       |
| Şekil 5.26                            | KBIDI Kolonlarinin Analitik ve Deneysel Olarak Belirlenen            | 178   |
|                                       | 6-E Egrileri<br>KD2D2 Kalanlammur Daamanaa 2000 Draamanu Kullandarak |       |
| Şekil 5.27                            | KB2D2 Koloniarinin Response–2000 Programi Kullanilarak               | 179   |
|                                       | KB2D2 Kolonlarının Analitik ve Denevsel Olarak Belirlenen            |       |
| Şekil 5.28                            | α-c Eğrileri                                                         | 179   |
| Sekil 6 1                             | Secilen Yanının Mimari Planı                                         | 182   |
| Sekil 6.2                             | Seçilen Yapının Kalın Planı                                          | 182   |
| Sekil 6 3                             | Seçilen Yapının Üc Boyutlu Görünümü                                  | 183   |
| Sekil 6.4                             | Seçilen Yapının Keşit Görünümü                                       | 183   |
| ,<br>Şekil 6.5                        | Seçilen İki Yapının X Yönünde Oluşan Deplasmanları                   | 184   |
| Salvil C C                            | Kolonlarında Oluşan Kesit Tesirleri (40/40 Kolonlarda %1             | 106   |
| Şeklî 0.0                             | Donati Orani)                                                        | 180   |
| Sabil 67                              | Kirişlerde Oluşan Kesit Tesirleri (40/40 Kolonlarda %1               | 187   |
| ŞCKII Ü. /                            | Donati Oranı)                                                        | 10/   |
| Sekil 6 8                             | Kolonlarında Oluşan Kesit Tesirleri (30/30 Kolonlarda %2             | 188   |
| Şenn 0.0                              | Donati Orani)                                                        | 100   |
| Sekil 6.9                             | Kırışlerde Oluşan Kesit Tesirleri (30/30 Kolonlarda %2               | 189   |
| ,<br>Calvil A 1                       | Donati Urani)                                                        | 102   |
| Şekli A.I                             | VIDI Velenlarina Bagii Olarak Yapilan Regrasyon Analizi              | 193   |
| Şekil B.1                             | Eğri                                                                 | 195   |
|                                       | K1D2 Kolonlarina ait Denevlerden Elde Edilen Ortalama                |       |
| Şekil B.2                             | Eğri                                                                 | 195   |
| G 1 1 D 2                             | K1D3 Kolonlarına ait Deneylerden Elde Edilen Ortalama                | 100   |
| Şekil B.3                             | Eğri                                                                 | 196   |
| Solvil D 1                            | K1D4 Kolonlarına ait Deneylerden Elde Edilen Ortalama                | 106   |
| ŞEKII D.4                             | Eğri                                                                 | 190   |
| Sekil B 5                             | K2D1 Kolonlarına ait Deneylerden Elde Edilen Ortalama                | 197   |
| ÇUKII D.J                             | Eğri                                                                 | 171   |
| Sekil B.6                             | K2D2 Kolonlarına ait Deneylerden Elde Edilen Ortalama                | 197   |
| · · · · · · · · · · · · · · · · · · · | Eğn                                                                  | - 2 1 |
| Şekil B.7                             | K2D3 Koloniarina ait Deneylerden Elde Edilen Ortalama                | 198   |
| ,                                     | Egn                                                                  |       |

| Şekil B.8  | K2D4 Kolonlarına ait Deneylerden Elde Edilen Ortalama<br>Eğri  | 198 |
|------------|----------------------------------------------------------------|-----|
| Şekil B.9  | K3D1 Kolonlarına ait Deneylerden Elde Edilen Ortalama<br>Eğri  | 199 |
| Şekil B.10 | K3D2 Kolonlarına ait Deneylerden Elde Edilen Ortalama<br>Eğri  | 199 |
| Şekil B.11 | K3D3 Kolonlarına ait Deneylerden Elde Edilen Ortalama<br>Eğri  | 200 |
| Şekil B.12 | K3D4 Kolonlarına ait Deneylerden Elde Edilen Ortalama<br>Eğri  | 200 |
| Şekil B.13 | KB1D1 Kolonlarına ait Deneylerden Elde Edilen Ortalama<br>Eğri | 201 |
| Şekil B.14 | KB2DB Kolonlarına ait Deneylerden Elde Edilen Ortalama<br>Eğri | 201 |

# TABLO LÍSTESÍ

# Tablo

| Numarası  | Adı                                                                                          |     |  |  |
|-----------|----------------------------------------------------------------------------------------------|-----|--|--|
| Tablo 1.1 | Değişik Kuruluşlar Tarafından Önerilen Formüllerin<br>Kullanılmasıyla Hesaplanan E Değerleri |     |  |  |
| Tablo 3.1 | Sheikh ve Üzümeri Tarafından Ulaşılmış Testlerin Özeti                                       | 56  |  |  |
| Tablo 4.1 | Araştırmada Kullanılan Çimentoya ait Değerler                                                | 73  |  |  |
| Tablo 4.2 | Süper Akışkanlaştırıcı Katkıya Ait Teknik Bilgiler                                           | 74  |  |  |
| Tablo 4.3 | Karışık Agreganın Tane Dağılımı ve Elverişli Granülometri<br>Değerleri                       | 74  |  |  |
| Tablo 4.4 | $1 \text{m}^3$ Beton İçin Karışıma Giren Malzeme Miktarları                                  |     |  |  |
| Tablo 4.5 | Küp ve Silindir Numunelere Ait Eksenel Basınç Dayanımları                                    |     |  |  |
| Tablo 4.6 | Donatı Oranı ve Beton Karışımına Göre Oluşturulan Kolon<br>Numune Miktarları                 |     |  |  |
| Tablo 4.7 | Deneylerden Elde Edilen Elastisite Modülleri                                                 | 164 |  |  |
| Tablo 6.1 | Seçilen Yapının X Yönünde Oluşan Deplasmanları                                               |     |  |  |
| Tablo 6.2 | X Yönünde Oluşan Deplasmanların İlk Çözüme Göre %<br>Değisim Oranları                        |     |  |  |
| Tablo 6.3 | Statik Analizi Yapılan Yapılar ve Çözüm Türleri                                              | 185 |  |  |
| Tablo A.1 | Regresyon Analizi Parametreleri                                                              |     |  |  |

# ÖNSÖZ

Bu çalışmaya başlamam için bana yol gösteren, bu yolda maddi ve manevi desteğini esirgemeyen, üzerimdeki emeklerine minnettar olduğum, saygıdeğer hocam Prof.Dr. Şerif SAYLAN'a,

Lisans yıllarımdan bu günlere gelmemde büyük katkısı olan, bana meslek aşkını ilk aşılayan, kıymetli hocam Prof.Dr. Hasan KAPLAN'a,

Çalışmamda adeta ikinci danışmanım gibi bana destek olan, zamanlı zamansız telefonlarda sorduğum sorularıma sabırla yanıt veren değerli hocam Y.Doç.Dr. Altuğ YAVAŞ'a,

Çalışmamın çeşitli aşamalarında yardımlarına başvurduğum hocalarım; Y.Doç.Dr. Mehmet TERZİ, Y.Doç.Dr. Hasan ELÇİ, Y.Doç.Dr. Kaan TÜRKER, Y.Doç.Dr. Fehmi ÇİVİCİ, Y.Doç.Dr. Arın YILMAZ ve tüm İnşaat Mühendisliği Bölümü Öğretim Üyelerine,

Bu çalışmaya en büyük fiziki enerjiyi harcayan, tüm samimiyeti ile emek sarf eden, Sayın Halil İbrahim MARDİN'e,

Deney aletinin yapımı, kalıpların üretilmesi gibi aşamalarda kendi çalışması gibi çaba sarf eden değerli hocam, Y.Doç.Dr. Alaaddin TOKTAŞ'a

Deney aletinin yapımı sırasında teknik destek aldığım, kadim dostum Hakan HÜSEYİNOĞLU, ustam Mehmet AKIN ve dayım Mustafa DAKDEVİR'e,

Deney düzeneğinin kurulum aşamalarında bana destek olan hocalarım Prof.Dr. Nurettin ARSLAN, Prof.Dr. İrfan AY, sevgili arkadaşlarım; Akın ATAŞ, Umut HASGÜL, Deniz KARAOĞLAN ve Sabri BİCAKCI'ya, Kalıpların hazırlanmasındaki teknik destekleri ile yardımlarını esirgemeyen 6. Ana bakım Merkezi Komutanı Ord.Alb. Ziya KARAGÖZ, Teknik Müdür Müh.Yrb. Mustafa ÜSTÜN ve emeği geçen Fabrika çalışanlarına,

Deney numunelerinin hazırlanması sırasında malzeme desteği sağlayan Murat ATAY ve Balıkesir Çimento Fabrikası'na, Gürler Beton Tesisi ve Bülent İLER'e, Sika Yapı Kimyasalları Şirketi'ne, İbrahim DAYI'ya,

Akla hayale gelmeyecek aksiliklerde teknik desteklerini aldığım Ergün AY, Ömer İŞCEN, Cihan POLAT ve Erhan AKKAYA'ya,

Aynı aşamaları, el ele vererek aştığım, benzer sıkıntıları birlikte paylaştığım can dostum Erkan KARAMAN ve sevgili hocam-arkadaşım Füsun ÜÇER'e

Haklarını asla ödeyemeyeceğim, Annem Cemaliye ÖZKUL, Babam Mustafa ÖZKUL ve canım kardeşim Aysu'ya,

Çalışmanın her aşamasında desteğini benden esirgemeyen eşim, Rana ÖZKUL'a,

Ne kadar teşekkür etsem de azdır...

Balıkesir, 2009

**Barış ÖZKUL** 

# 1. GİRİŞ

Betonarme, 19. yüzyıl'ın ikinci yarısından itibaren, tüm dünyada en çok tercih edilen yapı malzemesi olmuştur. Bunun nedeni; betonarmenin yüksek dayanımı, güvenilirliği, diğer malzemelere göre maliyetinin düşük olması ve yapım kolaylığı olarak sıralanabilir[1]. Beton; şekil verilebilme kolaylığı, fiziksel ve kimyasal dış etkilere karşı dayanıklılığı, ekonomik oluşu, üretimindeki kolaylık gibi etkenlerden dolayı, kullanım alanı gelişerek yaygınlaşan, çok önemli bir yapı malzemesidir. Bu gelişmeler sonucu betonun, yeni teknikler ve yeni malzemeler yardımıyla, kullanıldığı ortamda karşılaştığı fiziksel ve kimyasal etkilere karşı güçlendirilerek, ondan beklenilen klasik niteliklerden çok daha verimli hizmet verebilecek bir yapı malzemesi olacağı anlaşılmıştır[2].

Beton, inşaat mühendisliği alanında yüzyılımızın en önemli yapı malzemesidir ve önceden şekil verilebilen yapay bir taş olarak tanımlanabilir. Beton, agrega adı verilen kum, çakıl, mıcır gibi taneli malzemelerin, onları yapıştıran çimento ve su ile karıştırılması sonucu meydana gelen bir yapı malzemesidir[3]. Karışımda çimento, kum ve iri agrega tanelerini birbirine bağlar. Kum ise iri agrega taneleri arasındaki boşlukları doldurarak betonun kompasitesini arttırır. Çakıl veya kırma taş taneleri betonun bir nevi iskeletini oluşturur. Böylelikle bunlar malzemenin maruz kaldığı kuvvetlere karşı koyarlar[4]. Beton yük taşıyan, diğer bir deyişle esas taşıyıcı bir malzemedir[3].

Karmaşık bir yapıya sahip olan beton, uygun granülometriye sahip agrega, çimento ve suyun belli oranlarda bir araya getirilmesinden elde edilen heterojen bir yapı malzemesidir. Basitleştirmek amacıyla, beton; agrega ve sertleşmiş çimento hamuru olmak üzere iki fazlı heterojen bir yapı malzemesi olarak dikkate alınmaktadır. Ayrı ayrı düşünüldüğünde; çimento hamuru, amorf yapısı nedeniyle kendi içinde heterojen olduğu gibi, agrega da kendi fazı içinde son derece heterojen bir yapıya sahiptir. Bu nedenle, betonlar üzerinde gerçekleştirilen deney sonuçlarının yorumlanmasında güçlüklerle karşılaşılmakta ve bu cismin mekanik özellikleri, özellikle dış kuvvetler etkisinde kırılma mekanizmaları, homojen izotrop ve sürekli katı cisimler için geliştirilmiş olan klasik elastisite teorileriyle tam olarak açıklanamamaktadır[5].

Çimentonun bulunması ile yapı dünyası, çeşitli formlara sokulabilen beton malzemesini kazanmıştır. Betonun çelik çubuklarla takviye edilerek kullanılması onu vazgeçilemeyecek bir yapı malzemesi yapmıştır[6]. Bunun yanında betonun bazı dezavantajları da bulunmaktadır. Bunlardan en önemlisi; hasar görmüş bir beton yapının onarımı ve güçlendirilmesi oldukça zordur. Bu durum yapıların özellikle sismik tehlikeye sahip bölgelerde yapılması durumunda önemli bir problem oluşturmaktadır[7].

Çok uzun yıllardan beri betonların elastisite modülleri araştırma konusu olmuştur. Elastisite modülleri birçok metotla belirlenmeye çalışılmıştır. Kullanılan bu farklı metotlar betonların elastisite modüllerinin farklı değerler almasına yol açmışlardır.

Yapılan bu çalışmalar sonrasında betonların elastisite modülleri ile ilgili birçok bağıntı öne sürülmüştür. Bulunan bu bağıntılar genel olarak betonun basınç dayanımını kullanarak betonun elastisite modülünün bulunmasını sağlarlar. Fakat bu bağıntılarla bulunan elastisite modülleri betonun gerçek elastisite modüllerine ancak yakın değerler verebilirler[8].

### 1.1 Betonarme Davranışı

Betonarme; basit olarak, beton ile çelik donatı çubuklarının beraber çalışacak ve birbirlerinin eksiklerini tamamlayacak şekilde bir araya getirilmesi olarak tanımlanabilir. Betonarme içindeki çelik ve betonun birlikte hareket etmesinin sağlanması ve betonarme elemanların performansının tatmin edici düzeyde olması öncelikle öteleme, çatlak oluşumu, aderans, ankraj gibi faktörlere bağlıdır. Betonarme yapıların sismik davranışında iki malzeme arasındaki ilişki baskın

olmaktadır, çünkü yukarıda bahsedilen faktörlerin ilavesiyle ilişki aynı zamanda rijitlik ve sismik enerji sönümleme kapasitesine etki eder[9].

Yüksek basınç dayanımına sahip betonun zayıf tarafı, düşük çekme dayanımına sahip olmasıdır. Betonun bu kusurlu yanı, içine yüksek çekme dayanımına sahip çelik çubuklar yerleştirilmesi ile tamamlanarak betonarme malzemesi oluşturulur. Böylece mekanik özellikler bakımından çok daha üstün bir birleşim meydana getirilir. Gerçekten de, çelik çubukların beton tarafından sarılması ve sıyrılmasının önlenmesi, çelik çubuğun beton içinde kalarak dış etkilerin oluşturacağı korozyona karşı korunması ve iki malzemenin de yakın sıcaklık genleşme katsayılarına sahip olması ideal durumu destekleyici unsurlardır[10].

Betonarmeyi diğer yapı malzemelerinden ayıran en önemli özelliklerden biri de "uyum"dur. Uyum; fazla zorlanan bir lifin, kesitin veya elemanın, zorlanmaları komşu lif, kesit veya elemana aktarabilme özelliğidir. Süneklik ise yük taşıma kapasitesinde düşme olmadan, kesitin büyük deformasyon yapabilme özelliğidir. Sünek davranış, "uyum"un oluşmasını sağlayarak, kuvvetlerin fazla zorlanan bir elemandan diğerine aktarılmasına olanak tanır[11].

Betonarmeyi oluşturan çelik ve betonun gerilme-birim deformasyon özelliklerinin belirlenmesi gerekir. Bu belirleme, çelik için oldukça kolay olmasına karşın, beton için oldukça zordur. Betonun  $\sigma$ - $\epsilon$  ilişkisini birçok değişken etkilediğinden, tek ve kesin bir  $\sigma$ - $\epsilon$  eğrisi önermek zordur. Betonun çekme dayanımı çok düşük olduğundan, bu dayanımın ihmal edilmesi önemli bir hata getirmez. Betonarme elemanlarda oluşan çekme gerilmeleri, bu bölgelere yerleştirilen çelik çubuklarla karşılanır. Betonarme elemanların basınç bölgesindeki gerilme dağılımının, eksenel basınç altında denenen numunelerden elde edilen  $\sigma$ - $\epsilon$  eğrisine benzediğini varsaymak, doğru bir yaklaşım olur. Yapılan çok sayıda deney, bu varsayımın doğruluğunu kanıtlamıştır[8].

#### 1.2 Elastisite Modülü

Bir numunenin yük altındaki ani eksenel deformasyonu en uygun biçimde gerilme-şekil değiştirme diyagramı ile tanımlanabilir[12]. Tipik bir gerilme-şekil değiştirme eğrisi Şekil 1.1'de verilmiştir.



Şekil 1.1 Tipik Gerilme-Şekil değiştirme eğrisi

Şeklin incelenmesinden anlaşılacağı gibi, eğri düşük gerilme değerlerinde doğruya yakın bir yol izler. Artan yükler etkisinde doğrusallık kaybolur ve eğri parabole benzemeye başlar. Basınç dayanımını gösteren tepe noktasından sonra gerilme azaldığı halde şekil değiştirme devam eder, tipik eğri çok yavaş yüklemeler için geçerli değildir. Dolayısıyla uzun süreli yükler altında eğrinin ilk bölümünün bile doğrusal kabul edilmesi zaman zaman yanıltıcı olabilir[13]. Elastisite modülü; gerilme-sekil değiştirme eğrisinin eğimi olarak tanımlanır. Betonun elastisite modülü, yapıların analizinde şekil değiştirme ve deplasmanların belirlenmesi için gerekli bir parametredir[14]. Gerilme-şekil değiştirme eğrisi, doğrusal olmayan bir davranış gösteren betonun; elastisite modülünü tanımlamak zor bir iştir. Çünkü betonun basınç dayanımını ve gerilme-şekil değiştirme bağıntısını etkileyen faktörler elastisite modülünü de etkiler[15]. Elastik hesaplamaların dikkate alındığı yapısal tasarımlarda, şekil ya da yer değiştirmelerin belirlenebilmesi için betonun elastisite modülünün bilinmesi gerekir. Değişik yükler altında şekil değiştirebilen bir yapıya sahip bütün malzemeler gibi, beton da üzerine gelen yükün tipinden, büyüklüğünden

ve süresinden etkilenerek belirli ölçüde şekil değiştirme ya da başka bir deyişle deformasyon gösterir. Betonda elastisite modülü tayini, betonun elastik davranabildiği sınırlar içerisindeki yükleme düzeylerinde standartlarda tanımlandığı üzere genellikle 150x300 mm boyutlarındaki silindir şekilli numuneler üzerinde yapılır[16]. Bunun yanında elastisite modülünün basınç dayanımından tahmini için deneysel çalışmalardan geliştirilen bazı ampirik formüller vardır[17]. Beton yapıların tasarım ve analizlerinde önemli bir rol oynayan elastisite modülü, birçok araştırmacı tarafından geniş biçimde çalışınlırıştır. Pratikte tasarım ve analizlerde kullanılan elastisite modülü deneysel çalışmalardan elde edilen ampirik formüller ile belirlenmektedir. Bununla birlikte ampirik formüller genellikle, elastisite modülünde agrega dağılımı, çimento oranı gibi çeşitli parametrelerin etkisini göstermek için oldukça basittir[18].

Çeşitli ülkelerde yürürlükte olan yönetmeliklerde elastisite modülü, basınç dayanımının bir fonksiyonu olarak ifade edilmiştir[15].

Literatürde betonun elastisite modülü için çeşitli tanımlar yapılmıştır. Bunlardan en yaygın olarak kullanılan üç tanesi aşağıda tanıtılmıştır. Söz konusu modüller Şekil 1.2'de,  $\sigma$ - $\epsilon$  eğrisi üzerinde gösterilmiştir.

**Başlangıç elastisite modülü;**  $\sigma$ - $\varepsilon$  eğrisinin başlangıç noktasına çizilen teğetin eğimi olarak tanımlanabilir. Bu, bazı yayınlarda dinamik modül olarak da adlandırılmıştır. Beton çok düşük gerilmelere maruz ise, başlangıç modülü kullanılarak gerçekçi sonuçlar alınabilir.

**Teğet modülü;**  $\sigma$ - $\varepsilon$  eğrisine herhangi bir noktada çizilen teğetin eğimidir. Pratikte bu teğet, yaklaşık olarak 0.4f<sub>c</sub> gerilmesi temel alınarak çizilir.

Sekant modülü; orijinden, eğride herhangi bir gerilmeye tekabül eden noktaya çizilen sekantın eğimi olarak tanımlanır. Betonun, emniyet gerilmelerine yakın gerilmelere maruz olduğu durumlarda bu modül iyi sonuçlar verir. Genelde sekant modülü  $0.5f_c$  gerilmesine göre hesaplanır.



Şekil 1.2 Elastisite Modülleri

Pratikte bu üç elastisite modülünden hangisinin kullanılacağı, söz konusu olan probleme bağlıdır. Örneğin; incelenen, gerilmelerin çok düşük düzeyde kaldığı bir titreşim problemi ise, başlangıç modülünün kullanılması daha doğru olur.

Yapılan deneyler, kalıcı yükler altında betondaki deformasyonun büyük ölçüde arttığını, dolayısıyla elastisite modülünün azaldığını göstermiştir. Zamana bağlı elastisite modülünün değeri, kalıcı yükün mertebesine ve zamana bağlıdır. Elastisite modülünün zamanla ilk değerinin yarısına veya üçte birine kadar azalması doğaldır.

Betonun basınç dayanımını ve  $\sigma$ - $\varepsilon$  ilişkisini etkileyen bütün değişkenler elastisite modülünü de etkiler. Bu nedenle beton gibi elastik, doğrusal olmayan ve zamana bağlı deformasyon gösteren bir malzemenin elastisite modülünü doğru ve kesin olarak tanımlamak olanaksızdır. Hesap için önerilecek elastisite modülünü, bütün değişkenleri dikkate alarak tanımlamakta elbette pratik olmayacaktır. Bugün, çeşitli ülkelerde yürürlükte olan yönetmeliklerde elastisite modülü, beton basınç dayanımının bir fonksiyonu olarak ifade edilmektedir[11]. Amerikan Beton Enstitüsü (ACI 318-83):

$$E_{cj} = w^{1.5} x 0.14 x \sqrt{f_{cj}}$$
(1.1)

Normal ağırlıklı beton için (w=2270 kg/m<sup>3</sup>):

$$E_{cj} = 15100\sqrt{f_{cj}}$$
(1.2)

Avrupa Beton Komitesi (CEB-78):

$$E_{cj} = 44150 (f_{cj} + 80)^{1/3}$$
(1.3)

Türk Standartları Enstitüsü (TS-500):

$$E_{cj} = 10270 \sqrt{f_{cj}} + 140000 \tag{1.4}$$

w: betonun ağırlığı, kg/m<sup>3</sup>

E<sub>cj</sub>: j günlük betonun elastisite modülü, kgf/cm<sup>2</sup>

 $f_{ci}$ : j günlük betonun silindir basınç dayanımı, kgf/cm<sup>2</sup>

Tablo 1.1'de, değişik basınç dayanımlarına sahip betonların Amerikan Beton Enstitüsü, Avrupa Beton Komitesi ve Türk standartları tarafından önerilen formüllerin kullanılması ile hesaplanmış olan elastiklik modülü değerleri verilmektedir. Buradan görüleceği gibi, Avrupa Beton Komitesi ve Türk standartları tarafından önerilen formüllerin kullanılması ile birbirine oldukça yakın değerler elde edilmektedir. Amerikan Beton Enstitüsü formülü ise, diğerlerinden biraz daha küçük değerler vermektedir.

Tablo 1.1 Değişik Kuruluşlar Tarafından Önerilen Formüllerin Kullanılmasıyla Hesaplanan E Değerleri

| Beton E Değeri (Mpa) |                |                     |              |
|----------------------|----------------|---------------------|--------------|
| Dayanımı             | Amerikan Beton | <b>Avrupa Beton</b> | Türk         |
| (Mpa)                | Enstitüsü      | Komitesi            | Standartları |
| 20                   | 21913          | 28848               | 28534        |
| 25                   | 24500          | 30472               | 30250        |
| 30                   | 26838          | 31939               | 31800        |
| 35                   | 28989          | 33282               | 33227        |
| 40                   | 30990          | 34525               | 34555        |

#### 1.3 Dinamik Elastisite Modülü

Dinamik elastisite modülü; genellikle, laboratuardaki araştırmalarda kullanılan beton numunelerin veya yapıdaki (yerindeki) betonların kimyasal etkenler veya donma çözünme olayları karşısında zamanla ne ölçüde yıpranma gösterdiklerini araştırmak amacıyla tayin edilmektedir. Bunun yanı sıra, şantiyedeki betonun üniformitesini takip edebilmek için de kullanılmaktadır.

Bilindiği gibi, betonun elastisite modülü ile dayanımı ve kalitesi arasında, genel de olsa, bir ilişki bulunmaktadır. Değişik etkenler karşısında, betonun kalitesinde ve buna bağlı olarak elastiklik modülünde değişiklikler meydana gelebilmektedir. Böyle bir değişikliği statik elastisite modülü ile izleyebilmek için aynı kalitedeki betondan çok fazla sayıda numune üretmek ve değişik etkenlere maruz bırakılan bu numunelerin gerilme-birim deformasyon eğrilerini elde etmek gerekmektedir. Bu durumda dahi, aynı kalitede olmak üzere üretilen numunelerin arasında bazı kalite farklılıklarının bulunması kaçınılmaz olmaktadır. Oysa dinamik elastisite modülünün tayininde kullanılan sonik veya ultrasonik yöntemler, hasarsız yöntemlerdir. Bu yöntemlerin kullanılmasıyla betona yük uygulanmamakta, betonda çatlama, kırılma oluşmamaktadır. Bu bakımdan, aynı beton üzeride, beton henüz kimyasal etkenlere maruz kalmadan ve bu etkenlere maruz kaldıktan sonraki belirli zamanlarda dinamik elastisite modülünü tayin edebilmek ve böylece beton kalitesindeki değişikliği izleyebilmek mümkün olabilmektedir.

### 1.4 Betonun Elastisite Modülünü Etkileyen Faktörler

Genel olarak, betonun basınç dayanımını ve birim ağırlığını etkileyen faktörlerin tümü, elastisite modülü değerini de etkilemektedir.

Elastisite modülünü etkileyen başlıca faktörler şunlardır:

- Su/Çimento Oranı
- Agrega Özellikleri
- Betondaki Islaklık Durumu
- Deney Esnasında Uygulanan Yük Hızı
- Deney Esnasındaki Ortam Sıcaklığı

Su/Çimento Oranı'nın Etkisi: Su/Çimento oranı yükseldikçe, çimento hamurunun içerisindeki kapiler boşluk oranı artmakta, dayanım daha düşük olmaktadır.

Çimento hamurunun elastisite modülü ile çimento hamurundaki kapiler boşluk oranı arasındaki ilişki aşağıdaki gibi belirtilmektedir.

 $E_{ch} = E_0 (1 - P_c)^3$ 

Burada;

E<sub>ch</sub>: Sertleşmiş Çimento Hamurunun Elastisite Modülü
E<sub>0</sub>: Porozitesi sıfır olan çimento hamurundaki elastisite modülü,
P<sub>ç</sub>: "Jel/Boşluk" oranıdır.

Taze betonun sıkıştırılması yeterince yapılmadığı durumda da, betondaki boşluk miktarı yüksek olmaktadır. İster yüksek miktardaki su/çimento oranından kaynaklansın, isterse betona uygulanan işlemlerin yetersizliğinden kaynaklansın, betonun içerisinde daha çok boşluk olması, betonun daha düşük dayanımlı olmasına yol açmaktadır. Dayanımları düşük olan betonların elastisite modülü değerleri de düşük olmaktadır.

Agrega Özelliklerinin Etkisi: Betonun " $\sigma$ - $\epsilon$ " eğrisinin eğimindeki değişikliklerin çimento hamuru ile agrega yüzeyi arasında yer alan mikro çatlakların ilerlemesinden ileri geldiği düşünülür ise, betonda kullanılan agrega miktarının,

agrega tane şeklinin ve yüzey dokusunun, betonun dayanımı ve elastisite modülünü önemli ölçüde etkilediğini söylemek mümkündür.

Çimento hamuru ve agregadan oluşan bir kompozit malzeme olarak kabul edilen betonun elastisite modülü için, basit kompozit sistemlere uygulanan modeller kullanılabilmektedir. Aşağıda, betonun elastisite modülü ile betonu oluşturan malzemelerin elastisite modülleri arasındaki ilişkiyi gösteren iki ayrı modelin denklemleri sunulmaktadır.

$$E_{b} = E_{ch}V_{ch} + E_{a}V_{a}$$

$$(1.5)$$

$$\frac{1}{E_{b}} = \frac{V_{ch}}{E_{ch}} + \frac{V_{a}}{E_{a}}$$
(1.6)

Burada;

E<sub>b</sub>: Betonun Elastisite Modülü

E<sub>ch</sub>: Çimento Hamurunun Elastisite Modülü

Ea: Agreganın Elastisite Modülü

V<sub>ch</sub>: Çimento Hamuru Hacminin Betondaki Oranı

V<sub>a</sub>: Agrega Hacminin Betondaki Oranı'dır.

