T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI

ASENKRON MOTORUN dsPIC TABANLI KESİRLİ PI^λ HIZ KONTROLÜ

YÜKSEK LİSANS TEZİ

ERDEM İLTEN

BALIKESİR, TEMMUZ - 2013

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI

ASENKRON MOTORUN dsPIC TABANLI KESİRLİ PI^{^λ} HIZ KONTROLÜ

YÜKSEK LİSANS TEZİ

ERDEM İLTEN

BALIKESİR, TEMMUZ - 2013

KABUL VE ONAY SAYFASI

Erdem İLTEN tarafından hazırlanan **"ASENKRON MOTORUN** dsPIC TABANLI KESİRLİ PI^{λ} HIZ KONTROLÜ" adlı tez çalışmasının savunma sınavı 18.07.2013 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği / oy çokluğu ile Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Elektrik-Elektronik Mühendisliği Anabilim Dalı Yüksek Lisans Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Doç. Dr. Metin DEMİRTAŞ

Üye Prof. Dr. Seydi DOĞAN

Üye Doç. Dr. Necati ÖZDEMİR

Jüri üyeleri tarafından kabul edilmiş olan bu tez BAÜ Fen Bilimleri Enstitüsü Yönetim Kurulunca onanmıştır.

Fen Bilimleri Enstitüsü Müdürü

Prof. Dr. Hilmi NAMLI

.....

Bu tez çalışması Balıkesir Üniversitesi Rektörlüğü tarafından 2013/63 nolu proje ile desteklenmiştir.

ÖZET

ASENKRON MOTORUN dsPIC TABANLI KESİRLİ PI^{^λ HIZ KONTROLÜ YÜKSEK LİSANS TEZİ ERDEM İLTEN BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI}

(TEZ DANIŞMANI: DOÇ. DR. METİN DEMİRTAŞ)

BALIKESİR, TEMMUZ - 2013

Endüstride değişken hızlı tahrik sistemlerinde doğru akım makinaları verine maliyetlerinin düsük olmaları, olumsuz ortam kosullarına davanıklı olmaları, bakım gerektirmemeleri, fırça ve kollektör bulundurmamaları sonucu az arıza yapmalarından dolayı asenkron makinalar son yıllarda sıkça tercih edilmektedir. Asenkron makinaların bu üstün özelliklerine rağmen kontrolü oldukça karmaşık bir yapıdadır. Asenkron makinalarda hız kontrolünde kutup gerilimi veva frekansının değiştirilmesi vöntemleri sayısının, stator kullanılmaktadır. Frekans değiştirilerek yapılan hız kontrolünde motorun maksimum moment değerinde sabit kalması sağlanır. Bu nedenle gerilim / frekans (V/f) oranı (veya akı) yaklaşık olarak sabit tutulur. Bu tezde asenkron motorun hızı stator frekansının değiştirilmesi ile kontrol edilmiştir. Bunun için şebeke gerilimi öncelikle tasarlanan bir fazlı doğrultucu ile doğru gerilime dönüştürülmüş, daha sonra bu doğru gerilimden IGBT yarı iletken elemanlarla tasarlanan evirici (inverter) devresi kullanılarak 3 fazlı değişken frekanslı gerilim elde edilmiştir. Değişken frekansın elde edilmesi ve hız kontrolünün gerçekleştirilebilmesi için dsPIC30F4011 mikrodenetleyicisi kontrolör olarak kullanılmıştır. Sürücü devresi tamamlandıktan sonra hız kontrolünde klasik PI ve kesirli PI^{λ} kontrol algoritmaları uygulanmış ve sonuçları karşılaştırılmıştır. Kesirli PI^{λ} kontrolör sonuçlarının klasik PI kontrolöre göre daha iyi olduğu görülmüştür.

ANAHTAR KELİMELER: as enkron motor, mikrodenetleyici, dsPIC, evirici, kesirli Pl^{λ} kontrol

ABSTRACT

dsPIC BASED FRACTIONAL ORDER PI^λ SPEED CONTROL OF INDUCTION MOTOR MSc THESIS ERDEM İLTEN BALIKESIR UNIVERSITY INSTITUTE OF SCIENCE ELECTRICAL AND ELECTRONICS ENGINEERING

(SUPERVISOR: ASSOC. PROF. DR. METIN DEMIRTAŞ)

BALIKESİR, JULY 2013

In recent years, induction machines are preferred in variable speed drive systems instead of direct current machines because of their low-cost, working well at bad environmental conditions, maintenance free, making less fault due to not containing brush and collector. Although induction machines have a lot of advantages, their control system is quite complex. Number of poles, stator voltage or frequency changing methods have been used for speed control of induction machines. It is maintained stable of the torque value of induction motor at maximum value in the speed control by changing frequency. Therefore, voltage / frequency (V/f) ratio (or the flux) is kept approximately constant. In this thesis, the speed of the induction motor have been controlled by changing the stator frequency. First of all ac line voltage is converted to dc voltage by single-phase rectifier, then 3-phase variable frequency voltage has been obtained from this direct voltage by using inverter circuit designed with the usage of IGBT semiconductor devices. dsPIC30F4011 microcontroller has been used as a control unit. In order to obtain variable frequency and control the speed, after completion of the inverter drive circuit, integer order PI and fractional order PI^{λ} control algorithms have been applied and the results have been compared in the speed control. It has been seen that the fractional order PI^{λ} controller results have better compared to the integer order PI controller.

KEYWORDS: induction motor, microcontroller, dsPIC, inverter, fractional order Pl^{λ} control

İÇİNDEKİLER

<u>Sayfa</u>

ÖZET	i
ABSTRACT	ii
İÇİNDEKİLER	iii
ŞEKİL LİSTESİ	iv
TABLO LİSTESİ	v
SEMBOL LİSTESİ	vi
ÖNSÖZ	vii
1. GİRİŞ	1
2. ÜÇ FAZLI ASENKRON MOTORLAR VE KONTROLÜ	7
2.1 Üç Fazlı Asenkron Motorların Yapısı	7
2.2 Asenkron Motorların V/f Kontrolü	8
2.2.1 PI Kontrol	9
2.2.2 Kesirli PI^{λ} Kontrol	10
3. MİKRODENETLEYİCİLER	15
3.1 dsPIC Mikrodenetleyicileri	16
3.1.1 dsPIC30F4011 Mikrodenetleyicisi	17
3.1.1.1 Motor Kontrol PWM Modülü	20
3.1.1.2 Enkoder Modülü	24
3.2 CCS C Derleyicisi	27
4. LabVIEW PROGRAMI	30
4.1 LabVIEW Programının Ön Paneli	31
4.2 LabVIEW Programının Blok Diyagramı	32
4.3 LabVIEW Veri Toplama Kartı	33
5. DENEYSEL ÇALIŞMALAR	35
6. SONUÇ VE ÖNERİLER	47
7. KAYNAKLAR	49
8. EKLER	56

ŞEKİL LİSTESİ

<u>Sayfa</u>

Sekil 2.1: Sincap kafesli asenkron motorun yapısı	8
Sekil 2.2: PI kontrolörlü geribeslemeli kontrol sistemi	10
Sekil 2.3: f(t) sürecinin sol ve sağ kesirli türev yorumu	12
Şekil 3.1: Mikrodenetleyici ailelerinin fiyat-performans karşılaştırması	16
Şekil 3.2: dsPIC30F4011 mikrodenetleyicisinin bağlantı uçları	18
Sekil 3.3: dsPIC30F4011 mikrodenetleyicisinin blok diyagramı	19
Şekil 3.4: Evirici ile üç fazlı bir yükün beslenmesi	20
Şekil 3.5: Ölü zaman üretecinin blok diyagramı	21
Şekil 3.6: Ölü zaman ekleme diyagramı	22
Şekil 3.7: dsPIC30F4011 için örnek ölü zaman incelemesi	23
Şekil 3.8: dsPIC30F4011 için sinüsoidal PWM uygulaması	24
Şekil 3.9: Enkoder modülünün blok diyagramı	25
Şekil 3.10: Çift kanallı enkoderin çıkış sinyalleri	26
Şekil 3.11: 4x modunda enkoder sinyallerinin sayılması	27
Şekil 3.12: CCS C Derleyicisinin arayüzü	28
Şekil 3.13: CCS C Derleyicisinin "Compile" menüsü	29
Şekil 4.1: LabVIEW programının ön paneli	31
Şekil 4.2: LabVIEW programının blok diyagramı	32
Şekil 4.3: 6024 E DAQ kartının bağlantıları	34
Şekil 5.1: Tasarlanan deney düzeneğinin blok diyagramı	35
Şekil 5.2: Deney düzeneğinin kontrol devresi	36
Şekil 5.3: Deney düzeneğinin güç devresi (motor + enkoder + fren)	36
Şekil 5.4: PI kontrol (Kp=0.1, Ki=0.1, 750 dev/dak)	38
Şekil 5.5: PI kontrol (Kp=0.01, Ki=0.1, 1000 dev/dak)	38
Şekil 5.6: PI kontrol (Kp=0.01, Ki=1, 1000 dev/dak)	39
Şekil 5.7: FOPI kontrol (Kp=0.1, Ki=0.1, λ =0.8, 750 dev/dak)	39
Şekil 5.8: FOPI kontrol (Kp=0.01, Ki=0.1, λ =0.2, 1000 dev/dak)	40
Şekil 5.9: FOPI kontrol (Kp=0.01, Ki=1, λ =0.8, 1000 dev/dak)	40
Şekil 5.10: PI kontrol (Kp=0.1, Ki=0.1, 750 dev/dak, 2sn bozucu girip çıkması	1)41
Şekil 5.11: FOPI kontrol (Kp=0.1, Ki=0.1, λ =0.8, 750 dev/dak, 2sn bozucu gi	rip
çıkması)	42
Şekil 5.12: Klasik PI ve Kesirli PI kontrol yöntemlerinin bozucu etkisi altındal	ci
üç fazlı asenkron motorun performansına etkisi	42
Şekil 5.13: λ'nın değişiminin kesirli Pl [*] kontrolörün performansına etkisi	43
Şekil 5.14: K_p 'nın değişiminin kesirli Pl [^] kontrolörün performansına etkisi	44
Şekil 5.15: <i>K_i</i> 'nın değişiminin kesirli PI [^] kontrolörün performansına etkisi	45
Şekil 5.16: Motorun devir hizinin LabVIEW ortamında görüntülenmesi	46
Şekil 5.17: Motorun devir hizinin LabVIEW ortamında görüntülenmesi	46