Yukarıdaki ilk denklemin temsil ettiği modelde, kompozit malzeme üzerinde sabit birim deformasyon olduğu ve ikinci denklemin temsil ettiği modelde ise, kompozit malzeme üzerinde sabit gerilme olduğu varsayılmıştır.

Her iki denklemden de anlaşılacağı gibi, betonun elastisite modülü, hem çimento hamuru ve agreganın elastisite modülleri, hem de çimento hamuru ve agreganın miktarları tarafından etkilenmektedir.

Normal ağırlıklı betonda kullanılan agreganın elastisite modülü, çimento hamurunun elastisite modülünden oldukça yüksektir.

Gözenekli hafif agregaların elastisite modülü düşük olduğundan, bu tür agregalarla yapılan hafif betonların elastisite modülü, normal ağırlıklı betonunkinden daha düşüktür.

Betondaki Islaklık Durumunun Etkisi: Suya doygun betonların basınç dayanımı, kuru durumdaki betonların basınç dayanımından daha düşük olmakla birlikte, beklenilenin tam aksine, ıslak betondaki E, kuru betonlarınkinden daha yüksek çıkmaktadır.

**Deney Esnasında Uygulanan Yük Hızının Etkisi:** Statik elastisite modülü için uygulanan deney yönteminde, yükleme hızı 2.45±0.35 kgf/cm<sup>2</sup> olarak belirtilmektedir. Normal olarak, betona uygulanan deney süresi 2-10 dakika kadar sürmektedir.

Yükleme hızı çok yüksek olduğu takdirde, mikro çatlakların oluşması daha az yer almakta ve " $\sigma$ - $\epsilon$ " eğrisi daha doğrusal şekle sahip olmaktadır. Böylece elastisite modülünün değeri de yüksek olmaktadır.

Yükleme hızı çok yavaş olur ise, sünme etkisiyle elastisite modülünün değeri daha düşük olmaktadır.

**Deney Esnasında Ortam Sıcaklığının Etkisi:** 175 °C'a kadar olan sıcaklıklardan, betonun dayanımı ve elastisite modülü fazla etkilenmemektedir[19].

### 1.5 Literatür Araştırması

"Betonda Basınç Dayanımı ile Elastisite Modülü Arasındaki İlişkiler" isimli yüksek lisans tezinde; betonlardaki elastisite modüllerinin dağılımını daha gerçekçi olarak tespit edebilmek için düşük basınç dayanımından yüksek basınç dayanımına kadar çok farklı basınç dayanımlarına sahip betonlar üretilmiştir. Bu çalışmada su/çimento oranları, çimento dozajları ve katkıları birbirinden farklı toplam 20 ayrı seri üretilmiştir. Her beton serisi beş silindir, beş de küp numune olmak üzere toplam on numuneden oluşmaktadır.

Üretilen betonlar üzerinde elastisite modülü, basınç dayanımı ve ultra ses hızı ile ilgili deneyler yapılmıştır. Bulunan sonuçlarda betonlara ait elastisite modülleri ile basınç dayanımları, su/çimento oranları ve ultra ses hızları arasındaki ilişkiler araştırılmıştır. Ayrıca basınç dayanımı ile su/çimento oranları, birim ağırlık, ultra ses hızı ve agrega hacimleri arasındaki ilişkiler de incelenmiştir.

Çalışmanın sonucunda basınç dayanımı ile birim ağırlık, su/çimento oranı ve ultra ses hızı arasında birbirleriyle ilgili bağıntılar elde edilmiştir. Yine aynı şekilde elastisite modülüyle basınç dayanımı, ultra ses hızı ve su/çimento oranı arasında birbirleriyle ilgili bağıntılar elde edilmiştir[8].

"Yükleme Hızının Beton Basınç Dayanımına ve Elastisite Modülüne Etkisi" isimli makalede; iki farklı dayanım sınıfındaki beton karışımları ile hazırlanan standart silindir örneklerin iki farklı yaştaki üç farklı gerilme artış hızıyla (standartların önerdiği sınırların içinde, altında ve üstünde) yüklenmesi sonucu elde edilen basınç dayanımları belirlenmiştir. Ayrıca, yüksek dayanımlı serinin gerilmedeformasyon ilişkileri ile elastisite modülleri incelenmiştir[20].

"Investigations on the Modulus of Elasticity of young RCC" isimli makalede, yaşları 6 saatten 365 güne kadar olan sıkıştırılmış silindir beton numunelerin gerilme-şekil değiştirme davranışları ve elastisite modülleri araştırılmıştır. Çalışma sonuçlarında elastisite modülünün belirlenmesi için 6 saat önce dökülen numunenin uygun olmadığı, 3 gün ve 365 gün arasında dökülen numunelerin gerilme-şekil değiştirme bilgilerinin elde edilebilir olduğu belirlenmiştir[21].

"Effects of End Conditions on Compressive Strength and Static Elastic Modulus of Very High Strength Concrete" isimli makalede, çok yüksek dayanımlı 192 beton silindir numune 150X300 mm boyutlarında üretilerek deneysel olarak incelenmiştir. Çalışmanın sonuçları ile düşünülen basınç dayanımı ve statik elastisite modülü değerleri karşılaştırılmıştır[22].

"The Evalution of Elastic Modulus for Steel Fiber Reinforced Concrete" isimli makalede; fiber donatıların betona eklenmesinden sonra betonarme elemanın düktilite ve yorulma dayanımını arttırdığı görülmüştür. Eksenel basınca maruz bırakılan 15X30 cm boyutlarındaki silindirik numunelerin gerilme-şekil değiştirme davranışları ve elastisite modülleri değerlendirilmiştir[23].

"The Effective Elastic Moduli of Concrete and Composite Materials" isimli makalede; beton ve diğer kompozit malzemeler için elastik teoriye dayalı üniform gerilme düzlemi, üniform şekil değiştirme ve sonsuzda üniform olma hali için etkili elastisite modülü E'nin analitik ifadeleri elde edilmiştir. Yeni açıklama "E" için daha önceki mühendislik formüllerine göre daha iyi bir ifade sağlamaktadır ve ikisi arasındaki farklılıklar sayısal olarak karşılaştırılmıştır. Mikro yapı da etkili elastisite modülü E'nin geometrik ve fiziksel parametrelere bağlı olmadığı fakat aynı zamanda gerilme durumuna bağlı olduğu ve "E" değerinin dar bir bölge içinde değiştiği bulunmuştur[24].

"Estimation of Ultimate Modulus of Elasticity and Poisson Ratio of Normal Concrete" isimli makalede; çimento hidrotasyon denklemlerini kullanarak betonun basınç dayanımı ile elastisite modülü arasındaki ilişki ve betonun basınç dayanımı ile Poisson oranı arasındaki ilişki incelenmiştir. Elastisite modülünün hidrotasyon kriteri ve betonun Poisson oranı saptanmıştır, hidrotasyon kriteri ve bu sebeple çimento hidrotasyon denklemi sonuç hidrotasyon uçıkaran tam değerlerini hesaplamak için kullanılabilir. Çimento hidrotasyon denklemlerinin elastisite modülünün hidrotasyon kriterine uygulanabilir olmasından dolayı, Poisson oranı, çimento ve harcın basınç dayanımı arasında önceki çalışmaların sonuçlarına göre lineer bir ilişki vardır. Eğer harç ve beton aynı çimento kullanılarak hazırlanıp incelenmişse; bundan böyle "iki noktanın düz oranlılık metodu" 28 günden küçük ve harcın basınç dayanımının hidrotasyon kriterindeki özelliklerin, ölçülen sadece iki değeri kullanılarak Poisson oranı ve nihai elastisite modülünün hesaplanabilir olduğu sonucuna varılmıştır[25].

"Experiments For Teaching Reinforced Concrete Behaviour" isimli yüksek lisans tezinde; eksenel yük altındaki kolonların davranışı ele alınmıştır. Dört adet değişik enine donatı oranına sahip kolon, eksenel yük altında test edilmiş ve yükdeplasman ilişkisi elde edilmiştir. Eksenel yük altındaki kolonların analitik yükdeplasman ilişkisi bilgisayar programı ile elde edilerek karşılaştırılmıştır[26]. "Eğik Eğilme ve Eksenel Basınca Maruz Poligonal Kesitli Betonarme ve Kompozit Kolonların Davranışı" isimli çalışmada; eğik eğilme ve eksenel yüke maruz poligonal kesitli kısa ve narin betonarme ve kompozit beton elemanların, çeşitli gerilme-şekil değiştirme modelleri ile gerekli donatı hesabı ve taşıma gücü kapasitesini belirlemeye yönelik iteratif bir yöntem sunulmuştur. Geliştirilen yöntemde, malzemelerin lineer olmayan davranışı esas alınmış ve analiz için beton basınç bölgesi ve yapı çeliğinin tamamı yeterli sayıda şeritlere ayrılmıştır. Betonarme ve kompozit kolonların narinlik hesabı için Moment Büyütme Yöntemi esas alınmıştır. Çalışmada, sekiz adet betonarme kolon numunesi test edilerek taşıma gücü kapasiteleri geliştirilen yöntemle karşılaştırılmıştır. Bunlara ek olarak, literatürde mevcut bazı deneysel ve teorik sonuçlar geliştirilen yöntemin sonuçları ile karşılaştırılmış ve sonuçların uyumlu olduğu gözlenmiştir[27].

"Uniaxially Loaded Normal Strength Concrete Spiral Columns" isimli yüksek lisans tezinde; eksenel basınç yükü altında fretli, normal dayanımlı beton kolonların davranışları deneysel olarak incelenmiştir. Çalışmada; TS500 şartnamesinin betonarme kolonların kapasite hesabı için önerdiği ifadede yer alan 0.85 beton dayanımı çarpanının, normal beton için gerçekçi olduğu sonucuna varılmıştır[28].

"Betonarme Narin Kolonlarda Boyut Etkisi" isimli yüksek lisans tezinde; betonarme narin kolonların kırılma yüklerinde boyut etkisi deneysel olarak bulunmuştur. Çalışmanın sonucunda betonarme kolonlar için kullanılabilecek boyut etkisini içeren formül önerilmeye çalışılmıştır[29].

"Behaviour of High-Strength Concrete Columns Under Eccentric Compression-Tied Columns" isimli yüksek lisans tezinde; yüksek dayanımlı kare kolonların eksantrik basınç yükü altında davranışları incelenmiştir. Altı adet yüksek dayanımlı beton kolon numunesi eksantrik basınç altında denenmiştir. Deney elemanlarının değişken parametreleri; etriye oranı, etriye aralığı ve çiroz etriyelerinin yeterliliğidir. Deneylerden elde edilen sonuçlarda, etriyelerin; kolon dayanımı ve sünekliği üzerindeki etkileri tartışılmıştır[30].
"Effect of Nonlinear Response of Concrete on its Elastic Modulus and Strength" isimli çalışmada; lineer olmayan davranış göz önüne alınarak betonun statik ve dinamik yükler altında elastisite modülü ile basınç dayanımı arasındaki ilişki belirlenmiştir. Yöndeş denklemlerden statik ve dinamik elastisite modülünün betonun basınç dayanımına, sıcaklığına ve yükleme oranına bağlı olduğu bulunmuştur. Aynı zamanda dinamik elastisite modülünün statik elastisite modülünden daha büyük olduğu da doğrulanmıştır. Mevcut deneysel sonuçlar ve BS8110, bölüm2;185 ve ACI standartlarında verilen genel denklemler ile karşılaştırmalı çalışma, önemli sonuçlar ortaya koymaktadır. Betonun statik elastisite modülü ve dinamik testlerden elde edilen dayanımının hesabı için yeni metot, elde edilen ilişkiye dayanılarak tanımlanmıştır[31].

"Three Dimensional Finite Element Analyses of Reinforced Concrete Columns" isimli çalışmada; çelik ve fiber polimer manto dahil olmak üzere farklı mekanizmalara sahip beton silindir numuneler, son zamanlarda geliştirilen üç boyutlu beton modeli, beton ve betonarme kolonların farklı yükleme şekilleri için kullanılarak, California Üniversitesinde deneye tabi tutulmuştur. Uygulanan deneylerden ve üç boyutlu sonlu elemanlar analizinden elde edilen değerlerin birbirine çok yakın olduğu gözlemlenmiştir[32].

"Axial Stress-Strain Relationship for FRP Confined Circular and Rectangular Concrete Columns" isimli çalışmada; fret sargılı betonun gerilme-şekil değiştirme ilişkisini tanımlamak için genel bir matematik model geliştirilmiştir. Model, hem dairesel hem de dikdörtgen kolonlara uygulanmış ve gerilme-şekil değiştirme ilişkisine etki eden ana parametreler, önerilen matematik model ile hesaplanmıştır[33].

"A Cyclic Shear Stress-Strain Model for Joints Without Transverse Reinforcement" isimli çalışmada; enine donatı bulunmayan düğüm noktalarındaki kesme deformasyonları için bir gerilme-şekil değiştirme modeli hazırlanmıştır. Çalışmada, deneye tabi tutulan numunelerden elde edilen sonuçlar ve geliştirilen model ile elde edilen sonuçların oldukça yaklaşık olduğu ortaya konulmuştur[34].

15

"Behaviour of Reinforced Concrete Rectangular Columns Strengthened Using GFRP" isimli çalışmada fiber cam polimer takviyeli dikdörtgen kolonların eksenel yük atındaki davranışları deneysel olarak incelenmiştir. Toplam olarak dokuz numunenin eksenel basınca tabi tutulduğu deneylerde fiber cam polimer ilavesi ile basınç dayanımının, kolonun yük taşıma kapasitesi ve düktilitesinin arttığı gözlenmiştir. Çalışmada deneysel sonuçların analizlerine dayanarak basit bir model geliştirilmiş, deneysel ve analitik sonuçlar arasında oldukça iyi bir korelasyon elde edilmiştir[35].

"Seismic Behavior and Strength of Square Tube Confined Reinforced Concrete (STRC) Columns" isimli çalışmada; çelik tüp ile sarılmış betonarme kolonlardan oluşan 23 adet numune tekrarlı yada monolitik eksenel basınç altında deneye tabi tutulmuştur. Çalışmada, betonu saran dörtgen tüpün eksenel yük dayanımının hesaplanması için bir denklem önerilmiştir. Toplam beş adet kolonkiriş eksenel basınç ve yatay tekrarlı yükler altında çalışılmıştır. Deney sonuçları; dörtgen çelik tüp sargılı betonların, geleneksel olarak yatay etriyelerle sarılmış betonarme kolonlara göre daha yüksek eğilme dayanımına, sünekliğe ve enerji yutma kapasitesine sahip olduğunu göstermiştir[36].

"Bending Ductility of Rectangular High Strength Concrete Columns" isimli çalışma; sekiz adet 203×203×2030 mm boyutlarındaki yüksek dayanımlı kolonlar ile yürütülmüştür. Çalışmanın amacı, yüksek dayanımlı betonarme kolonlarda enine donatılarının eğilme açısından sünekliğinin, hacim oranı ve iki yatay donatı arasındaki mesafeden bağımsız olarak belirlemektir. Bunun için dört numune 76 mm aralıklı fakat farklı hacim oranlarındaki etriyeler ile, kalan dört numune ise farklı etriye aralıklarıyla fakat (%1.1) hacim oranına sahip numuneler ile hazırlanmıştır. Çalışma sonunda süneklik indeksi ile yatay donatı aralığı ve hacmi arasında mantıklı ve tahmin edilebilir bir ilişkinin bulunduğu görülmüştür[37].

"Betonarme Kolonların Davranışına Etken Olan Tasarım Değişkenleri Üzerine Bir İnceleme" isimli çalışmada; betonarme kolonların moment-eğrilik ilişkilerine etken olan tasarım değişkenleri üzerine analitik bir inceleme amaçlanmış ve bu amaçla bilgisayar programı geliştirilmiştir. Betonarme kolonların davranışına etki eden beton basınç dayanımı, boyuna donatı ve sargı donatısı miktarı ve donatıdaki pekleşme olayının betonarme kolonlar üzerindeki etkisi araştırılmıştır[38].

"Flexural and Shear Hysteretic Behaviour of Reinfored Concrete Columns with Variable Axial Load" isimli çalışmada; lineer olmayan çift eksenli modellerin, tekrarlı ve dinamik yükler altındaki betonarme elemanların analizi için uygulanabilir olduğu, böyle elemanların eksenel olarak etkitilen yükler için dayanım, rijitlik ve deformasyon kapasitesini etkileyebildiği belirtilerek bir elastik olmayan çift eksenli model, plastisite teorisine dayanılarak önerilmiştir. Model eksenel yükün yatay yer değiştirme üzerindeki etkisini de göz önüne almaktadır. Geliştirilen model kullanılarak çeşitli eksenel yükleme şekillerinin betonarme kolonun yatay deformasyonu üzerindeki etkisi incelenmiştir[39].

"Axial Load Behaviour of Thin Walled Composite Columns" isimli çalışmada; kompozit kolonların eksenel yük altındaki davranışları analitik ve deneysel olarak incelenmiştir. Deneysel çalışmanın ayrıntılarında test edilen kolonların davranışları, testin hazırlanışı, göçme modları, şekil değiştirme karakteristikleri, yük-deformasyon ilişkileri ve çeşitli geometrik ve malzemeye bağlı parametrelerin etkisi sunulmuştur. Çalışma aynı zamanda hafif ağırlıklı volkanik kül betonun normal beton ile karşılaştırılmasını da sunmaktadır. Eksenel yükleme altında bu tip kolonların tasarımı için analitik model, sargılı betonun etkisini de dikkate alacak biçimde geliştirilmiştir. Tasarım denklemlerinin performansları, deneysel çalışmanın sonuçları ile örtüşmekte olduğu görülmüştür. Çalışmanın sonuçlarında önerilen tasarım modelinin, ulaşılabilen tasarım prosedürleri ve formülasyonlara dayalı şartnameler ile karşılaştırıldığında daha iyi sonuçlar verdiği bulunmuştur[40].

"Experimental and Computational Study of Concrete Filled Steel Tabular Columns Under Axial Loads" isimli çalışmada; çelik tüp sargılı dairesel beton kolonların merkezlerinden eksenel olarak yüklenmesi sonucu oluşan davranışları deneysel ve analitik olarak sunulmuştur. Çelik tüp sargılı kolonların yük taşıma kapasitelerine çap ve D/t oranının etkisini araştırmak için 18 numune test edilmiştir. Aynı zamanda beton cinsinin ve uçucu kül hacminin etkisinin yanında bu parametrelerin göbek betonunun tüp sargı üzerindeki etkisi de araştırılmıştır. Çap'ın duvar kalınlığına oranı 25<D/t<39 aralığındadır ve uzunluğun tüp çapına oranı 3<L/D<8 olarak belirlenmiştir. Tüp sargılı beton kolonların dayanım sonuçları ulaşılabilen literatürlerdeki bulgular ile karşılaştırılmıştır. Ayrıca sonlu elemanlar programı ANSYS kullanılarak çelik tüp sargılı betonların yük taşıma mekanizmasını çalışmak amacıyla bir lineer olmayan sonlu elemanlar modeli geliştirilmiştir. Bu modelde yük deformasyon eğrileri ve bunların göçme modları ile deneysel ve analitik sonuçları örtüşmektedir. Deneysel ve analitik çalışmalardan çelik tüp sargılı beton kolonların; verilen yük taşıma kapasitesinin, hacimsel orandaki uçucu külün %20'ye çıkmasıyla azaldığı fakat yeniden betondaki uçucu kül hacmi %25 olduğunda ise arttığı bulunmuştur[41].

"Behaviour of Reinforced and Concrete-Encased Composite Columns Subjected to Biaxial Bending and Axial Load" isimli çalışmada; betonarme kolonların davranışları deneysel olarak incelenmiş ve hem kısa kolonların hem de narin kolonların analizi için teorik bir prosedür, iki eksenli eğilme ve eksenel yük altında sunulmuştur. Önerilen prosedürde beton donatı ve yapısal çelik materyal için lineer olmayan gerilme-şekil değiştirme ilişkisi kabulü yapılmıştır. Analiz için çeşitli gerilme-şekil değiştirme modelleri kullanılmış ve betonun basınç bölgesi kesiti ve yapısal çeliğin tüm kesiti uygun şekilde parçalara bölünmüştür. Elemanın narinlik etkisi Moment Büyütme Metodu kullanılarak hesaba katılmıştır. Önerilen prosedürde 12 kare ve 3 L şekilli betonarme kolon, kısa süreli eksenel yük ve iki eksenli eğilmeye maruz bırakılarak karşılaştırılmış, aynı zamanda kompozit kolonlar için literatürde ulaşılabilen bazı deneysel ve teorik sonuçlar, önerilen prosedürden elde edilen sonuçlar ile karşılaştırılmış ve oldukça iyi doğrulukta sonuçlar elde edilmiştir[42].

"Design of FRP-Wrapped Reinforced Concrete Columns for Enhancing Axial Load Carrying Capasity" isimli çalışmada; fiber cam polimer manto ve çelik etriyeler ile sarılmış dikdörtgen ve kare kolonların eksenel basınç dayanımını hesaplamak amacıyla deneysel bir program ve tasarım metodu önerilmiştir. 3 adet kare ve 3 adet dikdörtgen kolon, eksenel basınç altında göçünceye kadar test edilmiştir. Deney sonuçları; mantonun, kolonun nihai şekil değiştirme ve nihai dayanımını arttırdığını açıkça göstermiştir. Tasarım metodu deneylerden elde edilen verilerin kullanılmasıyla geliştirilmiştir. Çalışmanın sonuçlarında, fiber cam polimer manto ile sarılmış kolonların eksenel yük dayanımlarının hesabı için denklemler önerilmiştir[43].

"The Behaviour of FRP Wrapped HSC Columns Under Different Eccentric Loads" isimli çalışmada; yüksek dayanımlı fiber polimer betonarme kolonların eksenel ve eksantrik yükler altındaki davranışları deneysel olarak incelenmiştir. Seçilen dokuz kolon numunesi dairesel kesitli, 205mm çap ve 925mm yüksekliğe Beton basınç dayanımları 65MPa dır. Tüm kolonlar çelik ile sahiptir. donatılandırılmıştır. 3 kolon numunesi sargısız olarak dökülmüştür. 3 kolon numunesi 3 tabaka fiber polimerle, 3 kolon numunesi de 3 tabaka cam fiber polimer ile sarılmıştır. 3 grubun her birinden birer adet numune eksenel yük etkisinde, bir numune 25mm eksantrik yük etkisinde ve bir numunede 50mm eksantrik yük etkisinde test edilmiştir. Çalışmanın sonuçlarında; fiber polimer malzemenin, kolonların dayanım ve düktilitesinin artmasında çok büyük etkisinin olduğu belirtilmiştir[44].

"Prediction of Lower and Upper Bounds of Elastic Moduls of High Strength Concrete" isimli çalışmada; yapay sinir ağları metodu kullanılarak yüksek dayanımlı betonların elastisite modülünün tahmini için yeni bir yaklaşım sunulmuştur. Çalışmada, yapay sinir ağları teorisi incelenerek yüksek dayanımlı betonların basınç dayanımından elastisite modülünün tahmini için bir algoritma tasarlanmıştır. Çalışmanın sonuçlarında önerilen metodun, yüksek dayanımlı betonların elastisite modülünün alt ve üst değerlerinin tahmini için kullanışlı ve elde dilen sonuçların oldukça gerçekçi olduğu belirtilmiştir[45].

"Confinement Effectiveness in Circular Concrete Columns" isimli çalışmada; enine donatı ile sarılmış dairesel beton kolonlarda sargı etkisinin araştırılması için analitik bir çalışma sunulmuştur. Analitik çalışma birkaç bölüm içermektedir. İlk bölüm, lineer elastik silindirin pasif sargı probleminin çözümünü içermektedir. Daha sonra pasif problemin çözümüne dayanılarak yatay donatı ile sabit kalınlıktaki üniform eşdeğer tüp; eşit yanal basınç uygulanacak biçimde yer değiştirilir. Eşdeğer tüp kalınlığı, sargı etkisinin analitik olarak belirlenmesi için kullanılmıştır. Sonuçlar geniş biçimde kullanılan, deneysel sargı metodu kullanılarak değerlendirilmiş ve karşılaştırılmıştır[46].

"Young's Modulus of Fiber-Reinforced and Polymer-Modifed Lightweight Concrete Composites" isimli çalışmada; hafif ağırlıklı betonun elastisite modülünün çelik fiber ve polimer ilavesi ile değişimi araştırılmıştır. Deneysel olarak yapılan çalışmanın sonuçlarında; fiber donatının hacim oranının artması ile elastisite modülünde artış meydana geldiği ve bu artış için en etkili fiber donatı hacminin %0,75 olarak belirlendiği ayrıca düşük polimer hacim oranlarının elastisite modülüne pozitif etkisinin olduğu belirtilmiştir[47].

"Experimental Behaviour of Reinforced Concrete Column Models Strengthened by CFRP Materials" isimli çalışmada; fiber karbon takviyeli betonarme kolonların yük taşıma kapasiteleri deneysel olarak incelenmiştir. Çalışmanın ilk amacı donatı tipinin yük taşıma kapasitesi ve şekil değiştirmeye olan etkisini belirlemektir. Çalışmanın ikinci amacı ise kolon dışında oluşturulan fiber karbon takviyeli donatıların, elemanın yük taşıma kapasitesine olan etkisini araştırmaktır. Deney sonuçları; konunun araştırılmaya değer olduğunu göstermiştir. Kolon dışında oluşturulan donatı oranı ve yük taşıma kapasitesi arasındaki ilişki, çeşitli donatı oranları için (%1,4 ile %4,2 arasında) deneye tabi tutulmuştur[48].

"Strength of Short Concrete Columns Confined with CFRP Sheets" isimli çalışmada; 54 kısa kolon numunesinin incelendiği bir deney, fiber karbon polimer ile dıştan sarılmış kolonların dayanım ve düktilitesini araştırmak amacıyla yapılmıştır. Deneylerde calışılan değişkenler; kolon kesit alanı (dairesel, dikdörtgen ve kare) ve modele uygulanan fiber karbon polimer tabakası sayısıdır. Çalışmanın sonuçlarında; dairesel, kare ve dikdörtgen olarak kullanılan kesit geometrilerinin her biri için, sargıda oluşan gerilmenin bir fonksiyonu olarak, sarılmış betona ait dayanımın hesaplanması amacıyla denklemler önerilmiştir. Önerilen bu denklemler ile literatürden elde edilen denklemler, yürütülen deney sonuçları ile karşılaştırılmıştır[49].

"Behaviour of High-Strength Concrete Columns Subjected to Blast Loading" isimli çalışmada; şiddetli, ani yüklemeye maruz, yüksek dayanımlı betonların davranışı ile ilgili Melbourne Üniversitesinde yapılmış bir analitik çalışma sunulmuştur. Çalışmanın değişkenleri; ani yüklemeye maruz betonun dayanımı (normal dayanımlı beton için 40MPa, yüksek dayanımlı beton için 80MPa) ve ani yüklemenin büyüklüğüdür. Çalışmanın sonuçlarında ani yüklemeye maruz, aynı eksenel yük taşıma kapasitesine sahip, yüksek dayanımlı betonların normal dayanımlı betonlardan daha iyi performans gösterdiği belirtilmiştir[50].

"Analysis of Stress State in Concrete-Filled Steel Column" isimli çalışmada; kompozit kolonlar için elastisite modülü ve poission oranı da dikkate alınarak betonda oluşan gerilmeler belirlenmeye çalışılmıştır. Çalışmada, yapısal çelik çekmeye ve beton basınca maruz kaldığı anda yüksek gerilme seviyelerinde sargı donatısının etkisi belirlenmiştir. Çalışmanın sonuçlarında; kompozit kolonların daha etkili kullanımı ve yapısal çeliğin kalınlığının az olması, büyük eksantrikliklerin bulunması ya da yangın gibi durumlarda kolonun göçmesi ihtimalini önlemek için beton ve çeliğin uygun dayanım sınıflarının kullanılması gerektiği belirtilmiştir[51].

"Behaviour of Patch Repair of Axially Loaded Reinforced Concrete Beams" isimli çalışmada; eksenel yüklü, onarılmış kolonların yapısal etkinliğini belirlemek amacıyla deneysel bir çalışma yürütülmüştür. Onarım için yüksek ve düşük elastisite modülüne sahip iki malzeme seçilmiştir. Beton kolonlar, eksenel yüklü ve yüksüz durumlarda onarılmıştır. Çalışmanın sonuçlarında; beton kolonlar için onarımın kolon yüksüz haldeyken yapılması durumunda yapısal olarak daha etkili olduğu, kolonlar eksenel olarak yüklü haldeyken onarımın yapılması durumunda ise onarım malzemesinin sadece kolona ek yük gelmesi durumunda etkili olduğu belirlenmiştir[52].

"A New Way of Prediction Elastic Modulus of Normal and High Strength Concrete-Fuzzy Logic" isimli çalışmada; normal ve yüksek dayanımlı betonun elastisite modülünü belirlemek için bulanık mantık modeli incelenmiştir. Bulanık mantık algoritması, betonun basınç dayanımından elastisite modülünü belirlemek için tasarlanmıştır. Çalışmanın sonuçlarında elastisite modülü için birçok parametrenin etkili olduğu ve önerilen bulanık mantık modelinin kullanılmasıyla elastisite modülünün belirlenebileceği belirtilmiştir[53].

### 1.6 Amaç ve Kapsam

Günümüzde yürürlükte olan standartlarda, Beton ve Çelik malzemeler için ayrı ayrı elastisite modülü değerleri verilmekte ancak Betonarme bir kesit için herhangi bir değer verilememektedir. Yer değiştirme hesaplarında yalnızca betonun basınç dayanımına bağlı olarak hesaplanmış elastisite modülü kullanılmaktadır oysa kesit içerisinde çelik donatı da bulunmaktadır. Bu çalışmanın amacı; betonarme bir kesitte mevcut donatı oranına bağlı olarak, kesitin elastisite modülünü ortaya koymaktır. Bu amaç kapsamında, BAÜ Müh-Mim Fakültesi İnşaat Mühendisliği Bölümü Yapı Laboratuarı'nda 100 ton eksenel basınç kapasiteli bir deney düzeneği geliştirilmiş, hazırlanan kolon numuneler eksenel olarak yüklenerek, kesit içerisindeki donatı oranına bağlı olarak, kesite ait elastisite modülü belirlenmeye çalışılmıştır. Böylelikle yer değiştirme hesaplarında kullanılan, yalnızca betona ait elastisite modülünün gerçekliği ortaya konulmaya çalışılmıştır.

### 2. EKSENEL YÜKLÜ KOLONLAR

Kolonlar; bütün yapılarda temel ile diğer yapı elemanları arasındaki bağı sağlayan ana yapı elemanlarıdır. Taşıyıcı sistemine bağlı olarak ahşap, çelik ve betonarme gibi çeşitli şekillerde üretilebilirler.

Genellikle dairesel veya dikdörtgen kesitli oldukları halde yapının statik ve mimarisinden kaynaklanan sebeplerle uygulamada farklı geometrik şekil ve kesitlere de rastlanılabilir. Döşemelerden gelen yükleri çoğu durumda kirişler vasıtasıyla almakla birlikte bazı durumlarda (mantar döşemelerde olduğu gibi) doğrudan da yük alabilirler[54].

Kolonlar, yapı sistemindeki önemli taşıyıcı elemanlardır. Bu nedenle, betonarme kolonların davranışının ve taşıma gücünün bilinmesi oldukça önemlidir. Betonarme elemanların davranışlarının gerçekçi olarak belirlenebilmesi için, betonun gerilme-şekil değiştirme ilişkisinin iyi bilinmesi önem taşır. Betonun gerilme-birim şekil değiştirme eğrisinin, çok sayıda değişkenden etkilendiği, bu nedenle her durum için geçerli tek bir eğrinin tanımlanmasının olanaksız olduğu bilinmektedir. Betonun gerilme-birim şekil değiştirme ilişkisi, enine donatı ile sarılması durumunda, sarılmamış duruma göre önemli farklılıklar gösterir. Sargı donatısının davranış üzerinde iki önemli etkisi vardır, bunlar; basınç dayanımını ve sünekliği arttırmasıdır. Sargılı betonun basınç gerilmeleri altındaki davranışının belirlenmesi amacı ile çok sayıda deneysel ve teorik çalışma yapılmıştır. Bu çalışmalara rağmen, mevcut deneysel veriler ile önerilmiş olan teorik modellerin verdiği sonuçlar arasında önemli farklılıklar görülebilmektedir. Bunun en önemli nedeni, sargılı betonun davranışını çok sayıda değişkenin etkilemesidir.

Sargılı betonun davranışı; enine donatı hacimsel oranı, aralık, çap ve dayanımı, boyuna donatının kesit içindeki dağılımı, beton basınç dayanımı, yükleme hızı ve biçimi gibi pek çok değişkenden etkilendiği için, bu değişkenlerin geniş aralıklarda farklı değerler almaları durumunda geçerliliğini koruyacak davranış modelleri belirlemek oldukça zordur. Önerilen modellerin ortak amacı; sarılmış betonun davranışını farklı durumlar için gerçeğe yakın şekilde yansıtmak ve kullanılan bağıntıların fazla karmaşık olmamasını sağlamaktır[55].

Kolonlar eksenel yük ve eğilme momentine maruz kalan elemanlardır. Kolonun fonksiyonu; yatay kuvvetlerden doğan kesme kuvveti, moment, burulma, oturma, rötre ve bunun gibi etkileri temele iletmektir. Kolonlarda yalnızca beton kullanılmaz. Genellikle muhtemel eğilme etkileri, zamana bağlı deformasyonlar ve oturmalar düşünülerek, kolonlara çelik donatı çubukları yerleştirilir. Betonarme kolonlarda boyuna donatının yanında etriye ve fret şeklinde enine donatılar da kullanılır[26,56].

Kolonların, eksenel yükleri taşımalarının yanı sıra yukarıda bahsedildiği gibi yapıya etki eden deprem veya rüzgâr gibi yatay yüklerin taşınmasında da önemli görevleri vardır. Betonarme bir yapıda, yapıyı oluşturan tüm elemanların sünek davranış göstermesi, büyük bir enerjinin açığa çıktığı deprem etkisi sırasında, yapının ve yapıyı oluşturan elemanların bu enerjiyi yutması ve tüketmesi açısından çok önemlidir. Depremde hasar görmüş binalar incelendiğinde; kolonların, binanın ayakta kalmasında veya büyük ölçüde hasar görmesinde başlıca etken ve çok önemli birer taşıyıcı eleman oldukları dikkati çekmektedir[57]. Bu açıdan bakıldığında, özellikle perdesiz veya az perdeli yapılarda yatay taşıyıcılar ile temeller arasındaki tek bağlantı kolonlar olduğundan, yapıdaki taşıyıcı elemanlar içinde önem bakımından en ön sırada yer alırlar. Günümüze kadar yapılar üzerinde yapılmış olan gözlemlerde; döşeme veya kirişlerden bir veya birkaçı hasar görmüş yada yıkılmış olduğu halde ayakta duran birçok binaya rastlanmasının yanında, sadece bir kolonun hasar görmesinden dolayı tamamen yada kısmen yıkılmış pek çok yapıya rastlanılmıştır[58].

Kolon boyuna donatısını saran enine donatının cinsine göre iki tür betonarme kolon vardır. Boyuna donatısı bireysel etriyelerle sarılmış kolonlara "Etriyeli Kolon", sürekli dairesel fretlerle sarılmış olanlara ise "Fretli Kolon" denir. Şekil 2.1'de Etriyeli ve Fretli kolon dışında bileşik kolonlar da gösterilmiştir.



Şekil 2.1 Kolon Türleri (a) Etriyeli Kolon, (b) Fretli Kolon, (c),(d) Bileşik Kolonlar

### 2.1 Kolonlar için Elastik Teori

Kolonlar için elastik teoride, beton ve çelik davranışları doğrusal elastik varsayılır. Eksenel yük altında gerilmelerin hesaplanmasında, "eşdeğer alan" kavramından yararlanılır. Buna göre, kesitteki toplam boyuna donatı alanı A<sub>s</sub>, modüler oran ( $n = \frac{E_s}{E_c}$ ) ile çarpılarak, eşdeğer beton alanına dönüştürülür. Betona dönüştürülmüş eşdeğer alanın taşıyacağı eksenel yük, denge denkleminden bulunabilir.

$$N = \sigma_{c} \{ (A_{c} - A_{st}) + n.A_{st} \}$$
(2.1)

(2.1) denkleminden yararlanılarak betondaki gerilme aşağıdaki gibi yazılır;

$$\sigma_{c} = \frac{N}{(A_{c} - A_{st}) + n.A_{st}} = \frac{N}{A_{c} + A_{st}(n-1)}$$
(2.2)

Donatıdaki gerilme ise (2.2)'denklemindeki beton gerilmesi modüler oranla çarpılarak bulunur.

$$\sigma_{s} = n \frac{N}{A_{c} + A_{st}(n-1)}$$
(2.3)

N: Eksenel yük

σ<sub>c</sub>: Betondaki gerilme

 $\sigma_s$ : Donatıdaki gerilme

A<sub>c</sub>: Brüt beton alanı

Ast: Kesitteki toplam boyuna donatı alanı

n: Modüler oran,  $\begin{bmatrix} E_s \\ E_c \end{bmatrix}$ 

Donatı alanları, donatı oranı cinsinden de ifade edilebilir.

Toplam boyuna donati orani: 
$$\rho_t = \frac{A_{st}}{A_c}$$
 (2.4)

$$\sigma_{c} = \frac{N}{A_{c}} \cdot \frac{1}{1 + \rho_{t}(n-1)}$$
(2.5)

$$\sigma_{\rm s} = \frac{N}{A_{\rm c}} \cdot \frac{n}{1 + \rho_{\rm t}(n-1)} \tag{2.6}$$

Yukarıda gösterilen gerilmeler, betonun zamana bağlı deformasyonu nedeni ile büyük ölçüde değişir. Bu nedenle, her iki malzemenin de doğrusal elastik davrandığı varsayımı ile çıkarılan gerilme denklemleri, kesit hesabı için hiçbir zaman kullanılmamalıdır[11].

### 2.2 Eksenel Yüklü Kolonların Davranışı

Betonun sünme ve büzülme deformasyonunun, eksenel yüklü betonarme kolonun çelik ve beton gerilmeleri üzerinde büyük etkisi vardır. Boyuna donatı gerilmesinin artmasına, beton gerilmesinin azalmasına neden olabilir. Donatı yüzdesi çok büyük ve başlangıç yükü çok fazla olan kolon için genellikle kuvvet aktarımında geç kalınabilmektedir. Hatta çelikte basınç, betonda çekme oluşması da mümkündür. Bu yüzden elastik teoriye göre emniyet gerilmeleri yöntemi ile çözümlenmiş betonarme kolonların güvenliğini tayin etmek oldukça zordur[59]. Bununla birlikte, eksenel olarak yüklenmiş bir kolonun nihai taşıma kapasitesi makul bir doğrulukla hesaplanabilir. Nihai dayanım, betonun karakteristik basınç dayanımı ve boyuna donatının akma dayanımı ile hesaplanabilir. Etriyeli bir kolon için göçme, betonun kırılması ve etriyeler arasındaki donatının burkulması ile olur. Kolonun nihai yük kapasitesi; kolonun kesit alanı, betonun basınç dayanımı, boyuna donatının kesit alanı ve dayanımı ile ilgilidir. TS500'e göre Etriyeli bir kolonun eksenel yük kapasitesi;

$$N_{d} = 0.85 f_{ck} A_{c} + f_{vk} A_{s}$$
(2.7)

olarak belirtilmiştir. Burada;

- f<sub>ck</sub>: Betonun basınç dayanımı
- A<sub>c</sub>: Betonun kesit alanı
- fyk: Boyuna donatının karakteristik akma dayanımı
- A<sub>s</sub>: Çelik donatının kesit alanı

TS500'e göre, nihai eksenel yük kapasitesi sadece betonun ve boyuna donatının alanı ve dayanımına bağlıdır[60]. Bununla birlikte yatay donatı aralığı, alanı ve dayanımı eksenel yüklü kolonun davranışında dikkate alınmamaktadır. Betonarme kolonlar enine donatı olan fretler ya da dikdörtgen etriyeler ile sarılırlar. Beton basınca maruz kaldığında yatay yönde genişleme eğilimine girer ve yatay donatı ile sarılır. Bu yatay deformasyon, yatay donatı ile önlenir ve betona pasif basınç uygular. Böylece yatay donatı içindeki beton artık tek eksenli basınç altında değil, üç eksenli basınç gerilmeleri altındadır. Farklı geometrileri sebebiyle dikdörtgen etriyeler sarılma donatısı olarak fretler kadar etkili değildirler. Dikdörtgen etriyelerde deformasyon, temel olarak eğilme ve bu yüzden donatının eğilme rijitliğine bağlıdır. Dairesel geometri durumunda eğilme rijitliği, eksenel rijitliğe göre daha küçüktür, çünkü; maksimum eğilme deformasyonu ortada yer alır, yatay donatı tarafından sağlanan pasif basınç etriyenin ortasından köşesine doğru hızlıca hareket ederek kaybolur. Sınırlanmış basınç sadece tutulmuş noktalarda önemli olur ki buralarda eğilme deformasyonu önemsenmez. Sarılmanın etkisi iki komşu etriye arasında önemli şekilde eksilir. Dikdörtgen etriyeler şekil değiştirme kapasitesini önemli ölçüde geliştirir. Bununla birlikte aşırı miktarda kullanılmadıkça dayanımı arttırmaz. Sarılma etkisi yüzünden, eksenel olarak yüklenmiş kolonun davranışı değişir. Eğer eksenel olarak yüklenmiş bir kolon yeterli yatay donatıya sahipse, kolonun davranışı düktil olabilir. Tersine, yeterli yatay donatıya sahip olmayan bir kolon cok gevrek bir davranıs gösterir. Detayında, kolonun boyuna donatıları yatay donatının köşelerine yakın olarak yerleştirilmelidir. Etriveli kolonlarda, özellikle deprem bölgelerinde, kapalı etriyenin her bir kösesinde bir boyuna donatı bulunması gereklidir. Boyuna donatıların aralığının yakınlığı ve her birinin kapalı etriyelerin köşesinde bulunması düktiliteyi arttırır, donatı çubuklarının burkulmasına karşı dayanım sağlar. Eksenel yüklü kolonun dayanımına etki eden diğer bir faktör de göbek beton alanının brüt beton alanına oranıdır. Göbek beton alanının brüt beton alanına oranının daha büyük olduğu kolonlar daha düktil davranış gösterirler ve daha yüksek eksenel yük taşıma kapasitesine sahiptirler[26,56].

Hızlı yüklenen bir kolonda donatı çeliği akma birim kısalmasına ( $\varepsilon_{sv}$ ) ulaştığında, genellikle beton henüz maksimum gerilmeye karşı olan birim deformasyona ( $\varepsilon_{co}$ ) erişmemektedir. Bu durumda yük arttırıldığında, donatı tarafından karşılanan kuvvet sabit kaldığından, betonun uygulanan yükten aldığı pay oranı yükselmektedir. Birim kısalma  $\varepsilon_{co}$  değerine eriştiğinde, betonun ezilerek dağılmasını önlemek, ancak beton tarafından taşınan yükün bir bölümünün donatıya aktarılmasıyla mümkündür. Bu davranış ancak sargı donatısı ile sağlanabilir. Göbek alanındaki betonun özelliklerini değiştirmek, sargı donatısı olarak sürekli dairesel fret kullanmakla mümkündür. Bu değişimi dikdörtgen etriyelerle sağlamak, ancak etriye açıklığı at ve etriye aralığı s'i çok küçük tutmakla sağlanır. Şekil 2.2'de brüt beton alanları ve boyuna donatı alanları aynı olan, etriyeli ve fretli iki kolonun yük-deformasyon eğrileri gösterilmiştir. A tepe noktasına erişilinceye kadar her iki kolonun davranışı arasında hiçbir fark yoktur. Deneylerde yapılan ölçümler; A noktasına kadar fret veya etriyedeki gerilmelerin sıfır veya sıfıra yakın olduğunu, dolayısıyla sargı donatısının taşıma gücüne hiçbir katkıda bulunmadığını göstermiştir. Etriyeli kolonda A noktasına erişildiğinde beton ve çelik sınır dayanımlarına ulaştığından, artan deformasyon altında yük düşmekte ve kolon

28

kırılmaktadır. Eksenel yük taşıyan etriyeli bir kolonun kırılması, Şekil 2.3'de gösterildiği gibi, betonun ezilmesi ve iki etriye arasındaki boyuna donatıların burkulması ile meydana gelmektedir. Etriye aralığı azaldıkça boyuna donatının burkulma boyu da küçülmekte, dolayısıyla yük-deplasman eğrisinin A tepe noktası aşıldıktan sonraki eğimi azalarak, süneklik artmaktadır[61].



Şekil 2.2 Etriyeli ve Fretli Kolonun Yük-Deformasyon Eğrisi



Şekil 2.3 Eksenel Yük Taşıyan Etriyeli Bir Kolonun Kırılması

#### 2.3 Sargılı Beton ve Sarılma Fikri

Beton üç eksenli basınç gerilmelerine maruz bırakıldığında sünekliğinde olduğu gibi dayanımında da önemli ölçüde artış olduğu uzun süre önce fark edilmiştir. Pratikte yükleme koşulları, hidrostatik basınç sonuçları ile eleman kapalı etriye ya da fretler ile yatay olarak donatılandırılıp eksenel yüklemeye tabi tutulduğunda birbirinin aynıdır.

Daha önce de bahsedildiği gibi, betonun elastik olmayan davranışında eğilme çatlakları harç ve agregalar arasındaki ortak yüzeylerdeki oluşum ile başlar, bu durum  $\sigma_c$ - $\varepsilon_c$  eğrisinin azalan eğimine etki eder. Malzemenin hapsedilmesi, içsel çatlakların ani oluşumuna ve elemanın hacminde bir artışa sebep olur. Bu  $\sigma_c$ - $\varepsilon_c$ eğrisinin ilk bölümüne yatay donatının bir etkisi olmadığını gösterir, fakat yatay donatı, oranı ve aralığına bağlı olarak taşıma gücü yaklaşımına katkıda bulunur.

#### 2.3.1 Sargi Donatisinin Avantajlari

Beton yapı elemanlarının sismik davranışında sargı donatısının iki ana avantajı vardır:

 Betonun dayanımını arttırır; bu durum rötre sebebi ile oluşacak muhtemel kayıpları telafi eder.

2)  $\sigma_c$ - $\varepsilon_c$  eğrisinin eğiminin daha fazla azalmasını engeller; daha ötesi, eğilme tasarımında maksimum kullanılabilir şekil değiştirme  $\varepsilon_{cu}$  değerini %35 kadar daha arttırır. Diğer bir ifade ile sargı donatısı ile betonun sünekliliği artar. Bu sargı donatısının en önemli etkisidir.

#### 2.3.2 Sargi Donatisina Etki Eden Parametreler

Sargı donatısı etkisine dâhil olan ana parametreler başlıca şu şekildedir;

1) Yatay (Enine) Donatı Oranı; Tipik olarak hacimsel oran  $\rho_w$  ile açıklanır, elemanın etriyelerinin hacminin, sarılmış çekirdeğin hacmine oranı olarak tanımlanır. Çekirdek, etriyelerin kütle merkezinden itibaren sardıkları bölümdür.  $\rho_w$ 'nun artışı ile sarılmış betonun hem dayanımının hem de sünekliğinin arttığı açıktır.

2) Yatay (Enine) Donatının Tasarım Akma Dayanımı ( $f_{ywd}$ ); Donatının dayanımı ne kadar yüksek olursa sarılmış bölgenin basıncı da yüksek olur. Sarılma hesabında (özellikle şartnameler için) enine donatıdaki gerilme artışı ( $f_{yw}$ ) dikkate alınmaz.

3) Betonun Karakteristik Basınç Dayanımı ( $f_{ck}$ ); Daha yüksek basınç dayanımına sahip betonun düktilitesi, daha düşük basınç dayanımına sahip betondan azdır. Ayrıca eksenel yüklemenin aynı miktarı için yatay genişleme (Poisson etkisi) düşük basınç dayanımı durumunda daha fazladır, bu yüzden beklendiği gibi bu durumda (pasif) sargı, yüksek dayanımlı beton elemanda göstereceği gerilme artışına göre daha fazla gerilmeye maruz kalacağından daha etkili olacaktır.

4) Etriye Aralıkları (s); Verilen bir hacimsel etriye oranı ( $\rho_w$ ) için sarılma bölgesinin arttırılması etkisi açıklığın yakınlaşmasına yol açar. Burada bahsedilen konu; basınca maruz bir elemanda etriye aralığının daha yakın olmasının düktiliteyi olumlu olarak etkileyeceğidir, çünkü yatay donatıların en önemli görevi, boyuna donatıların örtü betonu atılmadan önce erkenden burkulmasını önlemektir.

5) Etriye Şekli; Bir elemanda çeşitli etriye şekilleri kullanılır. Sarılmamış betonun etkili bölgesi küçüldükçe dayanım ve düktilite artar. Şekil 2.4'de sargı donatıları ve etkili sarılmış bölgeler gösterilmiştir.



Şekil 2.4 Genel Sargı Tipleri

6) Boyuna Donatı; Boyuna donatıların (özellikle açıklıklar yakınsa) gerçek uzunlukta çekirdeğin yatay olarak genişlemesini önlemek için sarılma etkisi arttırılır. Donatıların daha büyük uzunlukları ve oranları (ρ) için daha geniş sarılma uygulanır.

### 2.3.3 Etriyelerle Sarılma

Şekil 2.5'de Eksenel yükleme durumunda tipik gerilme-şekil değiştirme diyagramı, bir kolon numunenin sarılmış çekirdeği için çeşitli miktarlardaki sargı donatıları ile gösterilmiştir,



Şekil 2.5 Farklı Miktarlardaki Etriyeler ile Sarılmış Beton İçin Gerilme Şekil Değiştirme Grafikleri

Öncelikle ilk dikkati çeken, tüm eğrilerin sarılmış betonda sarılmamış betona göre dikkate değer biçimde farklı olduğudur. Eğrilerin yorumlanmasından;

- Etriye seyrek de olsa, süneklik artar
- Sık etriye süneklik ve dayanımı arttırır
- Etriye serbest açıklığı ve adımının azalması sebebiyle çift etriye süneklik ve dayanımı önemli ölçüde arttırır.
- Fretli kolonlar etriyeli kolonlara göre hem süneklik hem de dayanım açısından daha etkindir.
- Donatılı betonlarda  $\varepsilon_{c0}$  değeri sargı etkisi arttıkça büyümektedir[62].

### 2.4 Betonarme Kolonlarda Oluşan Hasarlar

Betonarme yapıların kolonlarında oluşan hasarlar, genellikle kolonların kirişlerden daha düşük eğilme kapasitesine sahip olması durumunda, mafsallaşmanın kolon uçlarında oluşması ile meydana gelmektedir. Deprem etkisi altında, kolon uç noktalarında yatay kuvvetin etkime yönüne göre, betonda çekme çatlakları ve basınçtan dolayı ezilmeler oluşabilmektedir. Bu şekilde kabuk betonunun dökülmesi, ileriki aşamalarda çekirdek betonunun çatlamasına, eğer etriye sıklaştırması da yetersiz ise bu bölgedeki betonun ezilmesi ve kolon boyuna donatılarının burkulmasına, ardından da yapıda yatay ötelenmelerin büyümesine sebep olur. Yatay ötelemeleri artan kolon, ikinci mertebe etkilerin de çoğalmasıyla, yapının göçmesine kadar gidebilecek büyük hasarlara sebep olabilir[63].

### 2.4.1 Kolonlarda Donatı Yerleşim ve Birleşim Hataları

Son yıllarda meydana gelen depremlerde görülen yapı hasarlarının en önemli sebeplerinden bir tanesi de betonarme donatılarda görülen yetersizlikler ve yanlışlıklardır. Deprem sırasında önemli görevler üslenen etriyelerin eksik yerleştirilmesi, kolonların boyuna donatılarında filiz boylarının yeterli olmaması, donatı için gerekli pas payının bırakılmaması gibi çok basit hataların aslında ne büyük felaketler doğurduğu son depremlerde görülmüştür. Deprem bölgelerinde yapılan incelemelerde, bu basit ama önemli hatalar pek çok hasarlı yapıda gözlenmiştir.

Ülkemizde yakın geçmişte yaşanan büyük depremler hem mal tahribatı, hem can kaybı, hem de psikolojik etki yönüyle güncelliğini korumaktadır. Tüm bu depremlerin ardından binalardaki hasar ve yıkım nedenlerinden biri olarak sıralanan işçilik kusurlarının önüne ciddi bir şekilde geçilememiştir. Donatı detaylarındaki yetersizlikler ve yanlışlıklar pek çok yapıda ciddi hasarlar meydana gelmesine sebep olmuştur.

Depremlerde hasar gören veya yıkılan binalarda göze çarpan en önemli konulardan biri Şekil 2.6'da gösterildiği gibi kolon boyuna donatılarının bindirmeli eklerinin kolon orta bölgesinde yapılmamış olmasıdır.



a. Uygun Bindirme Şekli



b. Uygun Olmayan Bindirme Şekli

### Şekil 2.6 Boyuna Donatıların Bindirme Şekilleri

Boyuna donatıların bindirmeli eklerinin kolon alt ucunda yapılması durumunda ABYYHY 7.3.3.2 ve TS500 9.1.2'deki kurallara göre kenetleme boyları düzenlenmelidir[60,64]. Çeşitli depremlerden sonra bölgede yapılan incelemelerde, Şekil 2.7'de gösterildiği gibi, pek çok yapıda bırakılan betonarme donatı filizlerinin yetersiz veya rasgele uzunluklarda bırakıldığı tespit edilmiştir.



Şekil 2.7 (a)Kenetlenme Boyları Kısa Filizler (b)Rasgele Uzunluklarda Bırakılmış ve Korozyona Uğramış Filizler

Bir üst kat kolonu için bırakılan bu filizler gerekli önlemler alınmadığı takdirde korozyona uğramaktadır. Paslanmış donatı, aderansı önemli ölçüde olumsuz etkilemekte ve donatının betondan sıyrılıp çıkmasını kolaylaştırmaktadır.

Kolonda basınca çalışan boyuna çubukta kanca yapılması kabuk betonunda büyük zararlara yol açtığından kanca yapılmasından kesinlikle kaçınılmalıdır. Kolona kanca yapılarak yerleştirilmiş donatı, Şekil 2.8'de gösterildiği gibi, kabuk betonunu ezerek çatlamasına neden olacaktır.



Şekil 2.8 Çekme Kuvveti Altında Betona Aktarılan Kuvvetler

Şekil 2.9'da, İzmit yakınlarındaki bir sitenin kolonlarında, donatı bindirme uçlarında kanca yapılmasından ve etriye yetersizliğinden dolayı betonun uğradığı hasar görülmektedir.



Şekil 2.9 Basınca Çalışan Kolon Donatılarının Ucunda Kanca Yapılması Sonucu Betonda Oluşan Hasar

## 2.4.2 Kiriş-Kolon Sarılma Bölgeleri

Kolon-kiriş birleşim bölgelerinde donatı detaylarının yeterliliği ve uygunluğu, deprem yükü etkisi altındaki yapının davranışı için oldukça önemlidir. Ülkemizde görülen depremlerin ardından, genellikle kolon-kiriş birleşim noktalarında ciddi hasarlar meydana geldiği söylenebilir. Kolon-kiriş birleşim bölgesindeki hasarların en önemli nedenlerinden biri olarak etriye yetersizliği sayılabilir.



Şekil 2.10 Sarılma Bölgesinde Etriye Eksikliği (Gölcük–1999, Ceyhan–1998)

Etriye sıklaştırmasından kaçınılmasıyla sağlanacak küçük kazanç, bedeli ölçülemeyecek zararlara yol açmaktadır. Projede belirlenen etriye aralığı ve sayısına, yapı üretimi sırasında yeterince dikkat edilmemesi sonucu Şekil 2.11'de gösterildiği gibi, pek çok kolonda ve kirişte büyük hasarlar oluşmuştur[65].



Şekil 2.11 Kolon-Kiriş Birleşiminde Donatı Kusurları

Betonarme karkas sistemlerin en önemli yapısal sorununun kolon-kiriş düğüm noktaları olduğu; hem buralarda kolonların etriyelenmediği, hem de aşırı donatı yoğunlaşması nedeniyle beton kalitesinin standartların çok çok altına düşmesine yol açtığı bilinmektedir. Bu ölü noktalar yüzünden binaların depremler karşısında kolayca çözülüp dağılmamaları için yeni donatım yöntemleri geliştirilmelidir[66].

# 3. GERİLME-ŞEKİL DEĞIŞTİRME EĞRİSİ İÇİN ANALİTİK MODELLER

Herhangi bir "mukavemet" probleminin çözümünde, gerilme veya kuvvet cinsinden ifade edilen "denge denklemleri" ile deformasyon cinsinden ifade edilen "uygunluk denklemleri" arasındaki ilişki, ancak kullanılan malzemenin gerilmebirim deformasyon ( $\sigma$ - $\epsilon$ ) ilişkisinden yararlanılarak kurulur. Denge ve uygunluk denklemleri malzeme özelliklerinden bağımsız olduğundan, çözümdeki hata oranı büyük çapta varsayılan malzeme davranışının, yani  $\sigma$ - $\epsilon$  ilişkisinin doğruluğuna bağlıdır. Matematiksel çözümü kolaylaştırmak amacı ile deneyden elde edilen  $\sigma$ - $\epsilon$ eğrileri idealize edilip basitleştirilerek kullanılır. İdealize edilip basitleştirilen  $\sigma$ - $\epsilon$ eğrileri "matematiksel model" olarak adlandırılır[67]. Aşağıdaki bölümlerde beton ve çelik donatı için yaygın olarak kullanılan bazı matematiksel modeller tanıtılacaktır.

### 3.1 Beton Modelleri

Beton için tek bir  $\sigma$ - $\epsilon$  eğrisinden bahsetmeye olanak yoktur, aksine her tür beton için farklı bir  $\sigma$ - $\epsilon$  eğrisi vardır.