TABLO LÍSTESÍ

<u>Sayfa</u>

Tablo 3.1: dsPIC30F serisi	17
Tablo 3.2: dsPIC30F4011 mikrodenetleyicisinin genel özellikleri	17
Tablo 3.3: PWM frekansı ve çözünürlüğü örnekleri	21
Tablo 3.4: Ölü zaman aralıkları örnekleri	23
Tablo 4.1: Ölçüm Hassasiyetleri	
Tablo 5.1: Referans $h_{1Z} = 700 \text{ dev/dak için } \lambda'nın değişimine bağlı sonuç$	lar44
Tablo 5.2: Referans $h_{1Z} = 700 \text{ dev/dak için } K_p$ 'nin değişimine bağlı sonu	çlar44
Tablo 5.3: Referans $h_{1Z} = 700 \text{ dev/dak için } K_i$ 'nin değişimine bağlı sonu	çlar45
Tablo 8.1: dsPIC30F4011'in giriş/çıkış pinlerinin açıklamaları	

SEMBOL LİSTESİ

DC	:	Doğru Akım (Direct Current)
AC	:	Alternatif Akım (Alternative Current)
PWM	:	Darbe Genişlik Modülasyonu (Pulse Width Modulation)
MCPWM	:	Motor Kontrol PWM Modülü
ADC	:	Analog Sayısal Dönüştürücü (Analog Digital Converter)
PID	:	Oransal-Integral-Türev (Proportional-Integral-Derivative)
IOPID	:	Klasik PID (Integer Order PID)
FOPI^λD^δ	:	Kesirli $PI^{\lambda}D^{\delta}$ (Fractional Order $PI^{\lambda}D^{\delta}$)
DSP	:	Sayısal Sinyal İşleyici (Digital Signal Processor)
BLDC motor	:	Firçasız DC motor (Brushless DC motor)
K _p	:	Oransal kontrol kazancı
Ki	:	İntegral kontrol kazancı
V/f	:	Gerilim / frekans

ÖNSÖZ

Bu tez çalışması sürecinde bilgi birikimi ve tecrübeleriyle bana yol gösteren danışmanım Doç. Dr. Metin DEMİRTAŞ'a, kesirli PI^{λ} kontrol konusunda yardımlarını esirgemeyen Doç. Dr. Necati ÖZDEMİR, Yrd. Doç. Dr. Beyza Billur İSKENDER ve Araş. Gör. Dr. Derya KARADENİZ'e, ayrıca maddî ve manevî her türlü desteği için aileme teşekkür ederim.

1. GİRİŞ

Endüstride bircok uygulamada değişken hızlı tahrik sistemleri kullanılmaktadır. Değişken hızlı tahrik sistemlerinde doğru akım makinaları yerine maliyeti düşük, olumsuz ortam koşullarına dayanıklı, bakım gerektirmeyen, firça ve kollektör bulundurmaması nedeniyle az arıza yapan asenkron makinaların kullanılması son yıllarda sıkça tercih edilmektedir [1-7]. Asenkron makinaların bu üstün özelliklerine rağmen kontrolü karmaşık bir yapıdadır. Asenkron motorun hız kontrolünde yapılan birçok çalışmada daha iyi bir dinamik tepki vermesi sebebiyle vektör kontrol yöntemi uygulanmıştır. Ancak skaler kontrol yöntemi, uygulaması kolay ve sürekli hâl hatasının az olmasından dolayı vektörel kontrole göre basit bir yapıya sahiptir [8,9]. Bu nedenle, skaler kontrol sistemlerinde gerilim / frekans (V/f)sabitinin kontrolü endüstriyel uygulamalarda geniş bir kullanım alanına sahiptir. Frekans değistirilerek yapılan hız kontrolünde motorun maksimum moment değerinde sabit kalması sağlanır. Bu nedenle V/f oranı veya akı yaklaşık olarak sabit tutulur [10,11].

Deneysel amaçlı uygulamalarda asenkron motorun hız veya konum kontrolü için bilgisayar veya DSP (Digital Signal Processor - Sayısal İşaret İşleyici) tabanlı donanım sistemleri yaygın olarak kullanılmaktadır [12]. Bu sistemler pahalı olduğundan endüstriyel amaçlı kullanımlarda ucuz ve esnekliği biraz daha kısıtlı olan mikrodenetleyiciler tercih edilmektedir [13]. Bu nedenle, yapılan çalışmada asenkron motorun hız kontrolü için dsPIC30F4011 mikrodenetleyicisi kullanılmıştır. Bu denetleyici üç fazlı sistemler için geliştirildiğinden dolayı asenkron motorun kontrol uygulamaları için tercih edilmektedir.

Endüstriyel uygulamalarda kapalı çevrim kontrol sistemlerinde basit bir algoritması olduğu için PI kontrol yöntemi sıkça tercih edilmektedir. Fakat son yıllarda bulanık mantık, kayan kip, kesirli PI^{λ} gibi kontrol yöntemleri tercih edilmeye başlanmıştır.

2001'de B.S. Cunha ve diğerleri, bir fazlı asenkron motorun evirici ile sürülmesinde PIC mikrodenetleyicisi (PIC16C73A) kullanarak Sinüsoidal PWM (Darbe Genişlik Modülasyonu) sinyalleri üretmişlerdir. Farklı genlik ve frekansta ürettikleri sinyalleri simülasyon ve deney düzeneği üzerinde sırasıyla ³/₄ yükte ve tam yük altındaki motorlara uygulamışlar, motor devrindeki değişimleri incelemişlerdir [14].

2003'te Microchip firmasından Rakesh Parekh, 3 fazlı asenkron motorlarda V/f kontrolünde PIC16F7X7 mikrodenetleyicilerinin kullanımına ilişkin örnek çalışmalar yapmıştır. Kullanılan mikrodenetleyicinin 3 adet PWM modülünün olduğunu belirtmiş, bunlar kullanılarak 3 fazlı asenkron motor için sinüsoidal PWM sinyallerinin üretilmesini anlatmıştır [15].

2003'te Ivo Petráš ve diğerleri, PIC mikrodenetleyicileri ile Kesirli $PI^{\lambda}D^{\delta}$ kontrol yöntemlerinin uygulanması üzerine bir çalışma yapmıştır. Bu çalışmada referans gerilim sinyalleri PIC16F876 mikrodenetleyicisinin ADC (Analog Sayısal Dönüştürücü) modülü ile okunmuş ve kesirli $PI^{\lambda}D^{\delta}$ metodu ile çıkış gerilim sinyalleri kontrol edilmiştir. Sonuç olarak, kullanılan mikrodenetleyicinin sınırlı hafızaya sahip olması ve işlemlerden oluşan gecikmelerin kontrol performansını etkilemesi gibi sorunlarla karşılaşılmıştır. İlerleyen çalışmalarda 18FXX8 gibi daha gelişmiş mikrodenetleyici serileri üzerinde çalışmalar yapılacağı belirtilmiştir [16].

2005'te Microchip firmasından Steve Bowling, asenkron motorların kontrolünde dsPIC mikrodenetleyicilerinin kullanılması üzerine örnek çalışmalar yapmıştır. Bu çalışmalarda asenkron motorların V/f oranı anlatılmış, dsPIC mikrodenetleyicileri kullanılarak sinüsoidal PWM sinyali üretilmesi üzerine örnek programlar paylaşılmıştır [17].

2006'da Dingyü Xue ve diğerleri, DC (Doğru Akım) servomotorun konum kontrolü için kesirli $PI^{\lambda}D^{\delta}$ ve tamsayılı PID kontrol metodlarının performanslarını simülasyon ortamında karşılaştırmışlardır. İyi tasarlanmış bir kesirli $PI^{\lambda}D^{\delta}$ kontrolörün tamsayılı PID kontrolöre göre performansının daha iyi olduğunu ortaya koymuşlardır [18].