Aynı  $\sigma$ - $\varepsilon$  eğrisinin her bölgesini ifade edebilecek tek bir denklem kurmak mümkün değildir. Eğri; düşük gerilmelerde ve maksimum gerilme aşıldıktan sonra doğruya yakın, ara bölgelerde ikinci derece parabole yakındır. Ayrıca bu eğriler tek eksenli basınç içindir. Betonun, enine donatı ile sarılması (kuşatılması), halinde eğrinin maksimum gerilmeden sonraki kısmı daha da uzar. Bütün bunlara karşın eğilme mukavemetinin ve deformasyonlarının hesaplanabilmesi için belirli bir  $\sigma$ - $\varepsilon$ eğrisine gereksinme vardır[68]. Gerilme-Şekil değiştirme eğrisinin altındaki alanın büyüklüğü, betonun deformasyonu sırasında harcanan enerjinin büyüklüğünü ya da betonun enerji yutma yeteneğini gösterir[69]. Denge ve uygunluk denklemleri malzeme özelliklerinden bağımsız olduğundan, çözümdeki hata oranı büyük ölçüde göz önüne alınan malzeme davranışının, yani  $\sigma$ - $\varepsilon$  ilişkisinin doğruluğuna bağlıdır. Matematiksel çözümü kolaylaştırmak amacıyla  $\sigma$ - $\varepsilon$  eğrileri idealleştirilerek basitleştirilirler.

Betonun  $\sigma$ - $\varepsilon$  eğrisi, çok sayıda bileşenden etkilenir ve bu nedenle de her durum için tek bir eğrinin tanımlanması olanaksızdır. Bununla birlikte, kesin olmasa bile problemlerin çözümü ve davranışın anlaşılabilmesi için betonun  $\sigma$ - $\varepsilon$  ilişkisini belirleyen modellere ihtiyaç vardır. Bu gereksinme nedeniyle, bugüne kadar çeşitli araştırmacılarca birçok beton modeli önerilmiştir[70].

#### 3.1.1 Hognestad Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Hognestad tarafından önerilen ve uzun yıllardır yaygın olarak kullanılan model ( $\sigma$ - $\epsilon$  eğrisi), Şekil 3.1'de gösterilmiştir. Modelde,  $\sigma$ - $\epsilon$  eğrisinin tepe noktasına kadar olan parçası ikinci derece parabol, düşüş parçası ise, doğrusal varsayılmıştır. Maksimum gerilme, genelde beton silindir dayanımının %85'i olarak alınır (f<sub>c</sub>=0.85f<sub>ck</sub>). Maksimum gerilmeye karşılık olan birim kısalma,  $\epsilon_{co} = \frac{2f_c}{E_c}$  olarak verilmişse de, basit olarak  $\epsilon_{co}$ =0.002 varsayılabilir. Modeldeki elastisite modülü E<sub>c</sub> için Hognestad tarafından aşağıdaki denklem önerilmiştir.

$$E_c = tan\alpha = 126800 + 460 f_c$$
 (3.1)

Bu denklemde  $E_c$  ve  $f_c$  kgf/cm<sup>2</sup> cinsinden ifade edilmelidir. Hognestad modelinde maksimum birim kısalma 0.0038 ile sınırlandığından, sarılmış beton için uygun değildir.



Şekil 3.1 Hognestad Tarafından Önerilen Gerilme-Şekil Değiştirme Eğrisi [71]

### 3.1.2 Chan (1955) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Chan, sargılı betonun dayanımını elde etmek için küçük eksantrisiteli 152X152X292 mm ve 152X92X1321 mm boyutlarındaki numunelere yük uygulanan bir deney düzeneği kurmuştur. Ortaya koyduğu iki denklemden biri K<sub>u</sub> / K<sub>o</sub>, sargılı betonun basınç dayanımının sargısız betonun basınç dayanımına oranı ve diğeri  $\varepsilon_{cm}$ , betonun maksimum yükü taşıdığı andaki nihai şekil değiştirmesidir. Burada fonksiyon olarak bahsedilen sargı donatısının beton çekirdeğine olan hacimsel oranıdır. Chan tarafından önerilen modelde, diğer değişkenlerin sargılı beton dayanımına ve şekil değiştirme değerine etki ettiği düşünülmemektedir.

Chan, deneysel olarak elde ettiklerine dayanarak, sargılı ve sargısız beton için Şekil 3.2'de gösterilen, üç bölümlü, lineer gerilme-şekil değiştirme eğrisini elde etmiştir. OA doğrusu elastik kısmı ve AB-BC doğruları ise plastik kısmı temsil etmektedir. Burada Chan, BC parçasını,  $\sigma$ - $\varepsilon$  eğrisinde, yatay donatının sadece hacimsel oranının fonksiyonu olarak göstermiştir.

Chan, nihai dayanım ile nihai deformasyon arasındaki aşağıdaki ilişkiyi göstermiştir.

$$\rho_{sw} = 0.189 (K_u - K_o)^2$$
(3.2)

 $\rho_{sw}=14600(\varepsilon_{cm}-\varepsilon_{cu})^3$ 

ρ<sub>sw</sub>: Yatay donatinin hacimsel orani

Ku: Standart küp numuneden elde edilen beton basınç dayanımı

(3.3)

K<sub>o</sub>:  $\rho_s=0$  olduğunda K<sub>u</sub> değeri (Chan'ın deneylerinde, K<sub>u</sub>=0.82)

 $\epsilon_{cm}$ : Basınç bölgesinin son liftindeki nihai şekil değiştirme

 $\varepsilon_{cu}$ :  $\rho_s=0$  olduğunda  $\varepsilon_{cm}$  değeri (Chan'ın deneylerinde,  $\varepsilon_{cu}=0.0035$ )



Şekil 3.2 Chan Tarafından Önerilen Gerilme-Şekil Değiştirme Eğrisi[72]

# 3.1.3 Roy ve Sözen (1964) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Roy ve Sözen, 127X127X635 mm boyutlarındaki silindir üzerinde yaptıkları deneyler ile dikdörtgen etriyelerin sargılı betonun basınç dayanımını arttırmadığını belirlemişlerdir. İdealize edilmiş bir gerilme-şekil değiştirme bağıntısı yatay donatılı beton için Şekil 3.3'de gösterilmiştir. En üst pik noktası  $f_{ck}$ =0.002'dir. Burada  $f_{ck}$ :Donatısız numunede betonun dayanımıdır. Bunun anlamı; sargılı betonun dayanımının, sargısız betonun dayanımına oranının 1.0 olduğudur. Sargılı betonun sünekliğine etkisi olduğu düşünülen değişkenler; etriye donatısının alanının, donatı çekirdeğine olan oranı ve basınç altındaki betonun kısa kenarının etriye aralığına olan oranıdır.  $\varepsilon_{50}$  şekil değiştirmesi beton gerilmesinin maksimum noktasından yarısı kadar düştüğü noktada tanımlanır ve aşağıda verilen denklem ile hesaplanır.

$$\varepsilon_{50} = \frac{3}{4} \frac{\rho_{\rm sw} b}{\rm sp} \tag{3.4}$$

b: Kesitin kısa kenarı

 $\rho_{sw}$ : Yatay donatinin hacimsel orani





Şekil 3.3 Roy ve Sözen Tarafından Önerilen Gerilme-Şekil Değiştirme Eğrisi[73]

# 3.1.4 Soliman ve Yu (1967) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Soliman ve Yu tarafından sargılı beton için Şekil 3.4'de gösterilen, dört noktalı bir gerilme-şekil değiştirme bağıntısı önerilmiştir. 76X152 mm, 102X152 mm ve 127X152 mm boyutlarındaki numuneler ile yapılan deneysel çalışmalar sonucunda dört adet denklem geliştirilmiştir. Önerilen ilişkinin başlangıç bölümü  $f_{cc}$  ve  $\varepsilon_{ce}$  değerleri ile maksimum pik noktasında parabolik bir eğri şeklindedir. Eğrinin ikinci parçası  $\varepsilon_{cs}$  şekil değiştirmesine eşit, yatay düz bir doğrudur. Eğrinin son bölümü ise azalan bir eğri şeklinde negatif eğimlidir. Bu  $\varepsilon_{cf}$  şekil değiştirme değeri olarak tanımlanmaktadır ve maksimum gerilmenin %80'ine karşılık gelmektedir.

Tüm deney numuneleri tek bir noktadaki basit etriye düzenlemesi şeklindedir. Tüm değişkenler; etriye alanı, etriye aralığı ve kesit geometrisinden ibarettir. Soliman ve Yu tarafından sargılı beton için önerilen gerilme-şekil değiştirme ilişkisinde parametreler şunlardır;

$$f_{cmax} = f_{co} \left( 1 + 0.05 \text{ Q} \right) \tag{3.5}$$

$$\varepsilon_{ce} = 78 f_{ck} \times 10^{-6}$$
 (3.6)

$$\varepsilon_{\rm cs} = \varepsilon_{\rm co} \left( 1 + \mathbf{Q} \right) \tag{3.7}$$

$$\varepsilon_{\rm cf} = 0.0045 \,(1 + 0.85 \,\rm{Q}) \tag{3.8}$$

$$Q = (1.4 \frac{A_c}{A_{cp}} - 0.45) \frac{A_{sw}(sp_o - sp)}{A_{sw}sp + 0.0028b_c sp^2}$$
(3.9)

fco: Donatisiz betonun basınç dayanımı (0.80fck), Mpa

 $\varepsilon_{co}$ : Donatisiz beton için  $\varepsilon_{cs}$  değeri (0.0025)

Ac: Betonun kesit alanı

Acp: Betonun basınç alanı

A<sub>sw</sub>: Donatinin enine kesit alanı

Bc: Betonun kesit genişliği

sp: Etriye aralığı

sp<sub>o</sub>: Sargılı betonda enine donatının etkili olmadığı noktadaki etriye aralığı (sp<sub>o</sub>=250mm)



Şekil 3.4 Soliman ve Yu Tarafından Önerilen Gerilme-Şekil Değiştirme İlişkisi[74]

### 3.1.5 Sargın (1971) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Sargın, 127X127X635 mm boyutlarındaki eksenel ve eksantrik yükleme altındaki kolonlar ile yapılan deneylerin sonuçlarından yaptığı regresyon analizine dayanan bazı deneysel denklemeler geliştirmiştir. Denklemler sargılı betonun nihai dayanımını ve buna karşılık gelen nihai şekil değiştirme  $\varepsilon_{cco}$  değerini elde etmek için önerilmiştir. Ek olarak  $K_s = \frac{P_{cmax}}{P_{occ}}$  şeklinde yarı deneysel bir denklem geliştirilmiştir ve bu maksimum yükün donatısız beton tarafından taşınan yüke oranını temsil etmektedir.

Hognestad tarafından daha önceden elde edildiği gibi, Sargın da eksenel ve eksantrik yüklemeye maruz numunelerin dayanımları arasında kayda değer bir farklılık bulmamıştır. Sargın'ın denklemlerinde şu değişkenler düşünülmüştür; hacimsel yatay donatı oranının beton çekirdeğine oranı, çeliğin akma dayanımı ve betonun silindir dayanımı. Ayrıca kesitte en üst gerilme düzeyindeki şekil değiştirme değeri  $\varepsilon_{cco}$ 'da göz önüne alınmıştır. Şekil 3.5'de görülen sargılı betonun gerilme-şekil değiştirme eğrisini elde etmek için genel bir denklem önerilmiştir. Sargın, sargılı betondaki basınç dayanımı azalmasının yatay basınçtan 4.1 kat daha fazla olduğunu kesin olarak hesaplamıştır. Sargılı betonda, beton basınç dayanımının silindir basınç dayanımına oranı için teorik bir denklem şu şekilde verilmiştir;

$$K_{s} = K_{o} + \frac{16.4\rho_{sw}\sigma_{syk}}{\pi f_{ck}R_{s}} [\log_{e}(1+R_{s}^{2}) - 3 + \frac{3}{R_{s}}\tan^{1}R_{s}]$$
(3.10)

Burada;

 $Rs = b_c / sp$  şeklindedir. (3.11)

Ek olarak, Sargın deney sonuçlarından yapılan regresyon analizine dayanarak aşağıdaki deneysel denklemleri sunmuştur,

$$K_{s} = K_{o} [1.0 + 0.18(1 - \frac{0.25 \text{sp}}{b_{c}})\rho_{sw} \frac{\sigma_{syk}}{\sqrt{f_{ck}}}]$$
(3.12)

$$\epsilon_{cco} = \epsilon_{co} [10 + 1.83(1 - \frac{0.70 \text{sp}}{b_c})\rho_{sw} \frac{\sigma_{syk}}{\sqrt{f_{ck}}}]$$
(3.13)

Ks: Maksimum gerilmenin silindir basınç dayanımına oranı

 $K_o: 0.85 f_{ck}$ 

 $\rho_{sw}$ : Yatay donatinin hacimsel orani

 $\sigma_{syk}$ : Yatay donatinin karakteristik akma dayanimi (Mpa)

fck: Betonun silindir basınç dayanımı (Mpa)

bc: Beton çekirdeğinin genişliği

sp: Etriye aralığı

 $\varepsilon_{co}$ : Donatısız betonda maksimum gerilmeye tekabül eden şekil değiştirme

 $\epsilon_{cco}$ : Sargılı betonda maksimum gerilmeye tekabül eden şekil değiştirmedir.



Şekil 3.5 Sargın Tarafından Önerilen Gerilme-Şekil Değiştirme Eğrisi[75]

## 3.1.6 Kent ve Park (1971) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Kent ve Park tarafından, mevcut deneysel sonuçlardan yararlanarak, tek eksenli basınç altındaki sargılı ve sargısız betonlar için Şekil 3.6'da verilen gerilme-şekil değiştirme diyagramı önerilmiştir.

Kent ve Park tarafından önerilen diyagramda gösterilen AB bölgesi 2. dereceden bir paraboldür. Sargılı ve sargısız her iki tür beton için de geçerli olan bu bölge, betonun maksimum basınç mukavemeti olan  $f_0$ 'da son bulur. Maksimum mukavemete karşı gelen şekil değiştirme,  $\varepsilon_0$ =0.002 olarak alınmıştır. Bu bölge için kabul edilen bağıntı;

$$f_{c} = f_{o} \left[ \frac{2\varepsilon_{c}}{\varepsilon_{o}} - \left( \frac{\varepsilon_{c}}{\varepsilon_{o}} \right)^{2} \right]$$
(3.14)

şeklindedir. Burada;  $\varepsilon_0=0.002$ 'dir.



Şekil 3.6 Sargılı ve Sargısız Beton İçin Önerilen Gerilme-Şekil Değiştirme Bağıntısı[76,77].

BC bölgesi, eğrinin azalma kısmı olup iki doğrudan oluşur. Sargısız hale karşılık gelen BC doğrusunda kısa süreli yükleme, 0.5f<sub>o</sub> gerilmesi için şekil değiştirme,

$$\varepsilon_{50u} = \frac{0.0207 + 0.002f_o}{f_o - 6.897} \qquad (f_o: MPa) \tag{3.15}$$

olarak hesaplanır.

Yine  $0.5f_0$  gerilmesine karşı, sargılı ve sargısız haller arasındaki şekil değiştirme farkı ise,

$$\varepsilon_{50h} = \frac{3}{4} \rho'' \sqrt{\frac{b''}{s}}$$
 (3.16)

bağıntısından hesaplanabilir. Burada  $\rho$ ", etriye hacminin, etriye dış yüzünden itibaren beton örtüsünün hacmine oranı olup,

$$\rho'' = \frac{2(b''+d'')A_s''}{b''d''s}$$
(3.17)

olarak hesaplanır. Burada;  $A_s^{"}$  etriyenin en kesit alanı, s ise etriye aralığıdır.

Bütün bu açıklamalardan sonra Şekil 3.6'daki BC bölgesi için,

$$\mathbf{f}_{c} = \mathbf{f}_{0} [1 - \mathbf{Z} (\boldsymbol{\varepsilon}_{c} - \boldsymbol{\varepsilon}_{0})] \tag{3.18}$$

bağıntısı yazılabilir. Yukarıdaki bağıntıdaki Z değeri;

$$Z = \frac{0.5}{\varepsilon_{\rm 50h} + \varepsilon_{\rm 50u} - \varepsilon_{\rm o}} \tag{3.19}$$

olarak hesaplanır. Sargısız durumda  $\rho$ " ve  $\varepsilon_{50h}$  sıfıra eşit olacağından ifade daha da basitleşecektir. Şekil 3.7'de etriyeli kolonun eksenel olarak yüklenmesi gösterilmiştir.



Şekil 3.7 Etriyeli Kolonun Eksenel Olarak Yüklenmesi

CD bölgesi ise yatay bir doğrudan oluşur ve C noktasından sonsuza kadar betonun 0.2f<sub>o</sub> gerilmesini taşıyabileceğini ifade eder.

AB bölgesinde  $\varepsilon_c$  şekil değiştirmesine karşı gelen tanjant modülü  $f_c = f_o \left[ \frac{2\varepsilon_c}{\varepsilon_o} - \left( \frac{\varepsilon_c}{\varepsilon_o} \right)^2 \right]$  bağıntısının  $\varepsilon_c$ 'ye göre birinci türevinin alınmasıyla elde edilir.

 $E_t = \frac{df_c}{d\varepsilon_c} = 1000 f_o \left[ 1 - \frac{\varepsilon_c}{0.002} \right]$ (3.20)

BC bölgesinde Z'ye eşit olan tanjant modülü CD bölgesinde ise sıfır olacaktır.

Etriyelerin beton mukavemetine etkisini göstermek için, standart silindir basınç mukavemeti 24 MPa, b''/s = 1.0 olarak verilen beton için değişik etriye miktarlarına göre, Şekil 3.8'de gösterilen betonun gerilme şekil-değiştirme bağıntısı elde edilmiştir[6,15].



Şekil 3.8 Etriye Miktarının Beton Gerilme-Şekil Değiştirme Bağıntısına Etkisi[76,77]

## 3.1.7 Park, Priestly ve Gill Tarafından Değiştirilen Kent ve Park Gerilme–Şekil Değiştirme Eğrisi

Şekil 3.9'da dikdörtgen etriyeler ile sarılmış beton için Kent ve Park tarafından önerilip; Park, Priestly ve Gill tarafından geliştirilen gerilme-şekil değiştirme ilişkisi gösterilmektedir. Geliştirilen ilişki düşük şekil değiştirme değerleri ile yapılan deneylerden türetilmiştir. Geliştirilen Kent ve Park ilişkisinde  $0.002K_s$  şekil değiştirmesine ulaşıldığında  $K_s f_{ck}$  maksimum gerilmesine karşılık gelmektedir.

 $\epsilon_c \leq \epsilon_{c0} K_s$  için  $\epsilon_{c0}$ =0.002

$$\sigma_{c} = K_{s} f_{ck} \left[ \frac{2\varepsilon_{c}}{K_{s} \varepsilon_{c0}} - \left( \frac{\varepsilon_{c}}{K_{s} \varepsilon_{c0}} \right)^{2} \right]$$
(3.21)

 $\varepsilon_0 \ge \varepsilon_{c0} K_s$  için

$$\sigma_{c} = K_{s} f_{ck} [1 - Z_{c} (\varepsilon_{c} - K_{s} \varepsilon_{co})]$$
(3.22)

 $\epsilon_{c} \geq \epsilon_{20c} \; K_{s}$ için

$$\sigma_{c}=0.2K_{s}f_{ck} \tag{3.23}$$

Burada;

$$K_{s} = 1 + \frac{\rho_{sw}\sigma_{sy}}{f_{ck}} ve$$
(3.24)

$$Z = \frac{0.5}{\varepsilon_{50u} + \varepsilon_{50h} - \varepsilon_{c0}}$$
(3.25)

$$\varepsilon_{50u} = \frac{3 + 0.29 f_{ck}}{145 f_{ck} - 1000}$$
(3.26)

$$\varepsilon_{50h} = \frac{3}{4} \rho_{sw} \sqrt{\frac{b_c}{sp}}$$
(3.27)

 $\varepsilon_{50c} = \varepsilon_{50u} + \varepsilon_{50h}$  şeklindedir. (3.28)

### fck: Betonun karakteristik silindir basınç dayanımı

 $\rho_{sw}$ : Yatay donatının hacimsel yüzdesi (beton çekirdeğine olan oran)


Şekil 3.9 Park, Priestly ve Gill Tarafından Değiştirilen Kent ve Park Gerilme–Şekil Değiştirme Eğrisi[78]

# 3.1.8 Thompson ve Park Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Şekil 3.10'da gösterilen bu modeldeki  $\sigma$ - $\varepsilon$  eğrisi, Kent ve Park tarafından önerilen modelin aynıdır. Thompson ve Park modelinin tek farkı, yükün boşalması ve yeniden yükleme durumunda eğrinin izleyeceği yolların belirlenmiş olmasıdır.



Şekil 3.10 Thompson ve Park Tarafından Değiştirilen Kent ve Park Gerilme–Şekil Değiştirme Eğrisi

Şekilden görüldüğü gibi,  $\varepsilon_c < \varepsilon_{co}$  olduğu durumlarda ( $\varepsilon_{co}=0.002$ ) yükün boşalma eğrisi  $\sigma$ - $\varepsilon$  eğrisinin orijinindeki teğetine paralel olmaktadır. Eleman tekrar yüklendiğinde de,  $\sigma$ - $\varepsilon$  eğrisi aynı yolu izlemektedir.  $\varepsilon_c > \varepsilon_{co}$  olduğu durumlarda ise yükün boşalma eğrisi iki doğru ile gösterilmektedir. Boşalma sırasındaki gerilmenin %50'sine kadar inen eğrinin ilk bölümünün sonsuz, bu gerilmeden sıfır gerilmeye kadar olan bölümün eğimi ise,  $0.5E_cF_c$  olarak tanımlanmaktadır.

E<sub>c</sub> ve F<sub>c</sub> aşağıdaki denklemlerden hesaplanmaktadır.

$$E_{c} = 126800 + 460f_{c} \text{ (Mpa)}$$
(3.29)

$$F_{c} = 0.8 - \frac{0.7(\varepsilon_{c} - 0.002)}{\varepsilon_{20c} - 0.002}$$
(3.30)

$$\varepsilon_{20c} = 1.6(\varepsilon_{50h} + \varepsilon_{50u}) - 0.0012 \tag{3.31}$$

Yeniden yüklemede  $\sigma$ - $\varepsilon$  eğrisinin doğrusal olduğu ve eğimin  $E_cF_c$  olduğu varsayılmaktadır. Yeniden yüklemeyi simgeleyen doğru, zarf eğrisine (Kent ve Park modeli) ulaştıktan sonra bu eğriyi izlemektedir. Yeniden yüklemenin gerilme sıfıra ulaşmadan olduğu durumlarda; eğri, boşalmanın ilk aşamasında olduğu gibi dik olarak yukarı çıkmaktadır[79].

# 3.1.9 Vallenas, Bertero ve Popov (1977) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Deney sonuçlarına dayanarak Vallenas, Bertero ve Popov; Kent ve Park tarafından önerilen gerilme-şekil değiştirme eğrisine benzer bir eğri önermişlerdir. Bununla birlikte, bahsedilen farklı denklemler aşağıda gösterilmiştir. İkisi arasındaki temel farklılık Vallenas, Bertero ve Popov tarafından önerilen modelde sargı donatısı dolayısıyla beton dayanımındaki artışın da dikkate alınmasıdır. Bu model ile Sheikh ve Üzümeri tarafından önerilen modeller arasındaki temel farklılık ise Vallenas modelinde sargılı betonun dayanım artışı boyuna donatının hacimsel oranının betona oranı olarak düşünülür, oysa Sheikh ve Üzümeri'nin modelinde dayanım artışı boyuna donatının dağılımına dayandırılmaktadır. Şekil 3.11'de gösterilen modele şu değişkenler dâhil edilmiştir; Yatay donatının hacimsel oranının beton çekirdeğine oranı, boyuna donatı alanının kesitin alanına oranı, boyuna donatının ve etriyelerin boyutları, etriye aralığının çekirdek boyutuna oranı, betonun basınç dayanımı ve etriyelerin akma dayanımı.

Eğrinin artan parçası ikinci derece bir parabol ile gösterilir. AB bölümü;

$$\frac{\sigma_{c}}{f_{ck}} = \frac{\frac{E_{c}\varepsilon_{cco}}{f_{ck}}(\frac{\varepsilon_{c}}{\varepsilon_{cc0}}) - K_{s}(\frac{\varepsilon_{c}}{\varepsilon_{cco}})^{2}}{1 + (\frac{E_{c}\varepsilon_{cco}}{K_{s}f_{ck}} - 2)(\frac{\varepsilon_{c}}{\varepsilon_{cc0}})}$$
(3.32)

ile ifade edilir.

Eğrinin azalan kolu doğru şeklindedir ve maksimum gerilmenin %30'una kadar uzamaktadır, eğri bu noktadan sonra yatay düz bir doğru formunu alır. BC bölümü;

$$\frac{\sigma_{c}}{f_{ck}} = K_{s} [1 - Z \varepsilon_{cc0} (\frac{\varepsilon_{c}}{\varepsilon_{cc0}} - 1)]$$
(3.33)

Burada;

$$\varepsilon_{\rm cc0} = 0.002 \rm K_s \tag{3.34}$$

$$K_{s} = 1 + 0.109(1 - 0.24 \frac{sp}{b_{c}}) \frac{(\rho_{sw} + \frac{\phi_{sw}}{\phi_{st}}\rho_{st})\sigma_{syk}}{\sqrt{f_{ck}}}$$
(3.35)

$$Z = \frac{0.5}{\frac{3}{4}\rho_{sw}\sqrt{\frac{b_c}{sp}} + (\frac{0.021 + 0.002f_{ck}}{f_{ck} - 7.04}) - 0.002}$$
(3.36)

CD bölümü;

$$\frac{\sigma_{\rm c}}{f_{\rm ck}} = 0.3K_{\rm s} \tag{3.37}$$

olarak ifade edilir. Burada;

 $\phi_{st}$ : Boyuna donatı çubuğunun uzunluğu

 $\phi_{sw}$ : Yatay etriyenin uzunluğu

Ec: Betonun elastisite modülü

bc: Çekirdek boyutu

K<sub>s</sub>: Sargılı betonda maksimum gerilme oranının karakteristik silindir basınç dayanımına oranı

 $\rho_{st}$ : Boyuna donatının hacimsel oranı

 $\rho_{sw}$ : Yatay donatinin hacimsel oranidir.



Şekil 3.11 Vallenas, Bertero ve Popov (1977) Tarafından Önerilen Gerime–Şekil Değiştirme Eğrisi[80]

# 3.1.10 Sheikh ve Üzümeri (1980) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Dikdörtgen etriyeler ile sarılmış betonun davranışının anlaşılması için deneysel olarak sunulan çalışmaları analitik araştırmalar izlemiştir. Analitik model, çeşitli araştırmacılar tarafından önceki deney serilerinin sonuçlarına uygun biçimde önerilmiştir. Deneysel sonuçlar ve tahminler arasındaki karşılaştırmalar, dikdörtgen etriyeler ile sarılmış betonun gerilme-şekil değiştirme ilişkisinin geliştirilmesi gerektiğini açıkça ortaya koymuştur. Sargılı betonun davranışını ortaya koymak için Sheikh ve Üzümeri bir model geliştirmişlerdir. Bu modelde yatay donatının hacimsel oranı, etriye aralığı, donatı karakteristiği, çekirdeğin çevre uzunluğu etrafındaki boyuna donatının dağılımı gibi çeşitli veriler etkili olmuştur ve sonuçta etriye dağılımı tanımlanmıştır. Önerilen modelden elde edilen sonuçlar çeşitli araştırmacılar tarafından yapılan ve sunulan önceki deneysel şonuçlar ile karşılaştırılmıştır. Bu program sırasında analitik ve deneysel çalışmalar ışığında beton yapı şartnamelerinin gerekleri incelenmiştir. İnceleme sonucunda sargılı betonun davranışında en önemli etkiye sahip değişkenlerin şartnamelerde önemsenmediği görülmüştür.

Önceki çalışmaların çoğu basit etriye konfigürasyonları ile hazırlanan dikdörtgen etriyeli, küçük numuneler ile yapılmıştır. Bu testlerin bazıları Sheikh ve Üzümeri tarafından Tablo3.1'de gösterildiği gibi özetlenmiştir, testlerin çoğunda etriyenin çevre uzunluğu ile sınırlandırılmış olan çekirdek alanının kesit alanına oranı küçüktür. Bu yüzden sargılı betonun dayanımının arttırılması için çalışılan tüm denemelere rağmen numunenin toplam kapasitesi kabuk betonu düştükten sonra sargısız numunenin kapasitesini aşamamıştır, belki de bu; sargılı betonun dayanımında dikdörtgen etriyelerin faydalı etkileri hakkında araştırmacılar arasında oluşan anlaşmazlığın ana sebebini oluşturmaktadır.

|                              |        | Numuneni                              | n Detayları                            |               |  |
|------------------------------|--------|---------------------------------------|----------------------------------------|---------------|--|
| Araştırmacı                  | Sayısı | Numune Boyutları<br>(cm)              | $A_{\text{cekirdek}}/A_{\text{kesit}}$ | Boyuna Donatı |  |
| King (1946)                  | 164    | 8.89 x 8.89                           | 0.54-0.61                              | 4 köşe donatı |  |
| King (1946)                  | 18     | 25.4 x 25.4                           | 0.34-0.66                              | 4 köşe donatı |  |
|                              | 9      | 15.24 x15.24                          | 0.63-0.92                              | 4 köşe donatı |  |
| Chan (1955)                  | 7      | 15.24 x 7.62-12.7/20.32               | 0.92-0.96                              | 4 köşe donatı |  |
|                              | 7      | 15.24 cm çap                          | 0.97                                   | 4 donati      |  |
| Bresler ve Gilbert           | 2      | 20.32 x 20.32                         | 0.61                                   | 6 donatı      |  |
| (1961)                       | 2      | 20.32 x 20.32                         | 0.61                                   | 8 donati      |  |
|                              | 4      | 30.48 x 30.48                         | 0.42-0.53                              | 12 donati     |  |
| Pfister (1964)               | 3      | 20.32 x 45.72                         | 0.36-0.49                              | 12 donati     |  |
|                              | 4      | 25.4 x 30.48                          | 0.49                                   | 6 donatı      |  |
| Roy ve Sözen (1964)          | 45     | 12.7 x 12.7                           | 0.86-0.9                               | 4 köşe donatı |  |
|                              | 2      | 7.62 x 7.62                           |                                        |               |  |
| Bertero ve Felippa<br>(1964) | 5      | 7.62 x 7.62                           |                                        | 4 köşe donatı |  |
|                              | 2      | 10.16-2.54/10.16x10.16-<br>2.54/10.16 |                                        |               |  |
|                              | 6      | 10.16-2.54/10.16x10.16-<br>2.54/10.16 |                                        | 4 köşe donatı |  |
| Hudson (1966)                | 32     | 10.16 x 10.16                         | 0.46-0.47                              | 8 donati      |  |
| Hudson (1966)                | 28     | 15.24 x15.24                          | 0.63-0.66                              | 8 donati      |  |
|                              | 3      | 15.24 x 10.16                         | 0.92-1.00                              | 2 donati      |  |
| Soliman ve Vu (1967)         | 11     | 15.24 x 10.16                         | 0.44-0.92                              | 4 köşe donatı |  |
| Solillali ve 1 u (1907)      | 1      | 15.24 x 7.62                          | 0.91                                   | 4 köşe donatı |  |
|                              | 1      | 15.24 x 12.7                          | 0.93                                   | 4 köşe donatı |  |
| Shah ve Rangan (1970)        | 11     | 5.08 x 5.08                           | 0.83                                   |               |  |
| Somes (1970)                 | 42     | 10.16 x10.16                          | 0.88-0.92                              |               |  |
| Sargin (1971)                | 41     | 12.7 x 12.7                           | 0.65-0.96                              |               |  |
| Burdette ve Hilsdorf         | 16     | 12.7 x 12.7                           | 0.72-1.00                              |               |  |
| (1971)                       | 4      | 12.7 cm çap                           | 1.00                                   |               |  |
| Bunni (1075)                 | 4      | 12.7 x 12.7                           | 0.88-0.90                              |               |  |
| Buiiii (1973)                | 50     | 12.7 x 12.7                           | 0<88-0.95                              | 4 köşe donatı |  |
| Kaar (1977)                  | 13     | 25.4 x 40.64                          | 0.68-0.72                              | 4 köşe donatı |  |
| Kaal (1977)                  | 6      | 12.7 x 20.32                          | 0.70                                   | 4 köşe donatı |  |
|                              | 3      | 25.4 x 25.4                           | 0.78                                   | 8 donati      |  |
| Vallenas, Bertero ve         | 3      | 22.86 x 22.86                         | 0.96                                   | 8 donati      |  |
| Popov (1977)                 | 3      | 25.4 x 25.4 0.78                      |                                        |               |  |
|                              | 3      | 22.86 x 22.86                         | 0.96                                   |               |  |
| Sheikh ve Üzümeri<br>(1980)  | 24     | 30.48 x 30.48                         | 0.78                                   | 8,12,16       |  |

#### Tablo 3.1 Sheikh ve Üzümeri Tarafından Ulaşılmış Testlerin Özeti

Etriyeler ile sarılmış betonun davranışının belirlenmesi için geçmişte yapılan çalışmaların yetersiz olduğunu düşünen Sheikh ve Üzümeri, Şekil 3.12'de gösterilen gerilme-şekil değiştirme eğrisini önermişlerdir. Eğri üç parçadan oluşmaktadır; OA parçası, A noktası  $f_{cc}$ ,  $\varepsilon_{s1}$  noktalarının kesişiminde olan ikinci derece bir paraboldür.  $f_{cc}$  terimi numunenin sargılı betonunun basınç dayanımını temsil etmektedir ve K<sub>s</sub>,  $f_{cp}$  değerine eşittir ki burada  $f_{cp}$ : Plak numunede betonun basınç dayanımı, K<sub>s</sub>: Dayanım artış faktörüdür.  $\varepsilon_1$  ve  $\varepsilon_2$  sırasıyla maksimum gerilmeye karşılık gelen minimum ve maksimum şekil değiştirme değerleridir.  $\varepsilon_{s85}$  eğrinin yük olmayan kolundaki %85 şekil değiştirmeye karşılık gelen maksimum gerilme değeridir. AB ve BC parçaları

eğrinin doğru parçalarıdır. C noktasından itibaren gerilmenin maksimum değerinin %30'una düşerek (D noktası) aynı doğru parçası üzerinde yer alması beklenebilir. D noktasından itibaren yatay çizgi beton davranışının gösterimini üstlenebilmektedir. Fakat testlerin bu bölümündeki deneysel verilerin eksikliği yüzünden bahsedilen bölgenin davranışı C noktasından sonra kesin olarak bilinmemektedir. Daha önce bahsedilen gerilme-şekil değiştirme ilişkisinin tam anlamıyla tanımlanması için f<sub>cc</sub>,  $\varepsilon_{s1}$ ,  $\varepsilon_{s2}$  ve  $\varepsilon_{85}$  isimli dört değişkenin bilinmesi gerekmektedir.



Şekil 3.12 Sheikh ve Üzümeri Tafından Önerilen Betonun Genel Gerilme-Şekil Değiştirme Eğrisi

Teorik analizlerde, çekirdek içindeki ve kabuktaki boyuna yer değiştirmenin özdeş olduğu ve betondaki her iki bölgenin de içinde az da olsa sargı donatısı bulunduğu, aynı gerilme-şekil değiştirme ilişkisine maruz kaldığı düşünülmektedir. Düşük deformasyonlarda, yatay donatı tarafından sağlanan sarılma önemsenmeyebilir. Beton dayanımı ve yatay sargı arasındaki ilişki aşağıdaki gibi açıklanabilir;

$$f_{cc} = f_{cp} + f(\rho_s, s, f_s, \lambda, \eta)$$
(3.38)

ρ<sub>s</sub>: Toplam yatay donatı hacminin çekirdeğin toplam hacmine oranını;

s: Etriye aralığını;

fs: Yatay donatıdaki gerilmeyi;

 $\lambda$ : Kesit konfigürasyonunda ve çekirdek çevresindeki boyuna donatıların dağılımında hesaba katılacak olan bir faktörü;

η: Kesitin boyut etkisini temsil etmektedir.

Sarılmış betonun dayanımındaki artış "etkili sarılmış" beton alanına dayanarak hesaplanmıştır. Bu alan etriyenin çevre uzunluğu ile sınırlanmış ve etriye konfigürasyonu ve etriye aralığı ile belirlenmiş nominal çekirdekten daha küçüktür. Etkili sarılmış beton alanı beton dayanımındaki kazancın hesaplanmasında değerlendirilir.

Fret uygulamasından farklı olarak, dikdörtgen etriyeler ile beton çekirdeği hacmine doğru uygulanan basınç doğrusal olmamaktadır. Yüksek şekil değiştirmelerde kabuk betonu döküldüğünde, çekirdek betonunun bir kısmı uygulanan yüke karşı daha az etkili olur. Etriye seviyesindeki etkili sarılmış beton alanı, sargının eğimi ile tamamen desteklenen boyuna donatı çubuklarının dağılımı ile tanımlanır ve tüm pratik durumlar için çekirdek alanından daha az olur. Etriyeler arasındaki orta kesitte etkili olarak sarılmış beton en küçük değere sahiptir ve etriye konfigürasyonuna ilave olarak etriye aralığı ile tanımlanır.

Etriye seviyesinde, boyuna çubuklar arasındaki mesafe ve etriyelerin konfigürasyonuna dayanarak bazı betonların çekirdek yüzeylerinde sargı bulunmamaktadır. Şekil 3.13'de farklı konfigürasyonlarda betonun sarılmamış kısmı gölgelendirilerek gösterilmiştir. Boyuna çubuklar, betonu etkili biçimde kendi bölgelerinde sınırlamışlardır. Şekil 3.13'den çubukların artışı ile toplam gölgeli (sarılmamış) alanların azaldığı görülebilir.



Şekil 3.13 Etriye Seviyelerindeki Sarılmamış Beton



Şekil 3.14 Sarılmamış Betonun Alanının Belirlenmesi

Etkili şekilde sarılmamış olan beton alanı Şekil 3.14'de görüldüğü gibi tahmin edilebilir.

Etkili olarak sarılmış beton çekirdeği alanı beton seviyesinde;

$$A_{co} - \sum_{i=1}^{n} \frac{c_i^2}{\alpha} \text{ olarak yazılabilir.}$$
(3.39)

Aco: Dıştaki etriyeden itibaren çevrelenmiş çekirdek alanı;

n: Kavis sayısı;

c: Boyuna çubukların merkezden merkeze uzaklığı.

Eğer  $\lambda$  etriye seviyesindeki etkili olarak sarılmış beton alanının çekirdek alanına oranı olarak tanımlanırsa;

$$\lambda = 1 - \frac{\sum_{i=1}^{n} c_i^2}{\alpha A_{co}}$$
(3.40)



Şekil 3.15 Etriye Seviyeleri Arasındaki Sarılmamış Beton

Sarılma kuvveti doğrultusunda, basıncın olmadığı çekme gerilme bölgeleri aynı zamanda Şekil 3.15'de görüldüğü gibi kolonun yüksekliği boyunca gelişir. Etriyelerin sıklaştığı bölgede etkili biçimde sarılmış alan daha fazladır. Yine gölgeli alan etkili olarak sarılmamış betonu göstermektedir. Sarılmış ve sarılmamış betonu ayıran eğri, ikinci derece bir denklem ile tanımlanabilir. Bu durumda eğrinin gerçek şekli çok anlamlı değildir. Kolonun dayanımı, etriyeler arasında kalan yarı noktadaki kesite ait en küçük alana bağlıdır. Daha uzun açıklıklar daha küçük sarılmış alanlara ve kusurlara sebep olacaktır.

Şekil 3.16'da gösterildiği gibi, sarılmış betonu belirleyen kavisin üç boyutlu gösterimi ile iki etriye arasındaki kritik orta kesitte etkili olarak sarılmış betonun gerçek alanını bulmak, özellikle eğrilerin profili bilinmediği zaman oldukça zordur.

Bununla birlikte, kritik kesitin alanı aşağıdaki gibi temsil edilebilir;

| Çekirdek Alanı: | $A_{co} = B.H$ | (3.41) |
|-----------------|----------------|--------|
|-----------------|----------------|--------|

Etriye Seviyesindeki Etkili Sarılmış Alan = 
$$\lambda A_{coi}$$
 (3.42)

Etriye Seviyesindeki  $A_{co}$ 'ın Azalmasının İhmal Edilmesi, Etriyeler Arasındaki Orta Kesitte Etkili Olarak Sarılmış Alan (B-2y<sub>m</sub>)(H-2y<sub>m</sub>) (3.43)

| Kritik Kesitte Etkili Olarak Sarılmış Beton Alanı: | $A_{ec} = \lambda (B - 2y_m) (H - 2y_m) (3.44)$ |
|----------------------------------------------------|-------------------------------------------------|
|----------------------------------------------------|-------------------------------------------------|



Şekil 3.16 Kritik Kesitlerin Belirlenmesi - Sarılmış ve Sarılmamış Betonun Üç Boyutlu Görünüşü

B ve H: Etriyenin merkezden merkeze uzunluğu olan çekirdeğin çevresi;  $y_m$ : Etriyeler arasındaki verilen y'nin maksimum değeri  $y_m$ =0.25 s tan $\theta$ 'dir.

Etkili olarak sarılmış betonun alanı A<sub>ec</sub>, aşağıdaki denklem ile çekirdek alanıyla ilişkilendirilebilinir;

$$A_{ec} = \lambda (B-0.5 \text{ s} \tan\theta) (H-0.5 \text{ s} \tan\theta) = \lambda^* x A_{co}$$
(3.45)

Bu yüzden;  $\lambda^*$  kritik bölgede etkili olarak sarılmış betonun çekirdek alanına oranı olarak tanımlanabilir.  $\lambda$  Sadece etriye konfigürasyonunun etkisini içerirken,  $\lambda^*$  etriye konfigürasyonu ve aralığı etkilerini birleştirerek hesaba katar.

Sargı dolayısıyla beton dayanımında elde edilen kazanç;

$$P_{add} = A_{ec} \beta \left(\rho_s f_s^*\right)^{\lambda}$$
(3.46)

$$K_{s}=1.0+\frac{A_{ec}}{P_{occ}}\beta(\rho_{s} f_{s})^{\lambda}$$
(3.47)

(3.40) ve (3.45) denklemlerinin (3.47) denklemine uygulanmasıyla;

$$K_{s} = 1.0 + \frac{1}{P_{occ}} (1 - \frac{\sum_{i=1}^{n} c_{i}^{2}}{\alpha A_{co}}) (1 - \frac{0.5s}{B} \tan \theta) (1 - \frac{0.5s}{H} \tan \theta) BH\beta (\rho_{s} f_{s}^{'})^{\lambda}$$
(3.48)

Üniform yayılı düşey donatılı kare kesit için denklem;

$$K_{s} = 1.0 + \frac{1}{P_{occ}} (1 - \frac{nC^{2}}{\alpha B^{2}}) (1 - \frac{0.5s}{B} \tan \theta)^{2} B^{2} \beta (\rho_{s} f_{s}^{'})^{\lambda}$$
(3.49)

Sheikh ve Üzümeri deneylerin sonuçları ile  $\alpha$ ,  $\theta$ ,  $\beta$  ve  $\lambda$ ' değerlerini hesap etmek için 24 numuneyi geniş kapsamlı şekilde kullanmışlardır. Kümülatif mutlak hataların tüm numuneler için asgariye indirilmesindeki tek kriter; deneysel sabitlerin belirlenmesi olmuştur. Hata;  $\sum_{1}^{24} abs[(K_s)_{exp} - (K_s)_{anal}])/(K_s)_{exp}$  denkleminden hesaplanmıştır.

Regresyon analizinden sabitler için aşağıdaki değerler seçilmiştir. 24 Kolon için kümülatif hata her bir kolon için 0.035 olmak üzere akma 0.836'dır.  $\alpha$ =5.5;  $\theta$ =45°;  $\lambda$ =0.5;  $\beta$ =0.0071 (f<sub>s</sub><sup>'</sup>= megapaskal)

Sonuç denklemi şu şekilde yazılabilir;

$$K_{s} = 1.0 + \frac{B^{2}}{140P_{occ}} \left[ (1 - \frac{nC^{2}}{5.5B^{2}})(1 - \frac{s}{2B})^{2} \right] \sqrt{\rho_{s} f_{s}}$$
(3.50)

Boyuna donatının davranışı ve  $\lambda^*$  ile gösterilen sargının etkisi kare kolon çekirdeği için Şekil 3.17'de gösterilmiştir. Etriye aralığı çekirdek hacminden iki kat büyük olduğunda sargının betonun dayanımına etkisinin hiç olmadığı görülmüştür[81,82,83].



Şekil 3.17 Etriye Aralığının Bir Fonksiyonu Olarak Etkili Sarılmış Beton Alanı ve Çeşitli Kare Donatı Konfigürasyonları için Çekirdek Alanı

# 3.1.11 Mander (1988) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Mander vd. 1988 yılında hem spiral hem de dörtgen enine donatılı kesitlere uygulanabilen bir model önermişlerdir. Model, Sheikh&Üzümeri modeline benzer şekilde etkili olarak sargılanan beton alanının hesaplanmasına dayanmaktadır. Modele göre etkili sargılanamayan beton alanı; yatayda boyuna tutulu donatılar arasında, düşeyde de enine donatı adımları arasında, 45 derece ilk eğim açısına sahip ikinci derece bir parabol şekline sahiptir. Sheikh&Üzümeri modelinde merkezden merkeze alınan donatılar arası mesafe yerine donatılar arasında bulunan net açıklık dikkate alınmaktadır. Mander tarafından önerilen sargısız ve sargılı beton davranış modelleri Şekil 3.18'de gösterilmiş ve denklemleri de aşağıda verilmiştir.



Şekil 3.18 Mander Tafından Önerilen Betonun Genel Gerilme-Şekil Değiştirme Eğrisi

$$\sigma_{c} = \frac{f_{cc} xr}{r - 1 + x^{r}} \qquad \epsilon_{c} \le \epsilon_{cu} \qquad (3.51a)$$

$$\sigma_{\rm c} = 0 \qquad \qquad \varepsilon_{\rm c} > \varepsilon_{\rm cu} \qquad (3.51b)$$

$$f_{cc} = f_{c} [2.254 \sqrt{1 + \frac{7.94f_{1}}{f_{c}}} - \frac{2f_{1}}{f_{c}} - 1.254]$$
(3.52)

$$\mathbf{x} = \mathbf{\varepsilon}_{c} / \mathbf{\varepsilon}_{cc} \tag{3.53}$$

$$\varepsilon_{cc} = \varepsilon_{co} \left[ 1 + 5 \frac{f_{cc}}{f_c} \right]$$
(3.54)

$$r = \frac{E_c}{E_c - E_c}$$
(3.55)

$$E_{sec} = f_{cc} / \varepsilon_{cc}$$
(3.56)

$$E_{c} = 5000\sqrt{f_{c}}$$
(3.57)

$$f_1 = \frac{r_{1x} + r_{1y}}{2}$$
(3.58)

$$f_{1x} = k_o \cdot \frac{A_{shx} \cdot f_{sy}}{s.b}$$
 (3.59)

$$f_{1y} = k_o \cdot \frac{A_{shy} \cdot f_{sy}}{s.h}$$
 (3.60)

$$k_{o} = \frac{(1 - \sum_{i=1}^{n} \frac{W_{i}^{2}}{6.b.h})(1 - \frac{s'}{2.b})(1 - \frac{s'}{2.h})}{1 - \rho_{cc}}$$
(3.61)

$$\varepsilon_{cu} = 0.004 + \frac{1.4\rho_s f_{sy}\varepsilon_{su}}{f_{cc}}$$
(3.62)

Burada;

f1: Ortalama yanal sargı basıncı,

f1x: X yönünde oluşan sargı basıncı,

f<sub>1y</sub>: Y yönünde oluşan sargı basıncı,

ke: Sargılamanın etkinliği ile ilgili katsayı,

Ashx: X yönünde uzanan toplam enine donatı kesit alanı,

Ashy: Y yönünde uzanan toplam enine donatı kesit alanı,

b: Enine donatı merkezlerinden ölçülen çekirdek betonu X'e paralel boyutu,

h: Enine donatı merkezlerinden ölçülen çekirdek betonu Y'ye paralel boyutu,

s: Enine donatı merkezinden merkezine ölçülen etriye aralığı,

s': Enine donatı net aralığı,

n: Boyuna donatı sayısı,

wi: Boyuna donatılar arası i'nci net açıklık,

ρ<sub>cc</sub> Boyuna donatı kesit alnının beton çekirdek alanına oranı,

 $\epsilon_{cu}$ : Beton nihai basınç birim şekil değiştirme değeri,

ε<sub>cc</sub>: Maksimum gerilmeye karşılık gelen birim şekil değiştirme değeri,

 $\varepsilon_{su}$ : Enine donatı nihai çekme birim şekil değiştirme değeridir[84,85].

# 3.1.12 Kappos (1991) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi

Yakın geçmişte Kappos tarafından yapılan çalışmada tüm etriye şekilleri için bir sargı indeksi geliştirilmeye çalışılmış ve Şekil 3.19'da gösterilen gerilme-şekil değiştirme modeli önerilmiştir. Toplam 63 kolon numunesinin beş farklı program kullanılarak test edildiği deneysel veriler yardımıyla aşağıdaki genel denklem ortaya atılmıştır.

$$\mathbf{K} = 1 + \alpha(\omega_{\rm W})^{\rm b} \tag{3.63}$$

Deneysel katsayılar;  $\alpha$  ve b değerleri aşağıdaki gibidir.

| α=0.55 | b=0.75 | tek kollu etriye için                         |
|--------|--------|-----------------------------------------------|
| α=1.00 | b=1.00 | elmas şekilli çift etriye için                |
| α=1.25 | b=1.00 | çok sayıdaki etriye için (üç yada daha fazla) |

(3.63) Denklemi tek kollu etriye durumunda diğer modellerden çok daha iyi sonuçlar vermiştir. 63 Numune için çift ve daha fazla etriye durumunda ise karşılaştırılabilir sonuçlar bulunmuştur.  $\varepsilon_{cc1}$  şekil değiştirmesi göz önünde bulundurularak en üst pik gerilmesi ile yöndeş olan Park, Priestley ve Gill (1982) tarafından aktarılan  $\varepsilon_{cc1}$ =K $\varepsilon_{c1}$  değeri, ki burada  $\varepsilon_{c1}$ =%0,2'dir, ve sarılmamış beton için (Kappos 1991  $\varepsilon_{cc1}$ =K $^2\varepsilon_{c1}$  değerini daha iyi deneysel kayıtlar ile bulduğunda) uygun değerdir. Sheikh ve Üzümeri tarafından gerilmenin sürekli  $\varepsilon_{cc1}$  ve  $\varepsilon_{cc2}$  değeri arasında kaldığı düşünülmüştür,

$$\varepsilon_{cc1} = 80 K_s f_c x 10^{-6}$$
 (3.64)

$$\varepsilon_{cc2} = 0.0022 \{1 + \frac{248}{b_i} [1 - 5(\frac{s}{b_c})^2] \frac{\rho_w f_{yw}}{f_c^{1/2}}\}$$
(3.65)

burada,  $f_c$ ,  $f_{yw}$  MPa ve  $b_i$  mm birimindedir.

Eğrinin azalan kolu göz önünde bulundurularak (daha önce bahsedilen tüm modellerde lineerdir) Park, Priestley ve Gill (1982) aşağıdaki genelleştirmeyi önermişlerdir;

$$z = \frac{0.5}{\varepsilon_{cc50} - \varepsilon_{cc1}}$$
(3.66)

burada;

$$\varepsilon_{cc50} = \frac{3 + 0.29 f_c}{145 f_c - 1000} + 0.75 \rho_w \left(\frac{b_c}{s}\right)^{1/2}$$
(3.67)

Aynı denklemlerde  $f_c$  yerine  $f_c/K$  ifadesi Kappos (1991) modeline uygulanmıştır. Sargının yardımı ile azalan eğrinin dikliğini (3.67) denkleminin ikinci terimi ile açıklar, bu da hacimsel oran ve etriye aralığı değerlerinin hesaba katılması anlamına gelmektedir. Benzer bir açıklama Sheikh ve Üzümeri (1982) tarafından kullanılmıştır, burada eğrinin azalan bölümü  $\varepsilon_{cc2} > \varepsilon_{cc1}$  deformasyonu ile başlamaktadır.

$$z = \frac{0.5}{0.75\rho_{\rm w}(b_{\rm c}/s)^{1/2}}$$
(3.68)

Sheikh-Üzümeri (1982) ve Kappos (1991) modellerinde, etriyenin merkezinden itibaren tanımlanan hacimsel oran ( $\rho_w$ ) olarak isimlendirilmiştir. Park, Priestley ve Gill (1982)  $\rho_w$  değerini etriyenin dış tarafından itibaren tanımlamışlardır. (3.68) denkleminin temelinde  $\sigma$ - $\epsilon$  diyagramının azalan eğrisi boyunca maksimum dayanım değerinin %15 düştüğü nokta bulunmaktadır. Apsis noktası;

$$\varepsilon_{cc85} = 0.22 \rho_w \sqrt{b_c / s} + \varepsilon_{cc2}$$

$$(3.69)$$

$$f_{cc} f_c$$

$$f_c$$

$$f_c$$

$$0.85 f_c$$



Şekil 3.19 Kappos Tafından Önerilen Betonun Genel Gerilme-Şekil Değiştirme Eğrisi[86]

# 3.1.13 Saatçioğlu&Razvi (1992) Tarafından Önerilen Gerilme–Şekil Değiştirme Eğrisi Modeli

1992 yılında Saatçioğlu ve Razvi tarafından önerilen model, enine donatı yakınında maksimuma ulaşan ve donatılar arasında azalan yanal basıncın ortalama değerinin hesaplanması esasına dayanır. Artan ilk bölüm bir parabol, düşen kol bir doğrudan oluşur. Kent&Park ve Sheikh&Üzümeri modelleri gibi içsel sürtünme nedeniyle beton gerilme dayanımın belirli bir oranının altına düşmediği varsayılır (0.20fcc). Model denklemleri aşağıda özetlenmiştir.



Şekil 3.20 Saatçioğlu&Razvi Tafından Önerilen Betonun Genel Gerilme-Şekil Değiştirme Eğrisi

$$\sigma_{c} = f_{cc} \left[ \frac{2\varepsilon_{c}}{\varepsilon_{cc}} - \left(\frac{\varepsilon_{c}}{\varepsilon_{cc}}\right)^{2} \right]^{\frac{1}{1+2\lambda}} \qquad \varepsilon_{c} \le \varepsilon_{cc}$$
(3.70)

$$\sigma_{c} = f_{cc} \left[ 1 - \frac{0.15(\varepsilon_{c} - \varepsilon_{cc})}{\varepsilon_{s5} - \varepsilon_{cc}} \right] \qquad \qquad \varepsilon_{20} > \varepsilon_{c} > \varepsilon_{cc} \qquad (3.71)$$

$$\sigma_{\rm c} = 0.2 f_{\rm cc} \qquad \qquad \epsilon_{\rm c} > \epsilon_{\rm 20} \qquad \qquad (3.72)$$

$$f_{cc} = k_3 f_c + k_1 f_{1e}$$
(3.73)

$$\varepsilon_{cc} = \varepsilon_{c0} (1 + 5\lambda) \tag{3.74}$$

$$\lambda = \frac{k_1 f_{le}}{k_3 f_c} \tag{3.75}$$

$$k_1 = 6.7(f_{1e})^{-0.17}$$
(3.76)

$$\varepsilon_{85} = 260\rho_s\varepsilon_{cc} + \varepsilon_{085} \tag{3.77}$$

$$f_{1e} = \frac{f_{1ex}b_x + f_{1ey}b_y}{b_x + b_y}$$
(3.78)

$$\mathbf{f}_{1\mathrm{ex}} = \beta_{\mathrm{x}} \mathbf{f}_{1\mathrm{x}} \tag{3.79}$$

$$\mathbf{f}_{1ey} = \boldsymbol{\beta}_{y} \mathbf{f}_{1y} \tag{3.80}$$

$$f_{1x} = \frac{\sum A_0 f_{sx} \sin \alpha_x}{s b_x}$$
(3.81)

$$f_{1y} = \frac{\sum A_0 f_{sy} \sin \alpha_y}{sb_y}$$
(3.82)

$$\beta_{x} = 0.26 \sqrt{(\frac{b_{x}}{a_{x}})(\frac{b_{x}}{s})(\frac{1.0}{f_{1x}})}$$
(3.83)

$$\beta_{y} = 0.26 \sqrt{(\frac{b_{y}}{a_{y}})(\frac{b_{y}}{s})(\frac{1.0}{f_{1y}})}$$
(3.84)

Burada;

f1e: Efektif yanal sargı basıncı,

f1x: X yönünde oluşan sargı basıncı,

f1y: Y yönünde oluşan sargı basıncı,

f1ex: X yönünde oluşan efektif sargı basıncı,

f1ey: Y yönünde oluşan efektif sargı basıncı,

k1: Betonun özelliğine bağlı katsayı,

ke: Sargılamanın etkinliği ile ilgili katsayı,

Ao: Enine donatı kesit alanı,

b<sub>x</sub>: Enine donatı merkezlerinden ölçülen çekirdek betonu X'e paralel boyutu,

by: Enine donatı merkezlerinden ölçülen çekirdek betonu Y'ye paralel boyutu,

s: Enine donatı merkezinden merkezine ölçülen etriye aralığı,

ax: bx boyunca tutulan boyuna donatılar arası mesafe,

ay: by boyunca tutulan boyuna donatılar arası mesafe,

αx: Enine donatı ve bx arasındaki açı,

αy: Enine donatı ve by arasındaki açıdır[87].

#### 3.2 Donatı Modeli

Betonarme; beton ve donatı çeliğinden oluşan kompozit bir malzemedir. Bu sebeple dayanım-deformasyon ilişkisinin belirlenmesi için, onu oluşturan donatı çeliğinin de birim şekil değiştirme-gerilme ilişkisinin bilinmesi gereklidir. İzotropik ve homojen yapısı nedeniyle çeliğin gerilme-şekil değiştirme ilişkisi üzerinde beton kadar çok sayıda ve farklı yapıda model bulunmamaktadır.

Literatürde bulunan yumuşak çelik ve daha sert çelikler için önerilen modelleri inceleyerek; Mander her iki tür çelik içinde kullanılabilecek bir model önermiştir. Bu modelde akma birim şekil değiştirme değerine kadar gerilme değeri doğrusal artmakta, bu değerden sonra akma platosunda bir müddet akma dayanımında sabit kalmakta ve daha sonra pekleşerek nihai birim şekil değiştirme değerine ulaşmaktadır. Pekleşme bölgesi çelik özelliklerine bağlı olarak değişen derecede bir eğri denklemi şeklindendir(Şekil 3.21).