2007'de G. Pandian ve S. Rama Reddy, 89C2051 mikrodenetleyicisi kullanarak asenkron motor sürücüleri için tek fazdan 3 faza PWM evirici ve 3 fazdan 3 faza PWM eviriciler üzerine çalışmalar yapmışlardır. Yapılan simülasyon

çalışmalarında 3 fazdan 3 faza eviricinin harmonik distorsiyonunun %5'ten az, tek fazdan 3 faza eviricinin harmonik distorsiyonunun ise %6.3 olduğu görülmüştür. Daha sonra yapılan deneylerde benzer sonuçlar elde edilmiştir [19].

2007'de Kai Zong ve diğerleri, sürekli mıknatıslı bir senkron motorun hız kontrolünde kesirli PI^{λ} kontrol yöntemi için Matlab/Simulink ortamında simülasyon çalışması yapmışlardır. Simülasyon sonuçlarına göre sürekli mıknatıslı senkron motorlarda hız ayar sistemleri için kesirli PI^{λ} kontrolörün tamsayılı PI kontrolöre göre bozucu etkilere karşı dayanıklılığı artırdığı görülmüştür [20].

2007'de Hamdy A. Ashour ve Rania A. İbrahim, 3 fazlı asenkron motora yumuşak yol verilmesinde mikrodenetleyici tabanlı yıldız-üçgen'li dirençle yol verme yöntemi (PIC16F84 kullanılmış) ile AC (Alternatif Akım) gerilim kontrolü yöntemi (PIC16F877 kullanılmış) uygulanmışlardır. Bu çalışmada, ticarî bir ürün olan LH4-N2 soft starter ile tasarlanan mikrodenetleyicili sürücülerin performans karşılaştırması yapılmış ve tasarlanan sürücülerin performansının daha iyi olmasıyla birlikte daha basit yapıda ve daha düşük maliyette oldukları ortaya konulmuştur [21].

2008'de S. Sridhar ve diğerleri, asenkron motorun kontrolünde uzay vektör PWM kullanarak maksimum güç noktası kontrolü üzerine bir çalışma yapmışlardır. Çalışmada PIC118F4550 mikrodenetleyicisi kullanmışlardır [22].

2008'de Ceyhun Yıldız, asenkron motorun vektörel metodla kontrolünde bulanık mantık algoritması kullanarak bir çalışma yapmıştır. Çalışmada bulanık mantık ve genetik algoritma birlikte kullanılarak önce simülasyon üzerinde çalışılmış daha sonra deney düzeneği üzerinde uygulanmıştır. Sonuç olarak genetik algoritma destekli bulanık mantık kontrolörün performansının klasik kontrolörlere göre daha iyi olduğu belirtilmiştir [23].

2009'da Abdülkadir Çakır ve diğerleri, 3 fazlı asenkron motorun sabit V/f oranlı hız kontrolünde PIC16F84 mikronetleyicisi kullanarak bir çalışma yapmışlardır. V/f oranının sabit tutulması ile moment sabit kalacağından dolayı motora bağlanan yük miktarıyla orantılı güç harcanacağı belirtilmiş, böylece enerji tasarrufu sağlanacağı ve motorların uzun süreli yüksek güçte çalışmasından kaynaklanabilecek arızaların önüne geçilebileceği vurgulanmıştır [24]. 2009'da Ajith Abraham ve diğerleri, Kesirli $PI^{\lambda}D^{\delta}$ kontrolörlerin optimizasyonu üzerine bir simülasyon çalışması yapmışlardır. Bu çalışmada "Particle Swarm Optimization" metodu ve "Bacterial Foraging Optimization" metodlarının karşılaştırılması yapılmıştır [25].

2009'da Ivo Petráš, sürekli mıknatıslı bir dc motor için kesirli $PI^{\lambda}D^{\delta}$ kontrol metodunun uygulanması üzerine bir simülasyon çalışması yapmıştır. Kesirli $PI^{\lambda}D^{\delta}$ kontrolörlerin analog ve dijital devreler ile nasıl tasarlanabileceği hakkında önerilere yer verilmiştir [26].

2009'da Metin Demirtaş, Asenkron motorun hız kontrolünde DSP tabanlı bir kontrolör kullanarak kayan kip kontrol üzerine bir çalışma yapmıştır. Çalışmada kayan kip yöntemi genetik algoritma kullanılarak optimize edilmiş ve asenkron motora uygulanmıştır. Yapılan deneylerin neticesinde, uygulanan yöntemin karmaşık ve doğrusal olmayan sistemler için iyi sonuç verdiği ortaya konulmuştur [27].

2010'da R. Aruzmozhiyal ve diğerleri, MATLAB programının "Real Time" arayüzünü kullanarak dsPIC30F4011 ile asenkron motorun hızının kontrolü üzerine bir çalışma yapmışlardır. Çalışmada referans hız değerinin ani olarak artırılması veya azaltılması durumunda sistemin verdiği tepkiler incelenmiştir [28].

2010'da Manuel A. Duarte-Mermoud ve diğerleri, alan yönlendirmeli asenkron motorun hız kontrolünde kesirli PI kontrol metodunu simülasyon ortamında uygulamışlardır. Sonuç olarak, iyi seçilen integral değişkenlerinin sistemin tepki süresini ve maksimum aşma miktarını iyileştirdiği ortaya konulmuştur [29].

2010'da Vishal Mehra ve diğerleri, DC motorun hız kontrolünde genetik algoritma kullanarak FOPI^{λ}D^{δ} (Fractional Order PI^{λ}D^{δ} – Kesirli PI^{λ}D^{δ}) kontrolörün parametrelerinin optimizasyonu üzerine bir çalışma yapmışlardır. FOPI^{λ}D^{δ} kontrolörün IOPID (Integer Order PID – Klasik PID) kontrolöre göre daha iyi performans verdiğini simülasyon çalışmalarıyla ortaya koymuşlardır [30].

2011'de Walid Emar ve diğerleri, sincap kafesli bir asenkron motor için V/f kontrolü üzerine bir simülasyon çalışması yapmışlardır. V/f oranının sabit tutulması motorun momentinin de sabit tutulmasını sağladığından dolayı asenkron motor sürücülerinde kullanılan evirici devrelerin daha iyi performans sağladığı sonucuna ulaşmışlardır [31].

2012'de Rinku Singhal ve diğerleri, DC motorun hız kontrolünde klasik PID kontrolör ile kesirli $PI^{\lambda}D^{\delta}$ kontrolörün performanslarının karşılaştırılması üzerine bir simülasyon çalışması yapmışlardır. Kazanç katsayılarının ayarlanmasında Ziegler-Nicholas metodunu kullanmışlardır [32].

2012'de Jorge Villagra ve diğerleri, DC motor kontrollü robot eklemleri için serbest-modelli kontrol yapısı kullanarak kesirli türev metodunun sağlamlık ve dinamik cevaba etkisini incelemişlerdir. Kesirli ve tamsayılı serbest-modelli PID kontrolörlerin performanslarını simülasyon ortamında karşılaştırmışlardır [33].

2012'de Andrzej Ruszewski ve Andrzej Sobolewski, DC motorun hız kontrolü için National Instruments firmasının sbRIO-9631 kontrolörünü kullanarak LabVIEW ortamında kesirli $PI^{\lambda}D^{\delta}$ kontrol metodu ile klasik PID kontrol metodlarının performanslarını karşılaştırmışlardır. Kesirli $PI^{\lambda}D^{\delta}$ metodunda maksimum aşmanın daha az olduğu görülmüştür [34].

2012'de Sandip A. Waskar ve diğerleri, dsPIC tabanlı SPWM kontrollü 3 fazlı asenkron motorun hız kontrolü üzerine simülasyon ve deney çalışması yapmışlardır. Skaler kontrol metodu olan V/f oranının kontrolünü bulanık mantık algoritması kullanarak gerçekleştirmişlerdir. Deney çalışmalarında değişken yükler altında sistemin dayanıklılığını incelemişler ve tasarlanan sürücünün endüstriyel alanda kullanılabilir olduğunu belirtmişlerdir [35].

Bu tezde asenkron motorun skaler kontrolünde klasik PI ve kesirli PI^{λ} kontrol yöntemleri üzerinde çalışılmıştır. Kesirli PI^{λ} kontrolör tasarımında Riemann-Liouville ve Grünwald-Letnikov kesirli türevleri arasındaki geçişe dayanan "Grünwald-Letnikov Yaklaşımı" kullanılmıştır. Kontrolör olarak Microchip firmasının dsPIC30F4011 mikrodenetleyicisi kullanılmıştır. Literatürde rastlanmayan dsPIC tabanlı kesirli PI^{λ} kontrolörlü asenkron motorun hız kontrolü uygulaması ile hem literatürdeki bir açığın kapatılacağı hem de dsPIC tabanlı olmasından dolayı endüstriyel alanlarda uygulanabilir bir çalışma olacağı düşünülmektedir. Çalışmanın ikinci kısımda üç fazlı asenkron motorların yapısı ve kontrolü hakkında bilgiler verilmekte, klasik PI ve kesirli PI^{λ} kontrolörler anlatılmaktadır. Üçüncü kısımda mikrodenetleyiciler anlatılmakta, dsPIC mikrodenetleyicilerinin motor kontrol PWM modülü ve enkoder modülü hakkında bilgiler verilmekte ve CCS C derleyicisi anlatılmaktadır. Dördüncü kısımda, yapılan deneylerde verilerin toplanıp bilgisayar ortamında işlenmesinde kullanılan LabVIEW paket programına yer verilmektedir. Beşinci kısımda asenkron motorun PI ve kesirli PI^{λ} yöntemleriyle hız kontrolü üzerine deneysel çalışmalar bulunmaktadır. Altıncı kısımda ise elde edilen sonuçlar ve öneriler anlatılmaktadır.