Şekil 3.21 Çelik için Gerilme-Şekil Değiştirme Modeli

Üç bölümden oluşan modelin denklemi :

$$\sigma_{s} = f_{sy} \qquad \qquad \epsilon_{sp} \ge \epsilon_{s} > \epsilon_{sy} \qquad (3.86)$$

$$E_{s} = f_{sy} / \varepsilon_{sy}$$
(3.87)

$$P = E_{sh} \left[ \frac{\varepsilon_{su} - \varepsilon_{sp}}{f_{su} - f_{sy}} \right]$$
(3.89)

Burada;

 $\sigma_s$ : Çelik gerilmesi,

 $\epsilon_s$ : Çelik birim şekil değiştirme,

 $\epsilon_{sy}$ : Çelik akma birim şekil değiştirme,

 $\epsilon_{sp}$ : Çeliğin pekleşmeye başladığı birim şekil değiştirme değeri,

 $\epsilon_{su}$ : Çelik nihai birim şekil değiştirme değeri,

f<sub>sy</sub>: Çelik akma dayanımı,

f<sub>su</sub>: Çelik nihai dayanımı,

Es: Çelik elastisite modülü,

E<sub>sh</sub>: Çelik pekleşme modülü,

P: Çeliğin pekleşme derecesidir.

Görüldüğü gibi çeliğin pekleşme denklemi P'inci dereceden bir denklemdir ve  $E_{sh}$  katsayısına bağlıdır.  $E_{sh}$  modellenecek çelik donatı ile yapılan deneylerden elde edilmelidir fakat elde mevcut veri yoksa pekleşme denklemi ikinci derece bir denklem olarak alınabilir [88].

#### 4. MATERYAL VE METOT

Bu bölümde; araştırmada kullanılan betonun üretimindeki normal agrega, karma suyu ve çimento ile donatıya ait teknik bilgilere, deney düzeneğinin kurulum safhalarına ve deney uygulamalarına yer verilmiştir.

#### 4.1 Materyal

### 4.1.1 Agrega Özellikleri

Bu çalışmada kullanılan betonun üretiminde Balıkesir civarındaki Çavlan taş ocağından temin edilen normal agrega kullanılmıştır.

Kullanılan agregaların 0-4 mm elekten geçen kısmının gevşek yığın yoğunluğu 1630 kg/m<sup>3</sup>, su emme oranı %0.57; 5.6-11.2 mm elekten geçen kısmının gevşek yığın yoğunluğu 1340 kg/m<sup>3</sup>, su emme oranı %0.24; 11.2-22.4 mm elekten geçen kısmının gevşek yığın yoğunluğu 1340 kg/m<sup>3</sup>, su emme oranı %0.20'dir.

### 4.1.2 Beton Karma Suyunun Özellikleri

Araştırmada kullanılan betonun üretiminde karma suyu olarak kullanılan su, Balıkesir Üniversitesi, Mühendislik-Mimarlık Fakültesi su şebekesinden sağlanmıştır.

### 4.1.3 Çimento'nun Özellikleri

Araştırmada kullanılan betonların üretiminde, Balıkesir Set Çimento tarafından üretilen CEM I PÇ 42.5 R çimentosu kullanılmıştır. Bu çimentonun TS EN 197 standardına uygun olduğu Balıkesir Çimento Laboratuarında onaylanmıştır.

Balıkesir Çimento Laboratuar'ı tarafından yapılan analizin sonuçları Tablo4.1'de verilmiştir.

| Kimyasal Özellikler                            | Elde Edilen<br>Değerler | Standart<br>Değerler |
|------------------------------------------------|-------------------------|----------------------|
| Kızdırma Kaybı                                 | 3.22                    | Max. 5.00            |
| Çözünmeyen Kalıntı                             | 0.43                    | Max. 5.00            |
| Magnezyum Oksit                                | 1.58                    |                      |
| Kükürt Trioksit                                | 2.94                    | Max. 4.00            |
| Klorür                                         | 0.0035                  | Max. 0.1             |
| Fiziksel Özellikler                            |                         |                      |
| Özgül Yüzey (cm <sup>2</sup> /g)               | 3472                    |                      |
| 2 Günlük Basınç Dayanımı (N/mm <sup>2</sup> )  | 29.6                    | Min. 20              |
| 7 Günlük Basınç Dayanımı (N/mm <sup>2</sup> )  | 41.9                    |                      |
| 28 Günlük Basınç Dayanımı (N/mm <sup>2</sup> ) | 53.6                    | Min. 42.5            |
| Priz Başlangıcı (dakika)                       | 163                     | Min. 1 saat          |
| Priz Sonu (dakika)                             | 227                     | Min. 10 saat         |
| Hacim Genleşmesi (mm)                          | 1                       | Max. 10              |

Tablo 4.1 Araştırmada Kullanılan Çimentoya ait Değerler

#### 4.1.4 Beton Katkısı

Araştırmada kullanılan betonun üretiminde Sikament FFN süper akışkanlaştırıcı beton katkısı kullanılmıştır. Katkıya ait teknik bilgiler Tablo 4.2'de gösterilmiştir.

| Kimyasal Yapı              | Melamin sülfonat polimeri esaslı sıvı |  |  |
|----------------------------|---------------------------------------|--|--|
| Yoğunluk                   | $1.20 - 1.24$ kg/l, $20^{\circ}$ C'de |  |  |
| pH Değeri                  | 7–11                                  |  |  |
| Donma Noktası              | -10°C                                 |  |  |
| Toplam Klorür iyon içeriği | En fazla % 0.1, (TS EN 934-2)         |  |  |
| Alkali Miktarı             | En fazla % 7                          |  |  |
| (%Na2O Eşdeğeri Olarak)    |                                       |  |  |

### Tablo 4.2 Süper Akışkanlaştırıcı Katkıya ait Teknik Bilgiler

## 4.2 Metot

Bu bölümde, çalışmada kullanılan betonun üretimindeki agrega oranları, çimento miktarı, su miktarı seçimi, beton karışım oranlarına yer verilmiştir.

### 4.2.1 Deneylerde Kullanılan Betonların Hazırlanması

Balıkesir Üniversitesi, Mühendislik-Mimarlık Fakültesi, İnşaat Mühendisliği Bölümü, Yapı Laboratuarında TS 802'de verilen elverişli granülometrik bölgelerle karşılaştırmalar yapılmıştır.

Agregaların ve karışımın elekten geçen malzeme yüzdeleri Tablo 4.3'de, karışımların granülometrisi ile elverişli granülometrik bölgeler ise Şekil 4.1'de verilmiştir. Oluşturulan üç farklı karışımda, 1 m<sup>3</sup> karışıma giren malzeme miktarları Tablo 4.4'de gösterilmiştir.

Tablo 4.3 Karışık agreganın tane dağılımı ve elverişli granülometri değerleri

| Elek Göz Açıklığı (mm) | 0.25 | 0.50 | 1.00 | 2.00 | 4.00 | 8.00 | 16.00 | 31.50 |
|------------------------|------|------|------|------|------|------|-------|-------|
| Alt Sınır (% Geçen)    | 2    | 5    | 8    | 17   | 23   | 38   | 62    | 100   |
| İdeal Sınır (% Geçen)  | 8    | 18   | 28   | 37   | 47   | 62   | 80    | 100   |
| Üst Sınır (% Geçen)    | 15   | 29   | 42   | 53   | 65   | 77   | 89    | 100   |
| Karışım (% Geçen)      | 6    | 14   | 34   | 44   | 56   | 61   | 85    | 100   |



Şekil 4.1 Araştırmada Kullanılan Karışık Agreganın Granülometri Eğrisi

| Tablo 4.4 1m | <sup>3</sup> Beton için | Karışıma | Giren | Malzeme | Miktarları |
|--------------|-------------------------|----------|-------|---------|------------|
|--------------|-------------------------|----------|-------|---------|------------|

| Karışım | Çimento | Su   | Micir  | Micir   | Doğal   | Taş      | Katkı |
|---------|---------|------|--------|---------|---------|----------|-------|
|         | (kg)    | (kg) | I (kg) | II (kg) | Kum(kg) | Tozu(kg) | (kg)  |
| K1      | 300     | 150  | 200    | 680     | 480     | 480      | 2.40  |
| K2      | 350     | 160  | 200    | 700     | 480     | 480      | 2.80  |
| K3      | 275     | 150  | 200    | 650     | 480     | 450      | 1.65  |

## 4.2.2 Deney Numunelerinin Hazırlanması ve Kür Koşulları

Deneylerde kullanılacak numuneler için her birinden 3'er adet numune elde edilecek şekilde 5 adet kalıp hazırlanmıştır. Beton karışımı Balıkesir Üniversitesi Kampüsü, Müh-Mim. Fakültesi'nde Şekil 4.2, Şekil 4.3 ve Şekil 4.4'de görüldüğü gibi üretilmiş ve vibrasyon uygulanarak kalıplara yerleştirilmiştir.



Şekil 4.2 Beton Karışımının Hazırlanması



Şekil 4.3 Beton Karışımının Kalıplara Yerleştirilmesi



Şekil 4.4 Deney Numuneleri

Hazırlanmış numuneler Şekil 4.5'de gösterildiği gibi 1 hafta boyunca kür havuzunda muhafaza edilmiştir.



Şekil 4.5 Kür Havuzunda Tutulan Silindir, Kolon ve Küp Numuneler

# 4.3 Küp ve Silindir Numuneler ile Eksenel Basınç Dayanımları'nın Belirlenmesi

Hazırlanan Küp numuneler 7. ve 28. günlerde kırılarak eksenel basınç dayanımları belirlenmiştir. Silindir numuneler ise 28. gün kırılmış ve tüm değerler Tablo 4.5'de gösterilmiştir.



Şekil 4.6 Eksenel Basınç Dayanımı Belirlenen Küp Numuneler

| Karışım | Numune | 7 Günlük Küp<br>Dayanımları |             | 28 Gür<br>Daya | ılük Küp<br>nımları | 28 Günlük<br>Silindir<br>Dayanımları |             |
|---------|--------|-----------------------------|-------------|----------------|---------------------|--------------------------------------|-------------|
|         | INU    | Yük                         | Gerilme     | Yük            | Gerilme             | Yük                                  | Gerilme     |
|         |        | (kg)                        | $(kg/cm^2)$ | (kg)           | $(kg/cm^2)$         | (kg)                                 | $(kg/cm^2)$ |
|         | 1      | 61680                       | 274,1       | 97870          | 435,0               | 51930                                | 293,9       |
|         | 2      | 50830                       | 225,9       | 106800         | 474,6               | 54930                                | 310,8       |
| V1      | 3      | 66170                       | 294,1       | 75610          | 336,0               | 50910                                | 288,1       |
| N1      | 4      | 58462                       | 259,8       | 80265          | 356,7               | 53476                                | 302,7       |
|         | 5      | 57043                       | 253,5       | 81553          | 362,4               | 52289                                | 296,0       |
|         | 6      | 60360                       | 268,2       | 79400          | 352,8               | 54241                                | 307,1       |
|         | 1      | 67110                       | 298,2       | 100800         | 448,1               | 45010                                | 254,7       |
| К2      | 2      | 80860                       | 359,4       | 104500         | 464,5               | 37150                                | 210,3       |
|         | 3      | 80750                       | 358,9       | 106100         | 471,8               | 61910                                | 350,4       |
|         | 4      | 70160                       | 311,8       | 63660          | 282,9               | 65770                                | 372,2       |
|         | 5      | 67970                       | 302,1       | 81190          | 360,8               | 36400                                | 206,0       |
|         | 6      | 67660                       | 300,7       | 86080          | 382,6               | 46710                                | 265,4       |
|         | 1      | 81110                       | 360,5       | 97290          | 432,4               | 42380                                | 239,8       |
|         | 2      | 77970                       | 346,6       | 98140          | 436,2               | 44210                                | 250,2       |
| K3      | 3      | 74010                       | 328,9       | 94270          | 419,0               | 46920                                | 265,5       |
| KJ      | 4      | 54480                       | 242,1       | 77800          | 345,8               | 47170                                | 266,9       |
|         | 5      | 52290                       | 232,4       | 79610          | 353,8               | 42250                                | 239,1       |
|         | 6      | 52010                       | 231,1       | 76550          | 340,2               | 46820                                | 265,0       |
|         | 1      | 53780                       | 239,0       | 67410          | 299,6               | 49750                                | 281,5       |
| KB1     | 2      | 54730                       | 243,2       | 68210          | 303,2               | 31590                                | 178,7       |
|         | 3      | 54640                       | 242,9       | 67580          | 300,4               | 47200                                | 267,1       |
|         | 1      | 44590                       | 198,2       | 44420          | 197,4               | 39400                                | 223,0       |
| KB2     | 2      | 43710                       | 194,3       | 53640          | 238,4               | 38940                                | 220,3       |
|         | 3      | 44490                       | 197,7       | 54350          | 241,5               | 40450                                | 228,9       |

Tablo 4.5 Küp ve Silindir Numunelere ait Eksenel Basınç Dayanımları

### 4.4 Silindir Numuneler ile Elastisite Modülü'nün Belirlenmesi

Hazırlanan silindir numunelere Şekil 4.7'de görüldüğü gibi kükürt-grafit karışımından oluşan başlık oluşturulmuştur. Daha sonra TS3502'ye[89] uygun olarak her bir gruptan 4'er adet silindir numune basınç dayanımlarının %40'ına kadar dörder kez yüklenip boşaltılarak Şekil 4.8'de görülen düzenek yardımı ile Elastisite Modülleri belirlenmiştir.



Şekil 4.7 Numunelerin Başlıklanması



Şekil 4.8 Elastisite Modülünün Belirlenmesi için Oluşturulan Deney Düzeneği

## 4.5 Deney Düzeneğinin Hazırlanması

15x15x100cm boyutlarındaki kolon numunelerin eksenel basınç altında kırılabilmesi için Balıkesir Üniversitesi, Mühendislik-Mimarlık Fakültesi, İnşaat Mühendisliği Bölümü, Yapı Laboratuarında 100 ton eksenel basınç kapasiteli bir yükleme çerçevesi hazırlanmıştır. Yükleme çerçevesi için statik analizler Sap2000 programı ile yapılmış ve taşıyıcı sistemi boyutlandırılmıştır.



Şekil 4.9 Yükleme Çerçevesinin Oluşturulması

100 ton eksenel basınç kapasitesine sahip yükleme çerçevesinin hidrolik aksamı 24 cm çapında silindir, elemanlı pompa, yağ haznesi, elektrik motoru, yükleme hızını düzenleyen üç yollu hız ayar valfi ve yükün istenilen noktada sabitlenmesini sağlayan pilot uyarılı çek valfden oluşmaktadır. Deneyin uygulanışı sırasında yükün eksenel olarak yüklenmesini sağlamak amacı ile deney düzeneğine oynar başlık monte edilmiştir.

Deney uygulanışı sırasında yük ve yer değiştirme verileri için 16 kanallı veri aktarıcı ve TDG CODA veri toplama yazılım paketi kullanılmıştır[90]. Her bir kanaldan saniyede sekiz kez okuma alınmıştır. Yük değerleri 200 ton kapasiteli Loadcell ve yer değiştirme değerleri ise 250 mm kapasiteli LVDT'ler yardımı ile üç noktadan alınmıştır. LVDT'lerin numunelere sabitlenmesini sağlayan kelepçelerin ara mesafesi; başlıksız kolon numunelerinde 145 mm, beton başlıklı kolon numunelerinde ise 280 mm'dir.



Şekil 4.10 Numuneye Sabitlenen LVDT'ler

Yüklemenin yapıldığı kolonun alt ve üst yüzeyine yükün düzgün yayılı olarak aktarılabilmesi için çelik başlıklar yerleştirilmiştir. Deney düzeneği Şekil 4.11 de gösterilmiştir.



Şekil 4.11 Deney Düzeneği

#### 4.6 Kolon Numunelerin Elastisite Modüllerinin Belirlenmesi

Tablo 4.6'da görüldüğü gibi; K1,K2,K3 karışımlarından 30'ar adet, KB1 ve KB2 karışımlarından 6'şar adet olmak üzere toplamda 102 adet kolon numune oluşturulmuştur. Hazırlanan kolon numuneler Beton Karışımlarına göre K1, K2, K3, KB1, KB2 ve Donatı Oranlarına göre D0, D1, D2, D3, D4 olarak isimlendirilmiştir.

Tablo 4.6 Donatı Oranı ve Beton Karışımına Göre Oluşturulan Kolon Numune Miktarları

|               | Donatisiz<br>(D0) | 4φ10<br>(D1) | 4 <b>φ</b> 12<br>(D2) | 4 <b>φ</b> 14<br>(D3) | 4 <b>φ16</b><br>(D4) | Toplam |  |
|---------------|-------------------|--------------|-----------------------|-----------------------|----------------------|--------|--|
| K1            | 6                 | 6            | 6                     | 6                     | 6                    | 30     |  |
| K2            | 6                 | 6            | 6                     | 6                     | 6                    | 30     |  |
| K3            | 6                 | 6            | 6                     | 6                     | 6                    | 30     |  |
| KB1           |                   | 6            |                       |                       |                      | 6      |  |
| KB2           |                   |              | 6                     |                       |                      | 6      |  |
| Toplam Numune |                   |              |                       |                       |                      |        |  |

Deneylerde numuneler  $KX_1DX_2X_3X_4$  şeklinde isimlendirilmiştir. Burada;

X<sub>1</sub>: Karışım numarasını

X<sub>2</sub>: Donatı yüzdesini

X<sub>3</sub>: İlgili karışıma ait grup numarasını

X<sub>4</sub>: İlgili grup içindeki numune ismini temsil etmektedir.

Örneğin;

K3D423 numunesi; 3. Karışım ve %4 donatı oranına sahip olan 2. grubun, 3. numunesidir. Bir başka deyişle Tablo 4.6'da görülen K3 satırı ile D4 sütununun kesişiminde görülen 6 numunenin sonuncusunu temsil etmektedir.

Hazırlanan numunelerin donatı yerleşim planı Şekil 4.12'de görüldüğü gibidir.



Şekil 4.12 Donatı Yerleşim Planı

#### 4.7 Kolon Deneylerine ait Grafikler

Hazırlanan 102 adet numuneden 90 tanesi eksenel basınç altında yüklenerek kırılmıştır. K1 karışımının 2. grubunda bulunan 12 adet donatılı kolon numunenin dökümü sırasında vibratörün bozulması sonucu numunelerde oluşan segregasyon sebebi ile K1 karışımının 2. grubu kırılamamıştır.

Eksenel basınç altında kırılan her bir numuneye ait üç farklı noktadaki yükdeplasman eğrileri çizilmiştir. Daha sonra normalize edilmiş Gerilme-Şekil değiştirme eğrileri çizilmiştir. Kesitin elastisite modülünü belirleyecek olan eğrilerin lineer kısımlarına ait doğru denklemleri her bir grafik üzerinde gösterilmiştir. Son olarak numunenin deney sonundaki kırılma biçimine yer verilerek bir sonraki numune için aynı işlemler tekrarlanmıştır. K11 numunelerinde yer değiştirmeleri belirleyen LVDT'lerin kolonun orta bölgesinde kolonun iki yüzüne yerleştirilmesi ve kırılmanın genellikle çelik başlığın dibinde meydana gelmesi sebebiyle eğrisinin tamamı elde edilememiş, yalnızca lineer kısımlar gösterilmiştir.  $\sigma$ - $\epsilon$  eğrisinin elde edilmesi amacıyla K3 numunelerinin deneylerinde kolonun bir yüzüne; üste, ortaya ve alta birer adet LVDT yerleştirilmiştir. Bu durumda kırılma bölgesinde bulunan LVDT'den elde edilen veriler ile kolonun  $\sigma$ - $\epsilon$  eğrisinin tamamı elde edilmiştir, ancak burkulma oluşan numunelerde verilerin sağlıklı elde edilememesi sebebiyle 2. grup K3D3 numunelerin deneylerinden itibaren kolonun kırılma bölgesinin iki yüzüne LVDT yerleştirilmiştir.

Deneyler sonucunda elde edilen grafikler sunulurken, öncelikle her bir deney grubuna ait silindir numuneler ve donatısız olarak dökülen referans kolon numunelerinden elde edilen ortalama gerilme-şekil değiştirme grafikleri gösterilmiştir. Daha sonra numune içindeki donatı oranı artışına bağlı olarak numunelere ait deney sonuçları sunulmuştur.

#### 4.7.1 K1 Grubu Deneyleri



Şekil 4.13 K1 Grubu Numunelere Ait Ortalama Gerilme-Şekil Değiştirme Grafiği

# 4.7.1.1 K1D111 Kolon Deneyi



Şekil 4.14 K1D111 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.15 K1D111 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.16 K1D111 Numunesinin Deney Sonundaki Görünüşü
## 4.7.1.2 K1D112 Kolon Deneyi



Şekil 4.17 K1D112 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.18 K1D112 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.19 K1D112 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.3 K1D113 Kolon Deneyi



Şekil 4.20 K1D113 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.21 K1D113 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.22 K1D113 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.4 K1D211 Kolon Deneyi



Şekil 4.23 K1D211 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.24 K1D211 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.25 K1D211 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.5 K1D212 Kolon Deneyi



Şekil 4.26 K1D212 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.27 K1D212 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.28 K1D212 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.6 K1D213 Kolon Deneyi



Şekil 4.29 K1D213 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.30 K1D213 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.31 K1D213 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.7 K1D311 Kolon Deneyi



Şekil 4.32 K1D311 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.33 K1D311 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.34 K1D311 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.8 K1D312 Kolon Deneyi



Şekil 4.35 K1D312 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.36 K1D312 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.37 K1D312 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.9 K1D313 Kolon Deneyi



Şekil 4.38 K1D313 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.39 K1D313 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.40 K1D313 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.10 K1D411 Kolon Deneyi



Şekil 4.41 K1D411 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.42 K1D411 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.43 K1D411 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.11 K1D412 Kolon Deneyi



Şekil 4.44 K1D412 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.45 K1D412 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.46 K1D412 Numunesinin Deney Sonundaki Görünüşü

## 4.7.1.12 K1D413 Kolon Deneyi



Şekil 4.47 K1D413 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.48 K1D413 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.49 K1D413 Numunesinin Deney Sonundaki Görünüşü

# 4.7.2 K2 Grubu Deneyleri



Şekil 4.50 K2 Grubu Numunelere Ait Ortalama Gerilme-Şekil Değiştirme Grafiği

## 4.7.2.1 K2D111 Kolon Deneyi



Şekil 4.51 K2D111 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.52 K2D111 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.53 K2D111 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.2 K2D112 Kolon Deneyi



Şekil 4.54 K2D112 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.55 K2D112 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.56 K2D112 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.3 K2D113 Kolon Deneyi



Şekil 4.57 K2D113 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.58 K2D113 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.59 K2D113 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.4 K2D211 Kolon Deneyi



Şekil 4.60 K2D211 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.61 K2D211 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.62 K2D211 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.5 K2D212 Kolon Deneyi



Şekil 4.63 K2D212 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.64 K2D212 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.65 K2D212 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.6 K2D213 Kolon Deneyi



Şekil 4.66 K2D213 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.67 K2D213 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.68 K2D213 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.7 K2D311 Kolon Deneyi



Şekil 4.69 K2D311 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.70 K2D311 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.71 K2D311 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.8 K2D312 Kolon Deneyi



Şekil 4.72 K2D312 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.73 K2D312 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.74 K2D312 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.9 K2D313 Kolon Deneyi



Şekil 4.75 K2D313 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.76 K2D313 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.77 K2D313 Numunesinin Deney Sonundaki Görünüşü



Şekil 4.78 LVDT Kelepçesinin Kaynaklarının Kopması ile Oluşan Görüntü

## 4.7.2.10 K2D411 Kolon Deneyi



Şekil 4.79 K2D411 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.80 K2D411 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.81 K2D411 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.11 K2D412 Kolon Deneyi



Şekil 4.82 K2D412 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.83 K2D412 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.84 K2D412 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.12 K2D413 Kolon Deneyi



Şekil 4.85 K2D413 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.86 K2D412 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.87 K2D413 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.13 K2D121 Kolon Deneyi



Şekil 4.88 K2D121 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.89 K2D121 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.90 K2D121 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.14 K2D122 Kolon Deneyi



Şekil 4.91 K2D122 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.92 K2D122 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.93 K2D122 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.15 K2D123 Kolon Deneyi



Şekil 4.94 K2D123 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.95 K2D123 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.96 K2D123 Numunesinin Deney Sonundaki Görünüşü

#### 4.7.2.16 K2D221 Kolon Deneyi



Şekil 4.97 K2D221 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.98 K2D221 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.99 K2D221 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.17 K2D222 Kolon Deneyi



Şekil 4.100 K2D222 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.101 K2D222 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.102 K2D222 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.18 K2D223 Kolon Deneyi



Şekil 4.103 K2D223 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.104 K2D223 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.105 K2D223 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.19 K2D321 Kolon Deneyi



Şekil 4.106 K2D321 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.107 K2D321 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.108 K2D321 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.20 K2D322 Kolon Deneyi



Şekil 4.109 K2D322 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.110 K2D322 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.111 K2D322 Numunesinin Deney Sonundaki Görünüşü

#### 4.7.2.21 K2D323 Kolon Deneyi



Şekil 4.112 K2D323 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.113 K2D323 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.114 K2D323 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.22 K2D421 Kolon Deneyi



Şekil 4.115 K2D421 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.116 K2D421 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.117 K2D421 Numunesinin Deney Sonundaki Görünüşü

## 4.7.2.23 K2D422 Kolon Deneyi



Şekil 4.118 K2D422 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.119 K2D422 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.120 K2D422 Numunesinin Deney Sonundaki Görünüşü
### 4.7.2.24 K2D423 Kolon Deneyi



Şekil 4.121 K2D423 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.122 K2D423 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.123 K2D423 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3 K3 Grubu Deneyleri



Şekil 4.124 K3 Grubu Numunelere Ait Ortalama Gerilme-Şekil Değiştirme Grafiği

### 4.7.3.1 K3D111 Kolon Deneyi



Şekil 4.125 K3D111 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.126 K3D111 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.127 K3D111 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.2 K3D112 Kolon Deneyi



Şekil 4.128 K3D112 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.129 K3D112 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.130 K3D112 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.3 K3D113 Kolon Deneyi



Şekil 4.131 K3D113 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.132 K3D113 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.133 K3D113 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.4 K3D211 Kolon Deneyi



Şekil 4.134 K3D211 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.135 K3D211 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.136 K3D211 Numunesinin Deney Sonundaki Görünüşü

# 4.7.3.5 K3D212 Kolon Deneyi



Şekil 4.137 K3D212 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.138 K3D212 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.139 K3D212 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.6 K3D213 Kolon Deneyi



Şekil 4.140 K3D213 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.141 K3D213 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.142 K3D213 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.7 K3D311 Kolon Deneyi



Şekil 4.143 K3D311 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.144 K3D311 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.145 K3D311 Numunesinin Deney Sonundaki Görünüşü

# 4.7.3.8 K3D312 Kolon Deneyi



Şekil 4.146 K3D312 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.147 K3D312 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.148 K3D312 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.9 K3D313 Kolon Deneyi



Şekil 4.149 K3D313 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.150 K3D313 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.151 K3D313 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.10 K3D411 Kolon Deneyi



Şekil 4.152 K3D411 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.153 K3D411 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.154 K3D411 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.11 K3D412 Kolon Deneyi



Şekil 4.155 K3D412 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.156 K3D412 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.157 K3D412 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.12 K3D413 Kolon Deneyi



Şekil 4.158 K3D413 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.159 K3D413 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.160 K3D413 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.13 K3D121 Kolon Deneyi



Şekil 4.161 K3D121 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.162 K3D121 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.163 K3D121 Numunesinin Deney Sonundaki Görünüşü

#### 4.7.3.14 K3D122 Kolon Deneyi



Şekil 4.164 K3D122 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.165 K3D122 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.166 K3D122 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.15 K3D123 Kolon Deneyi



Şekil 4.167 K3D123 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.168 K3D123 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.169 K3D123 Numunesinin Deney Sonundaki Görünüşü

## 4.7.3.16 K3D221 Kolon Deneyi



Şekil 4.170 K3D221 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.171 K3D221 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.172 K3D221 Numunesinin Deney Sonundaki Görünüşü

## 4.7.3.17 K3D222 Kolon Deneyi



Şekil 4.173 K3D222 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.174 K3D222 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.175 K3D222 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.18 K3D223 Kolon Deneyi



Şekil 4.176 K3D223 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.177 K3D223 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.178 K3D223 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.19 K3D321 Kolon Deneyi



Şekil 4.179 K3D321 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.180 K3D321 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.181 K3D321 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.20 K3D322 Kolon Deneyi



Şekil 4.182 K3D322 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.183 K3D322 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.184 K3D322 Numunesinin Deney Sonundaki Görünüşü

#### 4.7.3.21 K3D323 Kolon Deneyi



Şekil 4.185 K3D323 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.186 K3D323 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.187 K3D323 Numunesinin Deney Sonundaki Görünüşü

#### 4.7.3.22 K3D421 Kolon Deneyi



Şekil 4.188 K3D421 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.189 K3D421 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.190 K3D421 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.23 K3D422 Kolon Deneyi



Şekil 4.191 K3D422 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.192 K3D422 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.193 K3D422 Numunesinin Deney Sonundaki Görünüşü

### 4.7.3.24 K3D423 Kolon Deneyi



Şekil 4.194 K3D423 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.195 K3D423 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.196 K3D422 Numunesinin Deney Sonundaki Görünüşü

#### 4.8 Beton Başlıklı Kolon Numunelere Ait Grafikler

Deneylerdeki 15x15x100cm kesitli betonarme kolonlarda oluşan kırılmaların genel olarak çelik başlığın hemen dibinde meydana geldiği görülmüştür. Çelik başlık dibinde meydana gelen kırılmaların nedeni; Şekil 4.197'de gösterilen silindir numunelerde oluşan kırımlarda olduğu gibi basınç gerilmelerinden önce kayma gerilmelerinin aşılması olarak yorumlanmaktadır.



Şekil 4.197 Silindir ve Başlıksız Kolon Numunelerde Oluşan Kırılma Şekli

Bu durumda kolon numunelere beton başlık oluşturularak kırılmaların kolon ortalarında oluşması ve LVDT okumalarının bu bölgelerden alınması sağlanmaya çalışılmıştır. Bu amaçla beton başlıklı kolon numuneler için yeniden 6 adet kalıp hazırlanarak beton başlıklı numuneler düşey olarak dökülmüş ve eksenel basınç altında kırılmıştır. LVDT'lerin beton başlıklı kolon numunelere sabitlenmesini sağlayan kelepçelerin ara mesafesi 280 mm'dir. Beton başlıklı kolon numunelere ait donatı yerleşim planı Şekil 4.198'de görüldüğü gibidir.



Şekil 4.198 Beton Başlıklı Kolon Numunelere Ait Donatı Yerleşim Planı



#### 4.8.1 KB1 Grubu Deneyleri

Şekil 4.199 KB1 Grubu Numunelere Ait Ortalama Gerilme-Şekil Değiştirme Grafiği

### 4.8.1.1 KB1D11 Kolon Deneyi



Şekil 4.200 KB1D11 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.201 KB1D11 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.202 KB1D11 Numunesinin Deney Sonundaki Görünüşü

### 4.8.1.2 KB1D12 Kolon Deneyi



Şekil 4.203 KB1D12 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.204 KB1D12 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.205 KB1D12 Numunesinin Deney Sonundaki Görünüşü

### 4.8.1.3 KB1D13 Kolon Deneyi



Şekil 4.206 KB1D13 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.207 KB1D13 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.208 KB1D13 Numunesinin Deney Sonundaki Görünüşü

### 4.8.1.4 KB1D14 Kolon Deneyi



Şekil 4.209 KB1D14 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.210 KB1D14 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.211 KB1D14 Numunesinin Deney Sonundaki Görünüşü

### 4.8.1.5 KB1D15 Kolon Deneyi



Şekil 4.212 KB1D15 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.213 KB1D15 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.214 KB1D14 Numunesinin Deney Sonundaki Görünüşü

### 4.8.1.6 KB1D16 Kolon Deneyi



Şekil 4.215 KB1D16 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.216 KB1D16 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.217 KB1D16 Numunesinin Deney Sonundaki Görünüşü

### 4.8.2 KB2 Grubu Deneyleri



Şekil 4.218 KB2 Grubu Numunelere Ait Ortalama Gerilme-Şekil Değiştirme Grafiği

### 4.8.2.1 KB2D21 Kolon Deneyi



Şekil 4.219 KB2D21 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.220 KB2D21 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.221 KB2D21 Numunesinin Deney Sonundaki Görünüşü
## 4.8.2.2 KB2D22 Kolon Deneyi



Şekil 4.222 KB2D22 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.223 KB2D22 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.224 KB2D22 Numunesinin Deney Sonundaki Görünüşü

# 4.8.2.3 KB2D23 Kolon Deneyi



Şekil 4.225 KB2D23 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.226 KB2D23 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.227 KB2D23 Numunesinin Deney Sonundaki Görünüşü

# 4.8.2.4 KB2D24 Kolon Deneyi



Şekil 4.228 KB2D24 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.229 KB2D24 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.230 KB2D24 Numunesinin Deney Sonundaki Görünüşü

# 4.8.2.5 KB2D25 Kolon Deneyi



Şekil 4.231 KB2D25 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.232 KB2D25 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.233 KB2D25 Numunesinin Deney Sonundaki Görünüşü

# 4.8.2.6 KB2D26 Kolon Deneyi



Şekil 4.234 KB2D26 Numunesine Ait Yük-Deplasman Grafiği



Şekil 4.235 KB2D26 Numunesine Ait Gerilme-Şekil Değiştirme Grafiği



Şekil 4.236 KB2D26 Numunesinin Deney Sonundaki Görünüşü

|        | f.=300 kg/cm <sup>2</sup> |                                  |                     |                       |                   | E 222650          |          |
|--------|---------------------------|----------------------------------|---------------------|-----------------------|-------------------|-------------------|----------|
|        | K11 (kg/cm <sup>2</sup> ) |                                  |                     |                       | E=322050          |                   |          |
| Numune | 1                         |                                  | 2.                  |                       | 3.                |                   | Ortalama |
| %1     | <del>266</del>            | 325                              | 330                 | 330075                |                   | 340614            |          |
| %2     | 351                       | 741                              | 355724              |                       | 391296            |                   | 366253   |
| %3     | 397                       | 633                              | 412914              |                       | 411806            |                   | 407451   |
| %4     | <del>308</del>            | <u>823</u>                       | 431                 | 484                   | 408               | 152               | 419818   |
|        |                           |                                  | f <sub>c</sub> =270 | kg/cm <sup>2</sup>    |                   |                   | F_209752 |
|        | K                         | 21 (kg/cm                        | <sup>2</sup> )      | K                     | 22 (kg/cm         | <sup>2</sup> )    | L-300732 |
| Numune | 1.                        | 2.                               | 3.                  | 4.                    | 5.                | 6.                | Ortalama |
| %1     | 327263                    | 309944                           | 293740              | 327302                | 308755            | 442705            | 334951   |
| %2     | 346388                    | 359167                           | 365569              | 361898                | 366568            | 367173            | 361127   |
| %3     | 362510                    | 395242                           | <del>277061</del>   | 409281                | 377201            | 375159            | 383878   |
| %4     | 419816                    | <del>245038</del>                | 442263              | 411843                | 416380            | 405405            | 419141   |
|        | $f_c=250 \text{ kg/cm}^2$ |                                  |                     |                       |                   |                   | E_200024 |
|        | K                         | 31 (kg/cm                        | 2)                  | K32 (kg/              | $cm^2$ )          | L-300934          |          |
| Numune | 1.                        | 2.                               | 3.                  | 4.                    | 5.                | 6.                | Ortalama |
| %1     | 311124                    | <del>250011</del>                | 334679              | 295290                | 347295            | <del>561264</del> | 322097   |
| %2     | <del>942989</del>         | <del>199320</del>                | 356128              | 340105                | <del>752436</del> | 361150            | 352461   |
| %3     | 369939                    | 379647                           | 371893              | 368122                | 361391            | 379282            | 371712   |
| %4     | 399082                    | 423176                           | 393058              | 412806                | 400897            | <del>577235</del> | 405803   |
|        |                           |                                  | f <sub>c</sub> =240 | kg/cm <sup>2</sup>    |                   |                   | F-282251 |
|        |                           |                                  | <b>KB1 (</b>        | (kg/cm <sup>2</sup> ) |                   |                   | L-202251 |
| Numune | 1.                        | 2.                               | 3.                  | 4.                    | 5.                | 6.                | Ortalama |
| %1     | 286402                    | 295527                           | 303436              | 305314                | 287547            | 301128            | 296559   |
|        | $f_c=220 \text{ kg/cm}^2$ |                                  |                     |                       |                   |                   | F-208051 |
|        |                           | <b>KB2</b> (kg/cm <sup>2</sup> ) |                     |                       |                   |                   |          |
| Numune | 1.                        | 2.                               | 3.                  | 4.                    | 5.                | 6.                | Ortalama |
| %2     | 342761                    | 345903                           | 319433              | <del>989170</del>     | 348754            | 345076            | 340385   |

# Tablo 4.7 Deneylerden Elde Edilen Elastisite Modülleri

## 5. DENEY SONUÇLARININ ANALİTİK OLARAK İNCELENMESİ

Deneye tabi tutulan numuneler, RESPONSE–2000 Betonarme Kesit Analizi programı[91] kullanılarak analitik olarak incelenmiştir. Programda otomatik olarak tanımlanmış olan Popovich / Thorenfeldt / Collins Beton modelinin yanında D.B.Y.B.H.Y'de sunulan Mander modeli[84,85] de tanımlanmış, donatı modeli olarak ise ASTM A615 modeli[92] kullanılmıştır. Analitik değerlendirme sonuçları sunulurken ilk olarak analizi yapılan her bir kesitin özellikleri gösterilmiştir. Daha sonra her bir kesit için analitik olarak hesaplanan gerilme-şekil değiştirme eğrileri ile ilgili kesitlere ait deneysel olarak bulunan gerilme-şekil değiştirme eğrileri aynı grafik üzerinde sunulmuştur. Grafiklerden de görüleceği gibi deneysel ve analitik olarak elde edilen eğrilerin lineer bölümleri örtüşmektedir.

#### 5.1 K1D1 Kolonları



Şekil 5.1 K1D1 Kolonlarının Response–2000 Programı Kullanılarak Çözümü



Şekil 5.2 K1D1 Kolonlarının Analitik ve Deneysel Olarak Belirlenen o-E Eğrileri

## 5.2 K1D2 Kolonları



Şekil 5.3 K1D2 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





#### 5.3 K1D3 Kolonları



Şekil 5.5 K1D3 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





#### 5.4 K1D4 Kolonları



Şekil 5.7 K1D4 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





#### 5.5 K2D1 Kolonları



Şekil 5.9 K2D1 Kolonlarının Response-2000 Programı Kullanılarak Çözümü





## 5.6 K2D2 Kolonları



Şekil 5.11 K2D2 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





#### 5.7 K2D3 Kolonları



Şekil 5.13 K2D3 Kolonlarının Response-2000 Programı Kullanılarak Çözümü





#### 5.8 K2D4 Kolonları



Şekil 5.15 K2D4 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





## 5.9 K3D1 Kolonları



Şekil 5.17 K3D1 Kolonlarının Response–2000 Programı Kullanılarak Çözümü



Şekil 5.18 K3D1 Kolonlarının Analitik ve Deneysel Olarak Belirlenen o-E Eğrileri

#### 5.10 K3D2 Kolonları



Şekil 5.19 K3D2 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





#### 5.11 K3D3 Kolonları



Şekil 5.21 K3D3 Kolonlarının Response–2000 Programı Kullanılarak Çözümü



Şekil 5.22 K3D3 Kolonlarının Analitik ve Deneysel Olarak Belirlenen o-E Eğrileri

#### 5.12 K3D4 Kolonları



Şekil 5.23 K3D4 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





#### 5.13 KB1D1 Kolonları



Şekil 5.25 KB1D1 Kolonlarının Response-2000 Programı Kullanılarak Çözümü



Şekil 5.26 KB1D1 Kolonlarının Analitik ve Deneysel Olarak Belirlenen σ-ε Eğrileri

#### 5.14 KB2D2 Kolonları



Şekil 5.27 KB2D2 Kolonlarının Response–2000 Programı Kullanılarak Çözümü





## 6. ELASTİSİTE MODÜLÜNÜN YAPI DAVRANIŞINA ETKİSİ

#### 6.1 Elastisite Modülünün Deplasmanlara Etkisi

Kolonlarda donatı oranına bağlı olarak hesaplanan elastisite modülünün, yapının deplasmanlarına olan etkisini belirlemek amacıyla mimari planı Şekil 6.1'de, kalıp planı Şekil 6.2'de, üç boyutlu görünüşü Şekil 6.3'de ve x yönündeki kesiti Şekil 6.4'de gösterilen bir yapı tasarlanmıştır. Kat yüksekliği 3 metre olan, 5 katlı, her iki yönde 3 açıklıklı binanın yapısal davranış katsayısı R=8 olarak düşünülmüş, yerel zemin sınıfı Z2 olarak belirlenmiştir. Kat döşemeleri 15 cm, kirişler 25/50 cm boyutlarında seçilmiştir.

Kolon boyutlarının farklı olduğu iki yapının, dört farklı çözümü sunulmuştur. İlk yapıda; tüm kolonlar 40/40 cm seçilerek kat döşemelerinde hareketli yük 0.30 t/m<sup>2</sup> olarak belirlenmiş ve aşağıda gösterilen yük kombinasyonlarına göre yapılan çözüm sonucunda kolonlarda donatı oranının %1 olduğu görülmüştür. İkinci yapıda ise; tüm kolonlar 30/30 cm seçilerek kat döşemelerinde hareketli yük 0.50 t/m<sup>2</sup> olarak belirlenmiş, çözüm sonucunda kolonlarda donatı oranının %2 olduğu görülmüştür.

- 1.4 G + 1.6 Q
- $1 G + 1 Q \pm 1Ex$
- $1 G + 1 Q \pm 1 Ey$
- $0.9 \text{ G} \pm 1 \text{ Ex}$
- $0.9 \text{ G} \pm 1 \text{ Ey}$

5 katlı yapının I. derece deprem bölgesinde uygulandığı düşünülerek, kolonlarda donatı oranına bağlı olarak elde edilen Elastisite modülü değerlerine göre dört farklı çözüm Sap2000[93] programı ile yapılmıştır. Her çözümde, tüm yapı elemanlarının beton kalitesi; çalışmanın dördüncü bölümünde tanımlanan K1 karışımı olarak belirlenmiştir. Bu karışımdan oluşturulan, silindir ve donatısız referans numunelerden elde edilen ortalama elastisite modülü 322650 kg/cm<sup>2</sup>, tüm yapı elemanlarına tanımlanarak kolonları 40x40 cm olan ilk yapı çözülmüş ve x yönündeki deplasmanlar belirlenmiştir. Daha sonra; kolonlarda donatı oranının %1 olması durumunda elde edilen ortalama elastisite modülü değerleri 335344 kg/cm<sup>2</sup> kolonlarda tanımlanmış, diğer elemanlar aynen korunarak yapı tekrar çözülmüş ve x yönündeki deplasmanlar belirlenerek ikinci çözüm tamamlanmıştır. Aynı şekilde kolonları 30x30 cm olan ikinci yapı içinde 2 farklı çözüm yapılmıştır. Tüm yapılara ait x yönündeki deplasmanlar Tablo 6.1'de, % değişim oranları ise Tablo 6.2'de gösterilmiştir.



Şekil 6.1 Seçilen Yapının Mimari Planı



Şekil 6.2 Seçilen Yapının Kalıp Planı



Şekil 6.3 Seçilen Yapının Üç Boyutlu Görünümü



Şekil 6.4 Seçilen Yapının Kesit Görünümü

|        | Kolonlar 40x40 cm |             |   | Kolonlar 30x30 cm     |                       |  |  |
|--------|-------------------|-------------|---|-----------------------|-----------------------|--|--|
| Katlar | Ec=322650         | Ec=335344   |   | Ec=322650             | Ec=366253             |  |  |
| Natial | $(kg/cm^2)$       | $(kg/cm^2)$ | J | (kg/cm <sup>2</sup> ) | (kg/cm <sup>2</sup> ) |  |  |
|        | Deplasmanlar (mm) |             |   |                       |                       |  |  |
| 5      | 11,319            | 11,105      |   | 17,339                | 15,879                |  |  |
| 4      | 10,070            | 9,878       |   | 15,534                | 14,224                |  |  |
| 3      | 8,011             | 7,856       |   | 12,502                | 11,439                |  |  |
| 2      | 5,342             | 5,233       |   | 8,557                 | 7,813                 |  |  |
| 1      | 2,338             | 2,283       |   | 4,039                 | 3,661                 |  |  |

Tablo 6.1 Seçilen Yapının X Yönünde Oluşan Deplasmanları

Tablo 6.2 X Yönünde Oluşan Deplasmanların İlk Çözüme Göre % Değişim Oranları

| Katlar | Ec=335344<br>(kg/cm <sup>2</sup> ) |  | Ec=366253<br>(kg/cm <sup>2</sup> ) |  |  |
|--------|------------------------------------|--|------------------------------------|--|--|
|        | Değişim (%)                        |  |                                    |  |  |
| 5      | -1.89                              |  | -8.42                              |  |  |
| 4      | -1.90                              |  | -8.43                              |  |  |
| 3      | -1.93                              |  | -8.50                              |  |  |
| 2      | -2.04                              |  | -8.69                              |  |  |
| 1      | -2.35                              |  | -9.35                              |  |  |



Şekil 6.5 Seçilen İki Yapının X Yönünde Oluşan Deplasmanları

#### 6.2 Elastisite Modülünün Kesit Tesirlerine Etkisi

Kolonlarda donatı oranına bağlı olarak hesaplanan elastisite modülünün, yapının kesit tesirlerine olan etkisini belirlemek amacıyla Bölüm 6.1'de tanımlanan yapı kullanılmıştır. Donatı oranının %1 olduğu 40/40 cm boyutlu kolonlar ile teşkil edilmiş yapı ve donatı oranının %2 olduğu 30/30 cm boyutlu kolonlar ile teşkil edilmiş 2 farklı yapının 8 farklı çözümü yapılmıştır. Statik analizi yapılan yapılar Tablo 6.3'de özetlenmiş, analiz sonuçları Şekil 6.6, Şekil 6.7, Şekil 6,8 ve Şekil 6.9'da sunulmuştur.

| Bina   | 40/40 Kolonlar                     | 30/30 Kolonlar                     |  |  |
|--------|------------------------------------|------------------------------------|--|--|
| Türü   | 40/40 Kololilai                    | 30/30 Kolomai                      |  |  |
| Kolon  |                                    |                                    |  |  |
| Donatı | %1                                 | %2                                 |  |  |
| Oranı  |                                    |                                    |  |  |
|        | Kolon: Beton Elastisite Modülü     | Kolon: Beton Elastisite Modülü     |  |  |
|        | Kiriş : Çatlamamış Atalet Momenti  | Kiriş :Çatlamamış Atalet Momenti   |  |  |
|        | Kolon: Betonarme Elastisite Modülü | Kolon: Betonarme Elastisite Modülü |  |  |
| Çözüm  | Kiriş : Çatlamamış Atalet Momenti  | Kiriş :Çatlamamış Atalet Momenti   |  |  |
| Türü   | Kolon: Beton Elastisite Modülü     | Kolon: Beton Elastisite Modülü     |  |  |
|        | Kiriş : Çatlamış Atalet Momenti    | Kiriş :Çatlamış Atalet Momenti     |  |  |
|        | Kolon: Betonarme Elastisite Modülü | Kolon: Betonarme Elastisite Modülü |  |  |
|        | Kiriş : Çatlamış Atalet Momenti    | Kiriş : Çatlamış Atalet Momenti    |  |  |

Tablo 6.3 Statik Analizi Yapılan Yapılar ve Çözüm Türleri

| 0.90         |                | -4,58  | -2,93  |               | -5,51         |
|--------------|----------------|--------|--------|---------------|---------------|
| 0,92         |                | -4,63  | -2,93  |               | -5,54         |
| 1,25         |                | -5,80  | -3,25  |               | -6,28         |
| 1,25         |                | -5,85  | -3,28  |               | -6,31         |
| 1.19         | 3.60           |        |        | 2.40          | 3.83          |
| .1.22        | 3 60           |        |        | 2.38          | 3.81          |
| .2 04        | 3 57           |        |        | 1.82          | 3 34          |
| 2,04         | 3 56           |        |        | 1.80          | 3 31          |
| -1.72        | 5,50           | -6.32  | -5.43  | 1,00          | -5.65         |
| 1.73         |                | -6.35  | -5.44  |               | -5.65         |
| 2.15         |                | -7.15  | -5.94  |               | -5.97         |
| -2,18        |                | -7,19  | -5,98  |               | -6,00         |
| 0.73         | 5.82           |        |        | 4.80          | 4.87          |
| 0 71         | 5.83           |        |        | 4 79          | 4 85          |
| 0.01         | 5 78           |        |        | 4 37          | 4,05          |
| -0.02        | 5 76           |        |        | 4 34          | 4 27          |
| -2.44        | 5,10           | -8.09  | -6.95  |               | -6.64         |
| -2.42        |                | -8.13  | -6.96  |               | -6.65         |
| -2.40        |                | -8.93  | -7.37  |               | -6.92         |
| -2,41        |                | -8,96  | -7,39  |               | -6,94         |
| 1,94         | 7,71           |        |        | 6,56          | 6,00          |
| 1.91         | 7,72           |        |        | 6.56          | 5,99          |
| 1,35         | 7,93           |        |        | 6,44          | 5,66          |
| 1,33         | 7,93           |        |        | 6,42          | 5,65          |
| -2,90        |                | -9,15  | -7,83  |               | -7,01         |
| -2,87        |                | -9,18  | -7,84  |               | -7,01         |
| -2,39        |                | -9,48  | -7,83  |               | -6,85         |
| -2,37        |                | -9,47  | -7,82  |               | -6,84         |
| 2,62         | 9,29           |        |        | 7,77          | 6,94          |
| 2,59         | 9,81           |        |        | 7,79          | 6,93          |
| 2,36         | 9,93           |        |        | 8,07          | 7,19          |
| 2,37         | 9,96           |        |        | 8,09          | 7,22          |
| -3,07        |                | -7,85  | -6,70  |               | -6,12         |
| -3,01        |                | -7,83  | -6,67  |               | -6,09         |
| -1,41        |                | -6,83  | -5,44  |               | -4,90         |
| -1,32        |                | -6,75  | -5,35  |               | -4,83         |
| 7,56         | 9,85           |        |        | 9,30          | 9,02          |
| 7,61         | 9,92           |        |        | 9,37          | 9,09          |
| 9,57         | 12,18          |        |        | 11,51         | 11,25         |
| <u>9.</u> 70 | 12,31          |        | _      | <u>11,63</u>  | 11,3 <u>8</u> |
| <u>9,</u> 70 | 12,31 <u> </u> | L<br>M | - (tm) | <u>1</u> 1,63 | 11,           |

Şekil 6.6 Kolonlarında Oluşan Kesit Tesirleri (40/40 Kolonlarda %1 Donatı Oranı)

| -0.90 | -5.80 -1.17  | -4.98 -2.04                  | -5.55         |
|-------|--------------|------------------------------|---------------|
| -0.92 | -5.82 -1.15  | _4 98 _2 04                  | -5 58         |
| 1 25  | 6 44 0 61    | 5 21 1 05                    | -5,50<br>6 31 |
| -1,23 |              | -3,21 -1,95                  | -0,31         |
| -1,20 | -0,4 / -0,58 | -5,23 -1,94                  | -0,34         |
| 0 56  | 8 28 1 66    | 7 42 0 44                    | 0 51          |
| 0,50  | -0,20 1,00   | -7,42 0,44                   | -9,51         |
| 0,34  |              | 7 (2) 0,42                   | -9,30         |
| 0,12  | -8,71 2,05   | -7,05 0,15                   | -9,54         |
| 0,11  | -8,72 2,05   | -7,04 0,15                   | -9,33         |
|       |              |                              |               |
| 3,20  | -10,41 3,54  | -9,46 2,32                   | -11,55        |
| 3,16  | -10,43 3,57  | -9,47 2,31                   | -11,53        |
| 2,43  | -10,70 4,04  | -9,74 2,02                   | -11,24        |
| 2,40  | -10,70 4,05  | -9,75 2,01                   | -11,23        |
|       |              |                              |               |
| 4 97  | 11.06 / 0/   | 10.95 3.57                   | 13.06         |
| 4,07  |              | -10,83 $3,37$ $10,87$ $3,55$ | -13,03        |
| 4,01  |              |                              | -13,03        |
| 5,77  | -12,01 5,42  | -11,10 3,19                  | -12,55        |
| 3,72  | -12,01 5,43  | -11,10 3,17                  | -12,52        |
|       |              |                              |               |
| 5.72  | -12.39 4.77  | -10.92 3.58                  | -13.09        |
| 5.63  | -12.37 4.80  | -10.93 3.56                  | -13.06        |
| 3.77  | -11.82 4.95  | -10.73 2.79                  | -12.10        |
| 3 70  | -11 79 4 93  |                              | -12.00        |
|       | 11,77 1,70   | 10,70 2,70                   | 12,00         |
|       |              |                              |               |
|       |              |                              |               |
|       |              |                              |               |
|       |              |                              |               |
|       |              |                              |               |
| _     | $\perp$      | $\bot$                       | _             |
|       | M (tr        | m)                           |               |

Şekil 6.7 Kirişlerde Oluşan Kesit Tesirleri (40/40 Kolonlarda %1 Donatı Oranı)

| 0.72  |      | -2,91 | -1,99 |      | -4,16 |
|-------|------|-------|-------|------|-------|
| 0,82  |      | -3,02 | -1,95 |      | -4,27 |
| 1.49  |      | -3,79 | -1,78 |      | -5,02 |
| 1,60  |      | -3,93 | -1,77 |      | -5,15 |
| -0.79 | 2.68 |       |       | 1.88 | 3.58  |
| -0.89 | 2.75 |       |       | 1.84 | 3.63  |
| -1.56 | 3.12 |       |       | 1.53 | 3.79  |
| -1.67 | 3.16 |       |       | 1.48 | 3.80  |
| -0,94 |      | -4,42 | -3,70 |      | -4,83 |
| -0,88 |      | -4,52 | -3,71 |      | -4,87 |
| -0,66 |      | -5,13 | -3,83 |      | -5,07 |
| -0,66 |      | -5,22 | -3,87 |      | -5,11 |
| 0,67  | 4,33 |       |       | 3,55 | 4,57  |
| 0,58  | 4,41 |       |       | 3,54 | 4,58  |
| 0,00  | 4,84 |       |       | 3,43 | 4,58  |
| -0,09 | 4,88 |       |       | 3,41 | 4,56  |
| -1,82 |      | -5,71 | -4,84 |      | -5,63 |
| -1,73 |      | -5,82 | -4,86 |      | -5,67 |
| -1,28 |      | -6,54 | -5,04 |      | -5,90 |
| -1,22 |      | -6,66 | -5,07 |      | -5,94 |
| 1,69  | 5,65 |       |       | 4,74 | 5,41  |
| 1,58  | 5,75 |       |       | 4,75 | 5,43  |
| 0,96  | 6,30 |       |       | 4,80 | 5,46  |
| 0,87  | 6,37 |       |       | 4,80 | 5,45  |
| -2,42 |      | -6,61 | -5,53 |      | -6,08 |
| -2,31 |      | -6,73 | -5,56 |      | -6,12 |
| -1,68 |      | -7,44 | -5,76 |      | -6,28 |
| -1,59 |      | -7,34 | -5,79 |      | -6,30 |
| 2,31  | 6,68 |       |       | 5,46 | 6,01  |
| 2,18  | 6,80 |       |       | 5,49 | 6,04  |
| 1,41  | 7,54 |       |       | 5,68 | 6,24  |
| 1,31  | 7,65 |       |       | 5,71 | 6,27  |
| -3,18 |      | -6,23 | -5,32 |      | -5,69 |
| -3,05 |      | -6,28 | -5,31 |      | -5,68 |
| -2,12 |      | -6,48 | -5,10 |      | -5,51 |
| -1,96 |      | -6,47 | -5,04 |      | -5,46 |
| 5,00  | 6,49 |       |       | 6,05 | 6,23  |
| 5,02  | 6,60 |       |       | 6,13 | 6,31  |
| 5,38  | 7,52 |       |       | 6,84 | 7,04  |
| 5.50  | 7,70 |       |       | 7,00 | 7,21  |

M (tm)

Şekil 6.8 Kolonlarında Oluşan Kesit Tesirleri (30/30 Kolonlarda %2 Donatı Oranı)

| -0.64 | -5,27  | -2,31 | -5,02 | -3,03 | -4,16  |
|-------|--------|-------|-------|-------|--------|
| -0,76 | -5,41  | -2,34 | -5,03 | -3,07 | -4,27  |
| -1,49 | -6,04  | -2,20 | -5,00 | -3,22 | -5,06  |
| -1,60 | -6,12  | -2,15 | -5,00 | -3,23 | -5,18  |
|       |        |       |       |       |        |
| 0,24  | -7,61  | -0,46 | -6,85 | -1,25 | -8,43  |
| 0,07  | -7,75  | -0,43 | -6,87 | -1,30 | -8,51  |
| -0,86 | -8,37  | -0,08 | -6,97 | -1,58 | -8,89  |
| -0,98 | -8,44  | -0,01 | -6,99 | -1,61 | -8,93  |
|       |        |       |       |       |        |
| 2,59  | -9,38  | 0,72  | -8,25 | 0,18  | -10,23 |
| 2,40  | -9,51  | 0,78  | -8,30 | 0,14  | -10,28 |
| 1,32  | -10,07 | 1,35  | -8,58 | -0,07 | -10,52 |
| 1,18  | -10,13 | 1,45  | -8,63 | -0,10 | -10,54 |
|       |        |       |       |       |        |
| 4.21  | -10,79 | 1,54  | -9,22 | 1.09  | -11.53 |
| 3,98  | -10,88 | 1,65  | -9,28 | 1.06  | -11,58 |
| 2.68  | -11.33 | 2.45  | -9.67 | 0.92  | -11.78 |
| 2,49  | -11,37 | 2,57  | -9,73 | 0,90  | -11,79 |
|       |        |       |       |       |        |
| 5,60  | -11,61 | 1,83  | -9,54 | 1,29  | -11,74 |
| 5,32  | -11,65 | 1,46  | -9,59 | 1,25  | -11,76 |
| 3,57  | -11,74 | 2,31  | -9,82 | 0,99  | -11,78 |
| 3,30  | -11,72 | 2,42  | -9,84 | 0,94  | -11,76 |
|       |        |       |       |       |        |
|       |        |       |       |       |        |
|       |        |       |       |       |        |
|       |        |       |       |       |        |
| _     |        | _     |       |       |        |

M (tm)

Şekil 6.9 Kirişlerde Oluşan Kesit Tesirleri (30/30 Kolonlarda %2 Donatı Oranı)

#### 7. SONUÇLAR

Toplam 90 adet betonarme kolon numunenin eksenel yük altındaki davranışı Deneysel ve Analitik olarak incelenerek  $\sigma$ - $\varepsilon$  eğrileri elde edilmiştir. Deneysel olarak elde edilen  $\sigma$ - $\varepsilon$  eğrileri ile analitik olarak elde edilen eğrilerin lineer kısımlarının dikkate değer biçimde yakın olduğu görülmektedir.