2. ÜÇ FAZLI ASENKRON MOTORLAR VE KONTROLÜ

Günümüzde asenkron motorların endüstride kullanımı giderek yaygınlaşmaktadır. Asenkron motorlar, fazla bakım gerektirmemesi, devir hızının yük değişimlerine göre fazla etkilenmemesi, maliyetinin düşük olması gibi önemli avantajlarından dolayı doğru akım motorlarına göre daha fazla tercih edilmektedir. Tercih edilmelerine paralel olarak da kontrol yöntemleri gelişmektedir.

Bu bölümde üç fazlı asenkron motorların yapısı, V/f kontrolü, PI kontrol yöntemi ve kesirli PI^{λ} kontrol yöntemi anlatılacaktır.

2.1 Üç Fazlı Asenkron Motorların Yapısı

Asenkron motorlar elektrik ve mekanik olmak üzere iki kısımdan oluşmaktadır. Durağan kısım stator, dönen kısım da rotor olarak adlandırılmaktadır. Stator silisyumlu saçlardan yapılır. Stator levhaları birbirinden yalıtılır ve paket şeklinde hazırlanır. Sargıların yerleştirilmesi için statorun iç yüzeyine oluklar yapılır.

Rotor bir mil üzerine, dönebilecek şekilde yerleştirilir. Silisyumlu çelik saçlardan yapılır. Sargıların yerleştirilmesi için dış yüzeyine oluklar açılır. Sincap kafesli rotorda, rotor oluklarına, sargı yerine alüminyum veya bakır çubuklar yerleştirilir ve bu çubuklar halkalar aracılığı ile her iki taraftan kısa devre edilir. Rotor saç paketi rotor levhalarının arka arkaya dizilmesi ve sıkıştırılmasıyla elde edilir.

Stator sargısı asenkron motorun faz sayısına göre yapılır. Pratikte en çok üç fazlı motorlar, küçük güçlerde ise tek fazlı motorlar kullanılmaktadır.

Üç fazlı asenkron motorların statorunda sargı eksenleri arasında 120° derecelik açı olan üç adet bir fazlı sargı bulunmaktadır. Bu sargılar yıldız veya üçgen şeklinde bağlanabilirler. Faz sargılarını oluşturan bobinler stator oluklarına yerleştirilir. Bu bobinler birbiri ile seri bağlanarak faz sargısını oluştururlar. Rotor sargıları üç fazlı yıldız bağlı veya sincap kafesli türden olabilir. Rotoru sargılı

motorlara bilezikli motorlar denilmektedir. Rotor sargı uçları döner bilezik ve sabit duran firçalarla dışarı alınır. Sincap kafesli asenkron motorlarda rotor çubuklarının her birisi bir faz sargısı gibi davranır [36-39]. Şekil 2.1'de sincap kafesli asenkron motorun kesit alınmış resmi görülmektedir [40].

Şekil 2.1: Sincap kafesli asenkron motorun yapısı

2.2 Asenkron Motorların V/f Kontrolü

Asenkron motorlara bağlı olan yükün artması veya azalmasıyla birlikte devir sayısının değişmesi, endüstriyel uygulamalarda motorun döndürme momentinin kontrol edilmesi ihtiyacını ortaya çıkarmıştır. Yük arttığında döndürme momentinin artırılması, yük azaldığında ise döndürme momentinin azaltılması ile motorun sabit devirde çalışması sağlanabilmektedir. Bu moment kontrolü, asenkron motora uygulanan gerilimin genlik ve frekansının belli bir oranda sabit tutulması ile yapılabilmektedir. Gerilim / frekans oranı bozulmadan motorun frekansı artırılıp azaltılarak devir sayısı kontrol edilebilmektedir. Ayrıca gerilim / frekans oranının sabit kalmasıyla birlikte motorun çekeceği akım da sınırlanmış olmaktadır. 3 fazlı asenkron motorun moment ifadesi denklem (2.1)'de verilmektedir.

$$M = \frac{P_{mek}}{\omega_r} \tag{2.1}$$

Denklem (2.1)'de M momenti (Nm), P_{mek} motorun çıkış gücünü (Watt), ω_r rotorun açısal hızını (rad/sn) ifade etmektedir. Gerilim ve frekans oranının sabit tutulması çekilen akımın da sabit tutulmasını sağlamaktadır. Böylece asenkron motorların yük altında kalkınmasında aşırı akım çekmesi önlenmekte ve daha verimli çalışması sağlanmaktadır.

2.2.1 PI Kontrol

Kapalı çevrim kontrol sistemlerinde sıkça kullanılan orantı-integral (PI) kontrol yöntemi, cevap eğrisinin maksimum aşma miktarının fazla önemli olmadığı hatta türev kontrolün sistemin performansını bozduğu bazı sistemlerde PID kontrol yerine tercih edilmektedir. PI kontrolörün ifadesi denklem (2.2)'de verilmiştir [41,42].

$$u(s) = K_p e(s) + K_i \frac{1}{s} e(s)$$
(2.2)

Burada *e* hata fonksiyonu, K_p oransal kazanç, K_i integral kazançı, *u* ise kontrol değeridir. Hata fonksiyonu *e*, referans değer *r* ile sistemin çıkışı *y* arasındaki farktır. PI kontrolörün blok diyagramı Şekil 2.2'de verilmiştir.

Şekil 2.2: PI kontrolörlü geribeslemeli kontrol sistemi

2.2.2 Kesirli PI^{λ} Kontrol

19. yüzyılda kesirli mertebeli hesaplama, matematiksel anlamda büyük ölçüde tamamlanmış olup 300 yıllık bir geçmişe sahiptir. Ancak, başta mühendisler olmak üzere birçok bilim adamının ilgisini 20. yüzyılın sonlarına doğru çekmiştir. Kesirli analiz, klasik analizin tamsayı mertebeli türev ve integral kavramlarının reel, rasyonel veya kompleks mertebeye bir genişlemesi olarak tanımlanır. Son yüzyıl boyunca kesirli analiz matematik, fizik, biyoloji ve mühendislik alanlarında oldukça geniş uygulama alanı bulmuştur. Bunun temel sebebi, viskoelastiklik ve sönüm, kaos, yayılım ve dalga hareketleri, filtreleme ve tersinemezlik, kontrolör tasarımı gibi pek çok olgunun kesirli analiz kullanılarak gerçeğe daha uygun modellenebilmesi ve açıklanabilmesidir.

Klasik PID kontrolörün yerine kesirli $PI^{\lambda}D^{\delta}$ kontrolörün kullanımı son zamanlarda yaygınlaşmıştır. Sistem dinamikleri yani sistemi tanımlayan diferansiyel denklemler kesirli türevler içeriyorsa bu sistemin analizi kesirli hesaplamalarla yapılır. Ancak söz konusu sistemin kontrolü ise tasarlanan kontrolör klasik veya kesirli olabilir. Diğer bir deyişle kontrolör kesirli türev veya integral içeriyorsa kesirli kontrolördür. Örneğin, bir sistemdeki titreşim hareketinin sönümünde kullanıldığında eğer sistemin elemanları viskoelastik davranışlar gösteriyorsa kesirli kontrolör klasik kontrolörden daha iyi çalışır [43]. Kesirli kontrolörün kullanımının gerekli ve yaygın olduğu başka bir alan ise nöral mühendisliğidir. Biyolojik sistemlerin düzenlenmesinde de kesirli kontrolörler kullanılmaktadır [43]. Geleneksel analitik yöntemlerin uygulanmasının sonucunda sistemlerin davranışları tam olarak açıklanamadığında kesirli analizin uygulanması gündeme gelmektedir. Histerisis [44,45], sönme, hafıza ve gerilim faktörlerinin doğal olarak ortaya çıktığı viskoelastik (yapışkan ve esnek) materyallerin (kıkırdak, deri, kas) fiziksel durumlarının modellenmesinde kesirli hesaplamanın kullanımı kendiliğinden ortaya çıkmaktadır [46].

Eğer zaman bölgesinde tanımlanan bir sistem oldukça yavaş sönüm yapıyorsa, anormal hızlanıyorsa, kendi yayılım hızını yavaşlatıyorsa veya kendisine ait verilerin ifade edilebilmesi için çok fazla sayıda üstel fonksiyonun toplamını gerektirip işlemleri zorlaştırıyorsa bu durumda kesirli analize başvurmak sistemin tanımlanabilmesi ve analizi açısından oldukça etkilidir.