Mander modeli kullanılarak elde edilen  $\sigma$ - $\varepsilon$  eğrisinin, Popovich modeli kullanılarak elde edilen  $\sigma$ - $\varepsilon$  eğrisine nazaran lineer olmayan kısımlarının deneysel olarak elde edilen eğrilere daha yakın olduğu, lineer bölgede ve maksimum pik noktası değerlerinde ise Popovich modelinin deneysel verilere daha yakın olduğu görülmüştür.

Kesit içindeki donatı oranına bağlı olarak, deneysel ve -Mander modeli kullanılarak- analitik olarak elde edilen eğriler; %1 donatı oranına sahip numuneler için nispeten daha yakın elde edilmiş, donatı oranı yükseldikçe deneysel ve analitik olarak elde edilen eğrilerin lineer olmayan kısımlarının birbirlerinden uzaklaştığı görülmüştür. Bu durumun; beton ve donatı arasındaki aderansın mükemmel olduğu (tam aderans) kabulü sebebiyle oluştuğu, dolayısıyla donatı oranı arttıkça matematik modellerin önerdiği eğrilerin gerçek  $\sigma$ - $\varepsilon$  eğrisinden uzaklaştığı düşünülmektedir.

Deneylerdeki 15x15x100cm kesitli betonarme kolonlarda oluşan kırılmalar genellikle çelik başlığın hemen dibinde meydana gelmiştir. Çelik başlık dibinde meydana gelen kırılmaların nedeni basınç gerilmelerinden önce kayma gerilmelerinin aşılması olarak yorumlanmaktadır. Beton başlıklı olarak üretilen, aynı kesitli numunelerde ise kırılmaların kolon ortasında meydana geldiği gözlemlenmiştir. Özellikle K2D111, K2D112, K2D312, K2D411, K2D222, K2D321, K3D312, K3D412, K3D322, K3D423 numunelerinde kabuk betonunun kırılmasından sonra etriyeler dolayısıyla oluşan eksenel kuvvetteki artış açık şekilde görülmektedir.

Deney sonuçlarında; elastisite modülünün, kesit içerisindeki donatı oranına bağlı olarak arttığı görülmüştür.

Bu artış, ortalama eksenel basınç dayanımı 300 kg/cm<sup>2</sup> olan K1 numunelerinde;

- %1 donatı oranı için %3.93,
- %2 donatı oranı için %13.51,
- %3 donatı oranı için %26.28,
- %4 donatı oranı için %30.11;

Ortalama eksenel basınç dayanımı 270 kg/cm<sup>2</sup> olan K2 numunelerinde;

- %1 donatı oranı için %8.48,
- %2 donatı oranı için %16.96,
- %3 donatı oranı için %24,33,
- %4 donatı oranı için %35.75;

Ortalama eksenel basınç dayanımı 250 kg/cm<sup>2</sup> olan K3 numunelerinde;

- %1 donatı oranı için %7.03,
- %2 donatı oranı için %17.12,
- %3 donatı oranı için %23.52,
- %4 donatı oranı için %34.84;

Ortalama eksenel basınç dayanımı 240 kg/cm<sup>2</sup> olan KB1 numunelerinde;

• %1 donatı oranı için %5.07;

Ortalama eksenel basınç dayanımı 220 kg/cm<sup>2</sup> olan KB2 numunelerinde;

• %2 donatı oranı için %13.8; olarak belirlenmiştir.

Elde edilen sonuçlar yardımıyla regresyon analizi yapılarak elastisite modülünün, donatı oranına bağlı olarak artışı, yeni bir formülasyon ile belirlenmeye çalışılmıştır;

$$E_{rc} = 10270\sqrt{f_{ck}} + 3000000\rho + 130000 (kg/cm^2)$$

Burada;

E<sub>rc</sub>: Betonarme Kesitin Elastisite Modülünü,

fck: Betonun Karakteristik Basınç Dayanımını,

ρ: Kesitin Donatı Oranı'nı temsil etmektedir.

Önerilen formül; çalışma kapsamında, C20-C30 aralığında incelenen numuneler ve önceki bölümlerde sunulan deney koşulları için geçerlidir.

Betona ait elastisite modülüne kıyasla donatı oranına bağlı olarak, donatılı betona ait elastisite modülünün; %1 donatı oranına sahip numunelerde önemli ölçüde değişmediği görülmüştür. Elastisite modülünün; %2 donatı oranına sahip numunelerde yaklaşık %15, %3 donatı oranına sahip numunelerde yaklaşık %25 ve %4 donatı oranına sahip numunelerde ise yaklaşık %30 oranında arttığı görülmüştür. Beton basınç dayanımının artmasıyla donatı oranına bağlı olarak elde edilen elastisite modülündeki değişimin azaldığı belirlenmiştir.

Çalışma kapsamında incelenen yapılarda kolonlara ait elastisite modülünün betonarme elastisite modülü olarak tanımlanmasıyla, kolonlarında %1 donatı bulunan yapıda deplasman hesapları açısından önemli bir değişimin oluşmadığı, kolonlarında %2 donatı bulunan yapıda ise deplasmanların yaklaşık %10 azaldığı belirlenmiştir.

Kesit tesirleri açısından, %1 donatı oranına sahip kolonlu yapılarda önemli bir değişimin olmadığı, donatı oranının artmasıyla bu değişimin de arttığı görülmüştür. Kolonlarda minimum donatı oranının %1 olarak belirlenmesinin sebeplerinden birinin de kesit içindeki donatının, oluşabilecek malzeme ve işçilik kusurlarını (soğuk derzlerde kesme gerilmelerinin karşılanamaması vb.) telafi edecek fakat hesaplara önemli ölçüde etki etmeyecek bir değer olması nedeniyle belirlendiği düşünülmektedir.

Eksenel yüklü numuneler üzerinde yapılan bu çalışmanın devamında, numunelere eğilme etkisi uygulanarak elde edilen elastisite modülünün, deplasman hesaplarında kullanılmasıyla gerçeğe daha yakın değerlerin elde edilebileceği düşünülmektedir.

# EK A. DENEY SONUÇLARININ REGRESYON ANALİZİ

TS500'de betonun elastisite modülü için önerilen  $E_{cj}=10270\sqrt{f_{cj}}+140000$ formülünden yararlanılarak, elde edilen deney sonuçları ile kesitte bulunan donatı oranına bağlı olarak bir regrasyon analizi yapılmıştır.



Şekil A.1 Deney Sonuçlarına Bağlı Olarak Yapılan Regrasyon Analizi
|    | Beton<br>Dayanımı<br>(f <sub>c</sub> ) | Donatı<br>Oranı<br>(DO) | Donatılı<br>E | E<br>(TS500) | E-140000    | DonatılıE-<br>(E-140000) | (DonatiliE-(E-<br>140000))/140000 | 10270*√(f <sub>c</sub> )+140000*<br>(21,044*DO+0,933) | 10270*√(f <sub>c</sub> )+140000*<br>(21,044*DO+0,933)-DonatılıE | Hata<br>Payı |
|----|----------------------------------------|-------------------------|---------------|--------------|-------------|--------------------------|-----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------|
| K1 | 300                                    | 0,01                    | 335344        | 317881,6     | 177881,6179 | 157462,3821              | 1,1247313                         | 337963,2179                                           | 2619,218                                                        | 0,007811     |
|    | 300                                    | 0,02                    | 366253        | 317881,6     | 177881,6179 | 188371,3821              | 1,345509872                       | 367424,8179                                           | 1171,818                                                        | 0,003199     |
|    | 300                                    | 0,03                    | 407451        | 317881,6     | 177881,6179 | 229569,3821              | 1,6397813                         | 396886,4179                                           | -10564,6                                                        | -0,02593     |
|    | 300                                    | 0,04                    | 419818        | 317881,6     | 177881,6179 | 241936,3821              | 1,728117015                       | 426348,0179                                           | 6530,018                                                        | 0,015554     |
| К2 | 270                                    | 0,01                    | 334951        | 308753,3     | 168753,32   | 166197,68                | 1,187126286                       | 328834,92                                             | -6116,08                                                        | -0,01826     |
|    | 270                                    | 0,02                    | 361127        | 308753,3     | 168753,32   | 192373,68                | 1,374097715                       | 358296,52                                             | -2830,48                                                        | -0,00784     |
|    | 270                                    | 0,03                    | 383879        | 308753,3     | 168753,32   | 215125,68                | 1,536612                          | 387758,12                                             | 3879,12                                                         | 0,010105     |
|    | 270                                    | 0,04                    | 419141        | 308753,3     | 168753,32   | 250387,68                | 1,788483429                       | 417219,72                                             | -1921,28                                                        | -0,00458     |
| К3 | 250                                    | 0,01                    | 322097        | 302383       | 162382,9578 | 159714,0422              | 1,140814587                       | 322464,5578                                           | 367,5578                                                        | 0,001141     |
|    | 250                                    | 0,02                    | 352461        | 302383       | 162382,9578 | 190078,0422              | 1,357700301                       | 351926,1578                                           | -534,842                                                        | -0,00152     |
|    | 250                                    | 0,03                    | 371712        | 302383       | 162382,9578 | 209329,0422              | 1,495207444                       | 381387,7578                                           | 9675,758                                                        | 0,02603      |
|    | 250                                    | 0,04                    | 405803        | 302383       | 162382,9578 | 243420,0422              | 1,738714587                       | 410849,3578                                           | 5046,358                                                        | 0,012435     |

# EK B. DENEY SONUÇLARINDAN ELDE EDİLEN ORTALAMA GERİLME-ŞEKİL DEĞIŞTİRME EĞRİLERİ



• K1D1 Kolonları

Şekil B.1 K1D1 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



#### • K1D2 Kolonları

Şekil B.2 K1D2 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri

# K1D3 Kolonları



Şekil B.3 K1D3 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



## K1D4 Kolonları

Şekil B.4 K1D4 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



#### K2D1 Kolonları

Şekil B.5 K2D1 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



#### K2D2 Kolonları

Şekil B.6 K2D2 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



# K2D3 Kolonları

Şekil B.7 K2D3 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



# • K2D4 Kolonları

Şekil B.8 K2D4 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



# • K3D1 Kolonları

Şekil B.9 K3D1 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



#### K3D2 Kolonları







Şekil B.11 K3D3 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



#### K3D4 Kolonları

Şekil B.12 K3D4 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri





Şekil B.13 KB1D1 Kolonlarına ait Deneylerden Elde Edilen Ortalama Eğri



# KB2D2 Kolonları



#### 8. KAYNAKLAR

- [1] Anıl Ö., Belgin M. Ç. ., "Monotonik Yükleme Etkisi Altındaki Dikdörtgen Kesitli Betonarme Kirişlerin Sonlu Elemanlar Yöntemi ile Doğrusal Olmayan Analizi", Gazi Üniversitesi. Müh. Mim. Fak. Dergisi, Cilt 22, No 1, 191-197, 2007.
- [2] Arslan, A. ve Ulucan, Z.Ç., "Çelik Liflerin Erken Yaş Betonu Davranışına Etkisi", TMMOB, İnşaat Müh. Odası, Teknik Dergi, 1997. Cilt 8, Sayı-4.
- [3] Akman M.S., "Yapı Malzemeleri", İ.T.Ü. İnşaat Fakültesi Matbaası, İstanbul, 1990.
- [4] Postacioğlu, B., "Beton Cilt 2", Matbaa Teknisyenleri Basımevi, İstanbul, 1987.
- [5] Çivici, F., "İki Eksenli Eğilme Altında Lifli Betonların Davranışı", Doktora Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Müh. Anabilim Dalı, Balıkesir, 2002.
- [6] Uğurlu, A., "Çelik Liflerle Güçlendirilmiş Beton", TC. Bayındırlık ve İskan Bakanlığı, Devlet Su İşleri Genel Müdürlüğü, Teknik Araştırma ve Kalite Kontrol Dairesi Başkanlığı, Kasım 1994, Ankara.
- [7] Yuva, Y., "Experimental and Analytical Study on the Seismic Behavior of Reinforced Concrete Frame Structures", Doktora Tezi, Boğaziçi Üniversitesi, 1996.

- [8] Türkel, E.B, "Betonda Basınç Dayanımı ile Elastisite Modülü Arasındaki İlişkiler", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Müh. Anabilim Dalı, İstanbul, 2002.
- [9] Penelis G.G., Kappos A.J., "Earthquake-Resistant Concrete Structures"
- [10] Celep Z., Kumbasar N., "Betonarme Yapılar", Sema Matbaacılık, İstanbul, 1998.
- [11] Ersoy U., "Betonarme Cilt 1", Evrim Basım-Yayım-Dağıtım, İstanbul, 1987.
- [12] Popovics, S., "A Review of Stress-Strain Relationships for Concrete", ACI Journal, Title No: 67-14, March, 1970.
- [13] Kırçıl,S.M., "Betonarme Ders Notları", www.yildiz.edu.tr/~kircil/betonarme-dersnotlari.doc
- [14] Topçu, İ. B., "Alternative Estimation of the Modulus of Elasticity for Dam Concrete", Cement and Concrete Research, Sayı: 35, Sayfa: 2199-2202, 2005.
- [15] Saylan Ş., "Taşıma Gücü Yöntemi ile Betonarme Kesitlerin Hesabı", Balıkesir Üniversitesi Yayınları, Balıkesir, 1993.
- [16] Topçu, İ. B., Uğurlu, A., "Betonda Elastisite Kuramı ve Baraj Betonları için Statik E-Modülünün Kompozit Modellerle Tahmini",\* İMO Teknik Dergi, 2007.
- [17] Vilardell, J., Aguado, A., Agullo, L., Gettu, R., "Estimation of the Modulus of Elasticity for Dam Concrete", Cement and Concrete Research, Vol: 28, No: 1, pp. 93-101, 1998.

- [18] Lee, K.M., Park, J.H., "A numerical model for elastic modulus of concrete considering interfacial transition zone", Cement and Concrete Research, Vol.38, Issue 3, p.p: 396-402, March 2008.
- [19] Erdoğan T., "Beton" ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş, Ankara, 2003.
- [20] Felekoğlu B., Türkel S., "Yükleme Hızının Beton Basınç Dayanımına ve Elastisite Modülüne Etkisi", DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt:6, Sayı:1, Ocak 2004.
- [21] Conrad M., Aufleger M., Husein Malkawi A.I., "Investigations on the Modulus of Elasticity of young RCC", Institute of Hydraulic & Water Resources Engineering, Technische Universitaet Muenchen, Germany.
- [22] Gesoğlu M., Güneyisi E., Özturan T., "Effects of End Conditions on Compressive Strength and Static Elastic Modulus of Very High Strength Concrete", Cement and Concrete Research, Elsevier Science.
- [23] Jo B.W., Shon Y.H., Kim Y.J., "The Evalution of Elastic Modulus for Steel Fiber Reinforced Concrete", Russian Journal of Nondestructive Testing, Vol. 37, No.2, 2001.
- [24] Zhao X.H, Chen W.F, "The Effective Elastic Moduli of Concrete and Composite Materials", Composites Part B: Engineering, Volume 29, Issue 1, 1998.
- [25] Sideris, K.K., Manita P., Sideris, K., "Estimation of Ultimate Modulus of Elasticity and Poisson Ratio of Normal Concrete" Cement and Concrete Composites, Elsevier Science.
- [26] Köken, A., "Experiments For Teaching Reinforced Concrete Behaviour", Yüksek Lisans Tezi, ODTÜ, Ankara, 1997.

- [27] Tokgöz, S., Dündar, C., Tanrıkulu, A.K., Çağatay, İ.H., "Eğik Eğilme ve Eksenel Basınca Maruz Poligonal Kesitli Betonarme ve Kompozit Kolonların Davranışı"
- [28] Yalduz, F.C., "Uniaxially Loaded Normal Strength Concrete Spiral Columns", Yüksek Lisans Tezi, ODTÜ, Ankara, 1997.
- [29] Akyıldız, A., "Betonarme Narin Kolonlarda Boyut Etkisi", Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 1997.
- [30] Canbay, E., "Behaviour of High-Strength Concrete Columns Under Eccentric Compression-Tied Columns", Yüksek Lisans Tezi, ODTÜ, Ankara, 1995.
- [31] Shkolnik, I.E., "Effect of Nonlinear Response of Concrete on its Elastic Modulus and Strength", Cement&Concrete Composites, Sayı:27,Sayfa: 747-757, 2005.
- [32] Kwon, M., Spacone, E., "Three Dimensional Finite Element Analyses of Reinforced Concrete Columns", Computers&Structures Sayı:80, Sayfa: 199-212, 2002.
- [33] Harajli, M.H., "Axial Stress-Strain Relationship for FRP Confined Circular and Rectangular Concrete Columns", Cement&Concrete Composites, Say1:28, Sayfa: 938-948, 2006.
- [34] Anderson, M., Lehman D., Stanton, J., "A Cyclic Shear Stress-Strain Model for Joints Without Transverse Reinforcement", Engineering Structures, Vol. 30, Issue: 4, p.p: 941-954, April 2008.
- [35] Kumutha, R., Vaidyanathan, R., Palanıchamy, M.S., "Behaviour of Reinforced Concrete Rectangular Columns Strengthened Using GFRP", Cement&Concrete Composites, Say1:29, Sayfa: 609-615, 2007.

- [36] Zhang, S., Liu, J., "Seismic Behavior and Strength of Square Tube Confined Reinforced Concrete (STRC) Columns", Journal of Constructional Steel Research, Sayi:63, Sayfa: 1194-1207, 2007.
- [37] Woods, J.M., Kiousis P.D., Ehsani, M.R., Saadatmanesh, H., Fritz, W.,
  "Bending Ductility of Rectangular High Strength Concrete Columns", Engineering Structures, Sayı:29, Sayfa: 1783-1790, 2007.
- [38] Kaltakçı, M.Y., Korkmaz, H.H., Korkmaz S.Z., "Betonarme Kolonların Davranışına Etken Olan Tasarım Değişkenleri Üzerine Bir İnceleme" DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt:3, Sayı:3, Sayfa: 11-32, Ekim 2001.
- [39] ElMandooh, K., Ghobarah, A., "Flexural and Shear Hysteretic Behaviour of Reinfored Concrete Columns with Variable Axial Load", Engineering Structures, Sayi:25, Sayfa: 1353-1367, 2003.
- [40] Hossain, K.M.A., "Axial Load Behaviour of Thin Walled Composite Columns", Composites Part B: Engineering, Sayı: Part B 34, Sayfa: 715-725, 2003.
- [41] Gupta, P.K., Sarda, S.M., Kumar, M.S. "Experimental and Computational Study of Concrete Filled Steel Tabular Columns Under Axial Loads", Journal of Constructional Steel Research, Say1:63, Sayfa:182-193, 2007.
- [42] Dündar, C., Tokgöz, S., Tanrıkulu, A.K., Baran, T., "Behaviour of Reinforced and Concrete-Encased Composite Columns Subjected to Biaxial Bending and Axial Load", Building and Environment, Vol. 43, Issue: 6, p.p:1109-1120, June 2008.
- [43] Wang, Y.C., Hsu, K., "Design of FRP-Wrapped Reinforced Concrete Columns for Enhancing Axial Load Carrying Capasity", Composite Structures, Vol. 82, Issue:1, p.p:132-139, January 2008.

- [44] Hadi, M.N.S., "The Behaviour of FRP Wrapped HSC Columns Under Different Eccentric Loads", Composite Structures, Sayı:78, Sayfa: 560-566, 2007.
- [45] Demir, F., Korkmaz K.A., "Prediction of Lower and Upper Bounds of Elastic Moduls of High Strength Concrete", Construction and Building Materials, Vol. 22, Issue:7, p.p:1385-1393, July 2008.
- [46] Eid, R., Dancygier, A.N., "Confinement Effectiveness in Circular Concrete Columns", Engineering Structures, Sayı:28, Sayfa:1885-1896, 2006.
- [47] Kurugöl, S., Tanaçan L., Ersoy, H.Y., "Young's Modulus of Fiber-Reinforced and Polymer-Modifed Lightweight Concrete Composites", Construction and Building Materials, Vol. 22, Issue:6, p.p:1019-1028, June 2008.
- [48] Kaminski, M., Trapko, T., "Experimental Behaviour of Reinforced Concrete Column Models Strengthened by CFRP Materials", Journal of Civil Engineering and Management, Vol:XII, No:2,109-115, 2006.
- [49] Shehata, I.A.E.M., Carneiro, L.A.V., Shehata, L.C.D., "Strength of Short Concrete Columns Confined with CFRP Sheets", Materials and Structures, Say1:35, Sayfa:50-58, 2002.
- [50] Ngo, T.D., Mendis, P.A., Teo, D, Kusuma, G. "Behaviour of High-Strength Concrete Columns Subjected to Blast Loading", University of Melbourne, Australia.
- [51] Brauns, J., "Analysis of Stress State in Concrete-Filled Steel Column", Journal of Constructional Steel Research, Say1:49, Sayfa: 189-196, 1999.

- [52] Sharif, A., Rahman, M.K., Al-Gahtani, A.S., Hameeduddin, M., "Behaviour of Patch Repair of Axially Loaded Reinforced Concrete Beams" Cement&Concrete Composites, Say1:28, Sayfa: 734-741, 2006.
- [53] Demir, F., "A New Way of Prediction Elastic Modulus of Normal and High Strength Concrete-Fuzzy Logic", Cement and Concrete Research, Vol. 35, Issue:8, p.p:1531-1538, August 2005.
- [54] Cıstık, M., "Fretli Manto ile Onarılmış/Güçlendirilmiş Betonarme Kolonların (Spiralli ve Dairesel Etriyeli) Eksenel Yük Altında Davranışı", Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 1998.
- [55] Kaltakçı, M.Y., Köken A., YILMAZ, Ü.S., "Eksenel yük altındaki çelik lifli ve lifsiz etriyeli betonarme kolonların davranışının deneysel ve analitik olarak incelenmesi" Deü Mühendislik Fakültesi Fen Ve Mühendislik Dergisi. Cilt: 8 Sayı: 1 s. 65-85, Ocak,2006.
- [56] Ali Köken, M. Yaşar Kaltakçı, "An Experimental And Analytical Investigation On Axially Loaded Reinforced Concrete Column Behaviour", Selçuk Üniversitesi Müh. Mim. Fakültesi Dergisi, 13, 2, 10 -17, 1998.
- [57] M. Yaşar Kaltakçı, Ülkü S. Yılmaz, Eksenel Yük Etkisindeki Çelik Lif Takviyeli Etriyeli Betonarme Kolonların Davranışı, Selçuk Üniversitesi Müh. Mim. Fakültesi Dergisi, 18, 1, 55-64, 2003.
- [58] Büyükkuşoğlu, Z., "Mantolama Yöntemi ile Güçlendirilmiş/ Onarılmış/ Diriltilmiş Dikdörtgen Kesitli Betonarme Kolonların Eksenel Yük Altında davranışı", Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 1999.

- [59] Eriş, T.A., "Bileşik Eğilme Etkisindeki Simetrik Donatılı Dikdörtgen Kesitli Betonarme Kolonların Taşıma Gücü Hesabı", Yüksek Lisans Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Müh. Anabilim Dalı, Balıkesir, 2000
- [60] "Betonarme Yapıların Hesap ve Yapım Kuralları", Türk Standartları Enstitüsü, Ankara, Nisan 1984.
- [61] Yılmaz, Ü.S., "Ekenel Yük Etkisindeki Çelik Tel Fiber Takviyeli Etriyeli Betonarme Kolonların Davranışı", Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2001.
- [62] http://mmf.ogu.edu.tr/atopcu/Betonarme1/Betonarme1\_2.pdf "Prof. Dr. Ahmet TOPÇU, Ders Notları"
- [63] Ergin, E., "Betonarme Taşıyıcı Sistemli Yapıların Güçlendirilmesinde Beton Elastisite Modülü Değişiminin Yapısal Çözümlemedeki Etkisi", Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, 2001.
- [64] Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, (1998).
- [65] Kaçın, S., Bikçe, M., "Türkiye'de Son Depremlerde Sıkça Görülen Donatı Yerleştirme Hataları", Beşinci Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs 2003, İstanbul.
- [66] Çiftçi, M.C., "Niçin Depreme Dayanıklı Yapı Yapamıyoruz?", Deprem Sempozyumu, Kocaeli, 2003.
- [67] http://www.ce.metu.edu.tr~betonarmepdfBolum1\_2.pdf,"Prof. Dr. Güney ÖZCEBE, Ders Notları"

- [68] Berktay, İ., "Taşıma Gücü ve Kesit Hesapları", Birsen Yayınevi, Nisan, 1995, İstanbul.
- [69] ASTM C1018-94b, Standart Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading)
- [70] Özmen, H.B., İnel, M., Bilgin, H., "Sargılı Beton Davranışının Betonarme Eleman ve Sistem Davranışına Etkisi", Gazi Üniv. Müh. Mim. Fak. Der., Cilt 22, No 2, 375-383, 2007 Vol.
- [71] Hognestad, E., Hanson, N.W., McHenry, D., "Concrete Stress Distribution in Ultimate Strength Design", ACI Journal, V. 52, No. 3, December 1955, pp. 455-480.
- [72] Chan, W.L., "The Ultimate Strength and Deformation of Plastic Hinges in Reinforced Concrete Frameworks", Magazine of Concrete Research, Vol. 7, No. 21, November 1955, pp. 121-132.
- [73] Roy, H.E.H., Sözen, M.A., "Ductility of Concrete", Proceedings of the International Symposium on the Flexural Mechanics of Reinforced Concrete, ASCE-ACI, Miami, November 1964, pp. 213-224.
- [74] Soliman, M.T.M., Yu, C.M., "The Flexural Stress-Strain Relationship of Concrete Confined by Rectangular Transverse Reinforcement", Magazine of Concrete Research, Vol. 19, No. 61, December 1967, pp. 223-238.
- [75] Sargin, M., "Stress-Strain Relationships for Concrete and the Analysis of Structural Concrete Sections", Study No. 4, Solid Mechanics Division, University of Waterloo, Canada, 1971, 167 pp.

- [76] Kent, D.C. and Park, R., "Flexural Members with Confined Concrete", Journal of the Structural Division, ASCE, Vol. 97, No. ST7, July, 1971, pp. 1969-1990.
- [77] Elçi, H., "Boşluklu Betonarme Kirişlerin Davranışı Boşluk Civarında Gerilme Dağılımının İncelenmesi", Doktora Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Müh. Anabilim Dalı, Balıkesir, 1998.
- [78] Park, R., Priestly M.J., Gill, W.D., "Ductility of Square Confined Concrete Columns", Journal of Structural Division, ASCE, Vol. 108, ST4, April 1982, pp. 929-950.
- [79] Çağlar, Y., "Çelik Plaklar ile Güçlendirilmiş Betonarme Kirişlerin Modellenmesi ve Sonlu Elemanlar Metodu ile Analizi", Kırıkkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Temmuz, 2002.
- [80] Vallenas, J., Bertero V.V., Popov, E.P., "Concrete Confined by Rectangular Hoops and Subjected to Axial Loads", Earthquake Engineering Research Center, College of Engineering, University of California, Report No. UCB/EERC-77/13, August 1977, 114 pp.
- [81] Kaba, M., "A Comparative Study of Tied Columns Considering Different Confinement Models", Yüksek Lisans Tezi, Boğaziçi Üniversitesi, İstanbul, 1993.
- [82] Sheikh, S.A. and Üzümeri, S. M., "Analytical Model for Concrete Confinement in Tied Columns", Journal of the Structural Division, Vol. 108, No. 12, December 1982, pp. 2703–2722.
- [83] Sheikh, S.A. and Üzümeri, S. M., "Mechanism of Confinement in Tied Columns", Proceedings of 7th World Conference on Earthquake Engineering, İstanbul, September 8-13, 1980, pp. 71-78.

- [84] Mander, JB, Priestley, M.J.N and Park, R., Observed Stress-Strain Behaviour of Confined Concrete, Journal of Structural Engineering, ASCE, Vol. 114, No. 8:1827-49, (1988).
- [85] Mander, JB, Priestley, MJN, and Park, R, Theoretical stress-strain model for confined concrete." J. Struct. Div., ASCE, 114(8), 1804–1825, (1988).
- [86] Kappos AJ (1991), 'Analytical Prediction of the Collapse Earthquake for RC Buildings: Suggested Methodology', *Earthquake Engineering and Structural Dynamics*, 20(2), 167–176.
- [87] Saatcioglu, M., Razvi S.R., "Strength and Ductility of Confined Concrete", Journal of Structural Engineering, ASCE, Vol. 118, No. 6, pp. 1590-607, (1992).
- [88] İnel, M., Özmen, H. B., Bilgin, H., "Betonarme Elemanların Doğrusal Ötesi Davranışlarının Bilgisayar Ortamında Modellenmesi", Tübitak Proje No: 105M024
- [89] TS3502, "Betonda Statik Elastisite Modülü Ve Poisson Oranı Tayini", Türk Standartları Enstitüsü, Mart 1981.
- [90] TDG CODA, "Veri Toplama Yazılım Paketi", Odtü, Ankara.
- [91] Response–2000 V1.1, "Sectional Analysis of Beams and Columns", September 2001, "http://www.ecf.utoronto.ca/~bentz/manual2/final.pdf"
- [92] ASTM A615/A615M-03A, 2003, Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement, American Society for Testing and Materials, West Conshohocken, Pennsylvania.
- [93] Sap2000 V12, "Integrated Software For Structural Analysis & Design", Computers and Structers, Berkeley, California, USA.