Kesirli mertebeli matematik, 1965 yılında L'Hospital'ın, türev için $\frac{d^n y}{dx^n}$ notasyonunun mucidi olan Leibniz'e bir mektup yazması ile başlar. Mektupta der ki " n=1/2 olduğunda $\frac{d^n y}{dx^n}$ notasyonu ne anlama gelir?". Leibniz bu soruya o zamanda açık bir paradoks olan ama sonrasında çok önemli sonuçlar ortaya çıkaran $\frac{d^{1/2}y}{dx^{1/2}} =$ $2\sqrt{\frac{x}{\pi}}$ şeklinde bir cevap verir. Bu sorgulamaya Euler (1730), Lagrange (1772), Laplace (1812), Fourier (1822) başta olmak üzere 18. ve 19. yüzyıldaki pek çok matematikçinin çalışmaları eklenmiş ve yeni bir teori ortaya çıkmıştır.

Lagrange diferansiyel denklemler için üsler kanununu çalışırken

$$\frac{d^m}{dx^m}\frac{d^n}{dx^n}y = \frac{d^{n+m}}{dx^{n+m}}y$$
(2.3)

eşitliğini bulmuştur.

Kayıtlara geçen ilk kesirli mertebeli türev formülünü yazan kişi olarak bilinen Lacroix, $y = x^m$ fonksiyonu için tam sayılı n. mertebeden türevi;

$$\frac{d^{n}y}{dx^{n}} = \frac{m!}{(m-n)!} x^{m-n} , m \ge n$$
(2.4)

şeklinde ifade etmiştir. Daha sonra Gamma fonksiyonunu kullanarak yukarıdaki formülü kesirli mertebeler olarak,

$$\frac{d^{n}y}{dx^{n}} = \frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n}$$
(2.5)

şeklinde genellenebilir hale getirmiştir.

Denklem (2.4)'teki faktöriyel fonksiyonunun yerini alan Gamma fonksiyonu

$$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt \qquad (2.6)$$

şeklinde olup, tam sayılı z değerleri için $\Gamma(z) = (z - 1)!$ geçerlidir.

Kesirli analizin klasik analizden en önemli farkı, klasik analizde olduğu gibi tek bir türev tanımının olmayışıdır. Kesirli analizdeki birden fazla türev tanımının varlığı problemin türüne en uygun olanının kullanılması ve böylece problemin en iyi çözümünün elde edilmesi fırsatını verir. Başlıcaları Riemann-Liouville, Caputo, Grünwald-Letnikov, Weyl, Riesz ve Marchaud kesirli türevleridir. Birbirleri arasında geçişler olmasına rağmen tanımları ve tanımlarının fiziksel yorumları açısından farklılık gösterirler [47-51].

Genel halde, keyfi bir [a,b] üzerinde tanımlanan ve fiziksel bir sistem sürecini ifade eden f(t) fonksiyonu göz önüne alınsın. Bilinen odur ki $_aD_t^{\alpha}$ ve $_tD_b^{\alpha}$ kesirli türev notasyonları sırası ile sol ve sağ kesirli türevler için kullanılır. O halde f(t) fonksiyonun sol ve sağ kesirli türevlerinin fiziksel anlamı Şekil 2.3'teki gibi ifade edilebilir.

Şekil 2.3: f(t) sürecinin sol ve sağ kesirli türev yorumu

Günümüz literatüründe bu kesirli mertebeli türev/integral operatörü tanımları için, birbiriyle ilişkili farklı yaklaşımlar bulunmaktadır. Riemann-Liouville yaklaşımda, Cauchy'nin n. mertebeden integral ifadesinin Gamma fonksiyonu kullanılarak genelleştirilmiş hali;

$$I^{\alpha}f(t) = f_{\alpha}(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\tau)^{\alpha-1} f(\tau) d\tau \qquad (2.7)$$

şeklinde ifade edilmektedir. Çok katlı integral yerine, n. dereceden türev kavramı üzerinden ilerleyen Grünwald-Letnikov yaklaşımı, n. mertebeden türevin geri-farklar cinsinden ifadesini ele alır. Bu ifade aşağıdaki gibi tanımlanabilir:

$$\frac{d^{n}f(t)}{dt^{n}} = \lim_{\Delta t \to 0} \sum_{i=0}^{n} \left(-1\right)^{i} {n \choose i} f\left(t - i\Delta t\right)$$
(2.8)

Eğer $\Delta t = \frac{t}{N}$ ve $\binom{n}{i} = \frac{n!}{(n-1)!i!}$ ifadesindeki faktöriyel fonksiyonları yerine Gamma fonksiyonu kullanılırsa, kesirli mertebeler için geçerli olan Grünwald-Letnikov'un α . mertebeden türev tanımı elde edilir:

$$D^{\alpha}f(t) = f(x) = \begin{cases} \frac{d^{n}}{dt^{n}} \left[\frac{1}{\Gamma(\alpha - n)} \int_{0}^{t} \frac{f(\tau)}{(t - \tau)^{\alpha + 1 - n}} d\tau \right], & (n - 1 < \alpha < n) \\ \frac{d^{n}}{dt^{n}} f(t), & \alpha = n \end{cases}$$
(2.9)

Riemann-Liouville, Grünwald-Letnikov formülleriyle verilen kesirli mertebeli türev tanımı, klasik türev/integral tanımının genişletilmiş halinden ibaret görünmektedir. Ancak özellikle sistem teorisi açısından bu soyut matematiksel formüllere fiziksel bir yorum getirmek önemlidir. Grünwald-Letnikov yaklaşımıyla kesirli PI^{λ} kontrol ifadesi denklem (2.10)'da verilmiştir [52]. Denklem (2.10)'da zaman *N* adet eşit parçaya bölünmüş ve her bir parçanın uzunluğu *h*=1/*N* olarak alınmıştır. Denklem (2.10)'daki ifade *M*. düğümün çözümünü vermektedir.

$$u(Mh) = K_p e(Mh) + k_i \frac{1}{h^{-\lambda}} \sum_{j=0}^{M} w_j^{(-\lambda)} e(Mh - jh)$$

$$(2.10)$$

Denklem (2.10)'daki w_j ağırlık fonksiyonunun ifadesi ise denklem (2.11)'de verilmiştir [52].

$$w_0^{(\alpha)} = 1, \quad w_j^{(\alpha)} = \left(1 - \frac{\alpha + 1}{j}\right) w_{j-1}^{(\alpha)}, \quad j = 1, 2, \dots N$$
 (2.11)

Denklem (2.10)'da K_p oransal kazanç, K_i integral kazançı, w_j ağırlık fonksiyonu, *e* hata fonksiyonu, *u* ise kontrol değeri olarak ifade edilmiştir.

3. MİKRODENETLEYİCİLER

Son yıllarda sanayi, eğitim, sağlık, savunma, haberleşme vb. alanlarda gelişen teknolojiyle birlikte daha karmaşık yapıdaki elektronik cihazlara olan talebin artmasından dolayı mikrodenetleyici ürünleri ön plana çıkmaya başlamıştır. Mikrodenetleyicilerin donanımı, zaman içerisinde ilerleyen teknolojiye paralel olarak ortaya çıkan karışık kontrol sistemlerine çözüm getirecek şekilde geliştirilmiştir.

Elektronik devre tasarımlarında analog kontrol elemanları yerine mikrodenetleyicilerin kullanılmasıyla birlikte, yazılan algoritmalarla birçok devre elemanından ve donanım değişikliğinden kurtulmak mümkün olmaktadır. Ayrıca mikrodenetleyici ile ölçülen değerlerin bilgisayar ortamına iletilebilmesi ve istenen değerlerin bilgisayar üzerinden ayarlanabilmesi gibi imkânlara sahip olması, analog devrelere tercih edilmesi konusunda oldukça avantaj sağlamaktadır.

Gelişen mikrodenetleyici teknolojisi ile birlikte üretici firmalar çeşitli ölçüm, sayıcı, zamanlayıcı, kontrol vb. devreleri modül şeklinde mikrodenetleyicilere entegre ederek geniş ürün yelpazeleri oluşturmakta ve kullanıcıların, ihtiyaçlarını karşılayacak ürünlere ucuza ve kolayca ulaşabilmesini sağlamaktadırlar.

Mikrodenetleyiciler ilk zamanlarda, makina diline yakın olan Assembly diliyle programlanmıştır. Fakat bu dilin yazımının zor ve dikkat gerektirmesi, yazan kişi dışındaki programcıların yazılan algoritmayı anlamalarının zor olmasından dolayı insan diline yakın olan diller son yıllarda daha çok tercih edilmeye başlanmıştır. Bu dillerden C dili, sadece mikrodenetleyicler arasında değil diğer elektronik ürünler arasında da çok yaygın şekilde kullanılmaktadır.

Yapılan laboratuar çalışmaları esnasında kullanılan mikrodenetleyicilerin programları C dilinde yazılmıştır. Mikrodenetleyici olarak Microchip firmasının dsPIC mikrodenetleyicileri kullanılmıştır. İlerleyen bölümlerde dsPIC mikrodenetleyicileri hakkında bilgiler verilecektir.

3.1 dsPIC Mikrodenetleyicileri

Mikrodenetleyicilerin kontrol özellikleri ile DSP'lerin hesaplama ve verimli çalışma özelliklerinin birleştirilerek bir gömülü sistem haline getirildiği dsPIC mikrodenetleyicileri 2005 yılında Microchip firması tarafından piyasaya sürülmüştür. dsPIC'ler gelişmiş ve esnek kesme (interrupt) çalıştırması, dijital ve analog çevre birimleri için geniş bir fonksiyon arşivinin olması, farklı saat frekanslarında çalışabilmesi, isteğe bağlı kod korumasının olması, tam hızda gerçek zamanlı simülasyon yapabilmesi ve tam hızda hata ayıklama özelliği gibi avantajlarının yanında düşük fiyatı ve fiyat performans dengesi ile son yıllarda birçok uygulamada tercih edilmeye başlanmıştır. Şekil 3.1'de mikrodenetleyici ailelerinin fiyatperformans karşılaştırması verilmiştir [53].

Şekil 3.1: Mikrodenetleyici ailelerinin fiyat-performans karşılaştırması

Sanayide birçok alanda, ihtiyaca uygun olarak üretilen dsPIC modelleri mevcuttur. dsPIC30F ve dsPIC33F serileri motor kontrollerinde, kesintisiz güç kaynaklarında, anahtarlamalı güç kaynaklarında, sensörlerden veri okunmasında, akım, gerilim, frekans vb. elektriksel değerlerin hassas olarak ölçülmesinde kullanılmaktadır. Tablo 3.1'de dsPIC30F serisi mikrodenetleyicilerin teknik özellikleri verilmiştir [54].

Model	Pin	Program Hafızası/ Komutlar	SRAM (Byte)	EEPROM (Byte)	16-bit Zamanlayıcı	Motor Kontrol PWM	10-bit 500 Ksps A/D Çevirici	Enkoder Modülü
dsPIC30F2010	28	12K/4K	512	1024	3	6 kanal	6 kanal	Var
dsPIC30F3010	28	24K/8K	1024	1024	5	6 kanal	6 kanal	Var
dsPIC30F4012	28	48K/16K	2048	1024	5	6 kanal	6 kanal	Var
dsPIC30F3011	40/44	24K/8K	1024	1024	5	6 kanal	9 kanal	Var
dsPIC30F4011	40/44	48K/16K	2048	1024	5	6 kanal	9 kanal	Var
dsPIC30F5015	64	66K/22K	2048	1024	5	8 kanal	16 kanal	Var
dsPIC30F6015	80	144K/48K	8192	4096	5	8 kanal	16 kanal	Var

Tablo 3.1: dsPIC30F serisi

Bu tezde asenkron motorun hızı dsPIC304011 mikrodenetleyicisi ile kontrol edilmiştir. Sonraki bölümde dsPIC30F4011 mikrodenetleyicisinin yapısı ve özellikleri anlatılacaktır.

3.1.1 dsPIC30F4011 Mikrodenetleyicisi

dsPIC30F4011, Microchip tarafından 2005 yılında piyasaya sürülen ve güncellenmiş RISC mimarisine sahip olan 16 bit'lik bir mikrodenetleyicidir. dsPIC30F4011'in bazı teknik özellikleri Tablo 3.2'de sunulmuştur.

Tablo 3.2: dsPIC30F4011 mikrodenetleyicisinin genel özellikleri

48 Kbyte hafiza
2 Kbyte RAM
5 adet 16 bit'lik zamanlayıcı/sayıcı
Motor Kontrol PWM Modülü:
 6 adet PWM çıkış kanalı PWM çıkışlarını bağımsız veya tamamlayıcı modunda çalıştırabilme 3 adet "Duty Cycle" üreteci Tamamlayıcı mod için ölü zaman ayarı
Enkoder Modülü:
 Faz A, Faz B ve indeks darbesi girişi 16 bit yukarı/aşağı pozisyon sayıcısı

- Pozisyon ölçüm modları (2x veya 4x çözünürlükte)
- > Girişler için programlanabilen dijital gürültü filtreleri
- Pozisyon sayıcısının taşma kesmesi

Analog özellikler:

- 10 bit analog-dijital çevirici
- 500 Ksps çevirme oranı
- 9 analog giriş kanalı

Geniş çalışma aralığı (2.5V – 5.5V)

Endüstriyel alanlardaki farklı ortam sıcaklıklarında çalışabilme

Düşük güç tüketimi

dsPIC30F4011 mikrodenetleyicisinin bağlantı uçları Şekil 3.2'de, blok diyagramı ise Şekil 3.3'te verilmiştir [54].

Şekil 3.2: dsPIC30F4011 mikrodenetleyicisinin bağlantı uçları

Şekil 3.3: dsPIC30F4011 mikrodenetleyicisinin blok diyagramı

dsPIC30F4011 mikrodenetleyicisinin pin bağlantıları açıklamalarıyla birlikte EKLER'deki Tablo 8.1'de verilmiştir.

dsPIC30F4011 genel olarak üç fazlı asenkron motorların sürülmesinde, kesintisiz güç kaynaklarında, fırçasız DC (BLDC) motorlar ve anahtarlamalı relüktans motorların sürücü devrelerinde kullanılmaktadır. dsPIC'in Motor kontrol PWM modülü ve enkoder modülü bu alanlarda kullanılmak üzere tasarlanmıştır. İlerleyen bölümlerde Motor Kontrol PWM Modülü ve Enkoder Modülü hakkında bilgiler verilecektir.

3.1.1.1 Motor Kontrol PWM Modülü

Motor kontrol PWM modülü asenkron motorlar, BLDC motorlar gibi çok fazlı motorların değişken hızlarda sürülmesi konusunda, bağımsız PWM kanalları sayesinde çözüm üretebilmektedir. Modülün PWM çıkışları isteğe bağlı olarak bağımsız modda veya 2'li çiftler halinde tamamlayıcı modda kullanılabilir. Tamamlayıcı modda çıkış çiftleri birbirinin tersi olarak üretilmekte ve yarı iletken anahtarlamalı sürücü devrelerindeki alt ve üst kolların anahtarlaması yapılabilmektedir. Üç fazlı bir evirici devresi Şekil 3.4'te gösterilmiştir [55-57].

Şekil 3.4: Evirici ile üç fazlı bir yükün beslenmesi

dsPIC mikrodenetleyicisinin motor kontrol PWM modülünün PWM periyodu denklem (3.1)'deki formüle göre hesaplanmaktadır [58].

$$PTPER = \frac{F_{CY}}{F_{PWM} * (PTMR \, Prescaler) * 2} - 1 \tag{3.1}$$

Denklem (3.1)'de *PTPER* periyodun kaydedileceği kayıtçı, F_{CY} mikrodenetleyicinin saat frekansı, F_{PWM} istenen PWM frekansı, *PTMR Prescaler* PWM zamanlayıcısının ölçeği olarak belirtilmiştir. Denklem (3.2)'de PWM çözünürlüğünün hesaplanması verilmiştir.

Denklem (3.2)'de T_{PWM} PWM periyodunu, T_{CY} mikrodenetleyicinin saat periyodunu göstermektedir. Tablo 3.3'te PWM frekansı ve çözünürlüğüne ilişkin örnekler verilmiştir.

$T_{CY}\left(F_{CY}\right)$	PTPER Değeri	PWM çözünürlüğü	PWM Frekansı
33 ns (30 MHz)	0x7FFF	16 bit	458 Hz
33 ns (30 MHz)	0x3FFF	15 bit	916 Hz
50 ns (20 MHz)	0x7FFF	16 bit	305 Hz
50 ns (20 MHz)	0x1FFF	14 bit	1.22 kHz
100 ns (10 MHz)	0x7FFF	16 bit	153 Hz
100 ns (10 MHz)	0xFFF	13 bit	1.22 kHz
200 ns (5 MHz)	0x7FFF	16 bit	76.3 Hz
200 ns (5 MHz)	0x7FF	12 bit	1.22 kHz

Tablo 3.3: PWM frekansı ve çözünürlüğü örnekleri

Motor kontrol PWM modülü tamamlayıcı modda kullanıldığında, eviricilerde alt ve üst yarı iletken elemanların aynı anda iletimde olmalarını engellemek için ölü zaman üreteci tasarlanmıştır. Ölü zaman üreteci, PWM çiftlerinden biri iletimden çıktıktan belli bir süre sonra diğer çıkışı aktif etmektedir. Bu süre kullanılan yarı iletken elemanların anahtarlama ölü zamanından büyük seçildiğinde alt ve üst kollar aynı anda iletimde olamaz, dolayısıyla kaynağın kısa devre olması engellenerek arızaların önüne geçilmiş olunur [56]. Ölü zaman üretecinin blok diyagramı Şekil 3.5'te verilmiştir [58].

Şekil 3.5: Ölü zaman üretecinin blok diyagramı

Ölü zaman üretecinde 6 bitlik zamanlayıcı ile ölü zaman değerleri ayarlanmaktadır. Ölü zaman, isteğe bağlı olarak PWM sinyallerinin yarım periyodunun başına, sonuna veya her iki kısma da eklenebilmektedir. PWM sinyallerine ölü zaman ekleme durumu Şekil 3.6'da gösterilmiştir.

Şekil 3.6: Ölü zaman ekleme diyagramı

Ölü zaman ekleme diyagramında PWM sinyalinin yarım periyodunun başı A bölgesi, sonu B bölgesi olarak tanımlanmıştır. dsPIC motor kontrol PWM modülü için ölü zaman hesaplama formülü denklem (3.3)'te verilmiştir [58].

$$DT = \frac{Dead time}{Prescale value * Tcy}$$
(3.3)

Denklem (3.3)'te *Tcy* mikrodenetleyicinin saat periyodunu, *Dead time* ölü zamanın mikrosaniye cinsinden değeri, *Prescale value* saat periyodunun ölçeğini *DT* ise ölü zaman kayıtçısına yazılacak olan değeri göstermektedir. Ölü zaman aralıkları ile ilgili örnekler Tablo 3.4'te verilmektedir.

$T_{CY}\left(F_{CY}\right)$	Ölçek seçimi	Çözünürlük	Ölü zaman aralığı
33 ns (30 MHz)	4 T _{CY}	130 ns	130 ns - 9 μs
50 ns (20 MHz)	4 T _{CY}	200 ns	200 ns - 12 µs
100 ns (10 MHz)	2 T _{CY}	200 ns	200 ns - 12 µs
100 ns (10 MHz)	1 T _{CY}	100 ns	100 ns - 6 µs

Tablo 3.4: Ölü zaman aralıkları örnekleri

"Duty cycle" oranı çok küçük olan PWM sinyallerinde ölü zaman eklenmesi sinyalin yok olmasına neden olabilmektedir. Bu nedenle ölü zaman eklenirken sinyalin en fazla üçte biri kadar seçilmelidir [59].

dsPIC30F4011 motor kontrol PWM modülü için yazılan örnek bir ölü zaman ayarlamasının osiloskop görüntüsü Şekil 3.7'de gösterilmiştir.

Şekil 3.7: dsPIC30F4011 için örnek ölü zaman incelemesi

Şekil 3.7'de, kanal 1 PWM1 çıkışının üst kolu kanal 2 ise PWM1 çıkışının alt kolunu göstermektedir. Şekilde de görüldüğü gibi bir kol için anahtarlama sinyali kesildikten sonra yarı iletken elemanın iletimden çıkması beklenmekte sonra diğer kol için anahtarlama sinyali üretilmektedir.

Motor kontrol PWM modülünün PWM üreteci ile üretilen sinyaller Şekil 3.5'teki ölü zaman üretecinin blok diyagramında görüldüğü gibi, üst kol için direk ölü zaman üretecine gitmekte alt kol için ise tersi alınarak ölü zaman üretecine gitmektedir. Böylece alt ve üst kollar birbirinin tersi olarak anahtarlanarak evirici çıkışında alternatif gerilim üretilebilmektedir.

Sinüsoidal sinyale ihtiyaç duyulan çalışmalarda MCPWM modülü tamamlayıcı modda kullanılmalı ve belli bir ölü zaman süresi ayarlanmalıdır [60]. dsPIC30F4011 için uygulanan örnek bir sinüsoidal PWM uygulamasının PWM sinyallerinin osiloskop görüntüsü Şekil 3.8'de verilmiştir.

Şekil 3.8: dsPIC30F4011 için sinüsoidal PWM uygulaması

Şekil 3.8'de kanal 1 PWM1 çıkışının üst kolu kanal 2 ise PWM1 çıkışının alt kolunu göstermektedir. dsPIC30F4011 için yazılan örnek bir sinüs sinyali algoritması ile üretilen sinyaller osiloskop kullanılarak incelenmiştir.

3.1.1.2 Enkoder Modülü

Enkoder modülü, hız veya konum kontrolü yapılan endüstriyel sistemlerde kullanılan elektrik motorlarının devir bilgilerinin mikrodenetleyici tarafından okunmasını sağlamak amacıyla tasarlanmış bir modüldür. Modülde çift kanallı enkoderleri okuyabilecek şekilde iki ayrı faz girişi (faz A ve faz B) ve bir indeks girişi bulunmaktadır [61]. A fazı B fazından önde olduğu durumlarda artı yönde dönüş olduğu algılanmakta, A fazının B fazından geride olduğu durumlarda ise eksi yönde dönüş olduğu algılanmaktadır. İndeks kanalından her turda bir darbe okumakta ve mutlak konum bilgisi için referans oluşturulmaktadır. İndeks kanalı, enkoder modülünün çalışması için zorunlu bir bilgi olmamakla birlikte üretilen birçok enkoderde indeks kanalı bulunmamaktadır. Enkoder modülünün blok diyagramı Şekil 3.9'da verilmektedir [59].

Şekil 3.9: Enkoder modülünün blok diyagramı

Çift kanallı enkoderlerin kanalları arasında 90° faz farkı vardır. Bu faz farkı, konum ve hız kontrollerinde dönüş yönünün belirlenmesi, adım hassasiyetinin artırılması, sürekli hâl hatasının azaltılması ve kontrolör performansının iyileştirilmesi gibi konularda ihtiyaçları karşılamaktadır. Çift kanallı bir enkoderin çıkış sinyalleri Şekil 3.10'da görülmektedir.

Şekil 3.10: Çift kanallı enkoderin çıkış sinyalleri

Enkoder modülünün kanal girişlerinde programlanabilen dijital filtreler bulunmaktadır. Bu filtreler pozisyon sayıcısını yanıltacak parazit sinyalleri engelleyerek sağlıklı ölçüm yapılabilmesini sağlamaktadır. Filtreler programlanırken ölçülebilecek minimum darbe genişliği denklem (3.4)'e göre hesaplanmaktadır [59].

$$MIN _PULSE = \frac{30}{MAX _RPM \ x \ ENCODER _PULSES}$$
(3.4)

Denklem (3.4)'te *MIN_PULSE* ölçülebilecek olan minimum darbe genişliğini, *MAX_RPM* hızı ölçülen sistemin maksimum dönme hızını, *ENCODER_PULSES* ise kullanılan enkoderin bir tam turunda ürettiği darbe sayısını göstermektedir. Filtre ayarlarının formülü ise denklem (3.5)'te verilmiştir [59].

$$FILTER_DIV = \frac{MIPS \ x \ FILTERED_PULSE}{3}$$
(3.5)

Denklem (3.5)'te *FILTER_DIV* filtrenin bölme oranını, *MIPS* (Microprocessor without Interlocked Pipeline Stages) kullanılan mikroişlemci mimarisinin sabit sayısını, *FILTERED_PULSE* okunabilecek minimum darbe genişliğini göstermektedir. *FILTERED_PULSE* değerinin altındaki değerler modül tarafından okunmaz.

dsPIC mikrodenetleyicisinin enkoder modülünde 2x ve 4x çözünürlüklü ölçüm modları bulunmaktadır. 2x modunda A ve B kanallarından üretilen TTL sinyallerin sadece yükselen kenarları sayılmakta, 4x modunda ise her iki kanalın hem yükselen hem de düşen kenarlarının sayılmasıyla daha hassas ölçüm yapılabilmektedir. 4x modunda enkoder sinyallerinin sayılması Şekil 3.11'de gösterilmektedir [59].

Şekil 3.11: 4x modunda enkoder sinyallerinin sayılması

3.2 CCS C Derleyicisi

CCS C Derleyicisi Custom Computer Services Inc. Firmasının ürettiği ve Microchip firmasının PIC mikrodenetleyicilerinin C dilinde programlanabilmesini sağlayan bir programdır. CCS firması ayrıca tümleşik yazılımlar geliştirmekte, deney kartları üretmekte ve diğer firmalara istenilen özelliklerde yazılım ve devre tasarımı konusunda hizmet vermektedir [62].

CCS C Derleyicisinin farklı sürümleri bulunmaktadır. Bunlar:

- CCS PCB Compiler (Temel Mikrodenetleyiciler Baseline)
- CCS PCM Compiler (Orta Düzey Mikrodenetleyiciler Midgrade)
- CCS PCH Compiler (Yüksek Performanslı Mikrodenetleyiciler, PIC18 – High Performance)
- > CCS **PCD** Compiler (PIC24 ve **d**sPIC Mikrodenetleyiciler)

PCB derleyicisi 12 bit komut kelime boyutuna sahip PIC mikrodenetleyiciler için, PCM derleyicisi 14 bit komut kelime boyutuna sahip PIC mikrodenetleyiciler için, PCH derleyicisi 16 bit komut kelime boyutuna sahip PIC mikrodenetleyiciler için, PCD ise 24 bit komut kelime boyutuna sahip PIC24 ve dsPIC mikrodenetleyiciler için kullanılmaktadır [63].

Bu çalışmada CCS C Compiler versiyon 4 kullanılmıştır. Programın arayüzü Şekil 3.12'de verilmiştir.

Şekil 3.12: CCS C Derleyicisinin arayüzü

Şekil 3.12'de project menüsündeki "project" seçeneği ile önceden kaydedilmiş projeler açılır. "PIC Wizard" ile kullanacağımız mikronetleyiciyi, modülleri seçebileceğimiz ve bunların ayarlarını yapabileceğimiz bir proje oluşturma sihirbazı açılmaktadır. "24 Bit Wizard" ile 24 bit PIC'ler ve dsPIC'ler için proje

oluşturma sihirbazı açılmaktadır. "Create" seçeneği ile boş bir editör sayfası açılmakta ve mikrodenetleyici, modül vb. ayarlar kullanıcıya bırakılmaktadır. "Compile" menüsünün ekran görüntüsü Şekil 3.13'te sunulmuştur.

Şekil 3.13: CCS C Derleyicisinin "Compile" menüsü

Compile menüsündeki "Compile" seçeneği ile üzerinde çalışılan projede C dilinde yazılan program derlenerek makina diline çevrilmektedir. Bu işlem sonunda mikrodenetleyiciye yüklenebilecek olan ".hex" uzantılı dosya oluşturulur. "Build" seçeneği ile aktif olan proje dosyası derlenmekte, "Build All" seçeneği ile açık olan bütün proje dosyaları derlenmektedir. "Clean" seçeneği ile derleme sonucu oluşturulan bütün çıkış dosyaları silinebilmektedir.

4. LabVIEW PROGRAMI

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) analog ve dijital verilerin analiz edilebileceği birçok ölçüm cihazını sanal olarak barındıran bir paket programdır. National Instruments firması tarafından geliştirilen LabVIEW programı voltmetre, ampermetre, frekansmetre, osiloskop, termometre, pozisyon sayıcısı vb. cihazları sanal olarak oluşturmakta, analog veya dijital olarak alınan verileri bu sanal cihazlarda analiz edebilmektedir [64].

LabVIEW programı birçok matematik fonksiyonu, kapalı çevrim kontrol yöntemleri, zamanlama ve sayma işlemleri, veri depolama işlemleri, analog veri okuma, sinyal işleme vb. uygulamalar için basitleştirilmiş blok yapıları barındırması sayesinde kullanıcıya büyük kolaylıklar sağlamaktadır.

LabVIEW güçlü bir grafik arayüzü programlama dili kullanır. LabVIEW'de program yazma işlemi komut satırları yerine grafikler kullanılarak yapılmaktadır [65]. Kullanılmak istenen fonksiyonların blokları ikonlar halinde ekrana eklenir ve aralarında gerekli bağlantılar yapılır. Bu şekilde oluşturulan blok diyagramları ile programın akışı kolayca takip edilebilmektedir. Bu yöntem ile yazılan algoritma hataları daha çabuk görülebilmekte ayrıca programlamayı bilmeyen kişilerce de programın çalışma mantığı kolayca anlaşılabilmektedir.

LabVIEW çok geniş bir fonksiyon ve alt program kütüphanesine sahiptir. LabVIEW özel uygulamalar için kod ve veri toplama (Data Acquisition Card (DAQ Card)), genel amaçlı arayüz yolu (General Puspose Interface BUS (GPIB)), seri haberleşme ile aygıt kontrolü, veri analizi, veri sunumu, bilgilerin depolanması ve internet üzerinden haberleşme hizmetlerinin kolaylıkla gerçekleştirilmesini sağlamaktadır [66].

Deneysel çalışmalarda alınan veriler LabVIEW 6024E daq kartı ile LabVIEW paket programı kullanılarak bilgisayar ortamına aktarılmıştır. İlerleyen bölümlerde LabVIEW programının kullanılması hakkında bilgiler verilecektir.

4.1 LabVIEW Programının Ön Paneli

Ön panel kullanıcılar için tasarlanan arayüzdür. Blok diyagramında yazılan programlar ön paneldeki butonlar, anahtarlar, kademeli anahtarlar vb. girişler ile kontrol edilebilir, ayrıca göstergeler, osiloskoplar vb. sanal cihazlar ile işlenen veriler görüntülenebilmektedir. LabVIEW programının ön panelinin bir örnek görüntüsü Şekil 4.1'de sunulmuştur.

Şekil 4.1: LabVIEW programının ön paneli

Şekil 4.1'de görüldüğü gibi ön panele eklenen göstergeler, anahtarlar, butonlar vb. cihazlar, blok diyagramı penceresinde aynı anda oluşan ikonlarının gerekli yerlere bağlanması ile çalışır hale getirilebilmektedir.

Ön panelin tasarımı blok diyagramının tasarımıyla aynı anda yapılmaktadır. Böylece tasarım sırasında yaşanabilecek karışıklıklar azalmakta ve hataların tespiti kolaylaşmaktadır.

4.2 LabVIEW Programinin Blok Diyagrami

LabVIEW'de program yazma kısmı blok diyagramı şeklinde yapılmaktadır. Çalıştırılmak istenilen algoritmalar için kullanılacak fonksiyonlar, lojik girişler vb. ikonlar halinde ekrana eklendikten sonra aralarında gerekli bağlantılar Mouse kullanarak yapılabilmektedir. LabVIEW programına ait blok diyagramının örnek bir görüntüsü Şekil 4.2'de verilmiştir.

Şekil 4.2: LabVIEW programının blok diyagramı

Şekil 4.2'de görüldüğü gibi blok diyagramı penceresine eklenen ikonların aynı anda ön panelde bağlantılı ikonları oluşmaktadır. Bu şekilde blok diyagramı ve ön panelin aynı anda tasarlanabilmesi sağlanmaktadır.

4.3 LabVIEW Veri Toplama Kartı

LabVIEW programında analog veya dijital verilerin dışarıdan okunması ve üretilen sinyallerin dışarı aktarılmasını sağlanması National Instruments firmasının ürettiği veri toplama kartları ile yapılabilmektedir.

Deney düzeneği üzerinden verilerin alınması için NI-6024 E DAQ kartı kullanılmıştır. 6024 E DAQ kartının 16 adet analog giriş kanalı, 2 adet analog çıkış kanalı, 68 pin konnektörü ve 8 adet dijital giriş-çıkış kanalı bulunmaktadır. 6024 E DAQ kartı zamanlama fonksiyonları için NI-DAQ-STC sistem denetçisi (System Timing Controller - STC) kullanmaktadır. DAQ-STC üç adet zamanlama grubu içermektedir. Bunlar analog giriş, analog çıkış ve genel amaçlı sayıcı/zamanlayıcı fonksiyonlarıdır. Bu gruplar toplam 7 adet 24 bit ve 3 adet 16 bit sayıcı içermektedir. En yüksek zamanlama çözünürlüğü 50 ns'dir. Birçok DAQ kartında birkaç zamanlama fonksiyonu birlikte çalıştığında uyum sağlamak zor olmaktadır. 6024 E DAQ kartında ise gerçek zamanlı sistem bütünleşmesi (Real-Time System Integration - RTSI) mevcut olduğundan bu sorun çözülmüştür. Arayüz olarak alet düzeni için sinyal iyileştirme uzantıları (Signal Conditioning Extensions for Instrumentation - SCXI) sistemi kullanılmaktadır. Termokupul, straingage (gerilme ölçer), voltaj kaynakları ve akım kaynaklarından veri alınabilmektedir. Aynı zamanda haberleşme ve kontrol için dijital sinyaller üretilebilmektedir [67].

NI- 6024 E DAQ kartında programlanarak kazancı değiştirilebilen iki kutuplu giriş seviyesi mevcuttur. Her kanalın kazancı 12 bitlik analog-dijital çevirici ile 0,5-1,0-10 veya 100 olarak ayarlanabilir. Giriş sinyalini ölçmek için analog-dijital çeviricinin çözünürlüğü (12 bit) uygun kazanç ayarıyla kullanılabilir. Tablo 4.1'de ölçüm hassasiyetleri gösterilmektedir [66].

Kazanç	Giriş Seviyesi	Hassasiyet
0,5	-10 V, +10 V arası	4,88 mV
1,0	-5 V, +5 V arası	2,44 mV
10,0	-500 mV, +500 mV arası	244,14 μV
100,0	-50 mV, +50 mV arası	24,41 µV

Tablo 4.1: Ölçüm Hassasiyetleri

6024 E DAQ kartı genel amaçlı kullanım için 8 adet dijital giriş-çıkış içermektedir. Bu kanallar port halinde kullanılabildiği gibi ayrı ayrı da kullanılabilmektedir. Dijital giriş-çıkışlar sistem ilk çalıştırıldığında ve resetlendiğinde yüksek empedans gösterirler. Böylece herhangi bir sebeple oluşabilecek arızadan dolayı aşırı akım çekilmesi önlenmektedir. 6024 E DAQ kartının konnektör bloğunun şeması Şekil 4.3'te verilmiştir [68].

\frown					
AL R	34 68	ALO.			
AI 1	33 67	ALGND			
ALGND	32 66	AL9			
AI 10	31 65	AL2			
AL3	30 64	AI GND			
AI GND	29 63	AI 11			
AI 4	28 62	AI SENSE			
AI GND	27 61	AI 12			
AI 13	26 60	AI 5			
AI 6	25 59	AI GND			
AI GND	24 58	AI 14			
AI 15	23 57	AI 7			
AO 0	22 56	AI GND			
AO 1	21 55	AO GND			
NC	20 54	AO GND			
P0.4	19 53	D GND			
D GND	18 52	P0.0			
P0.1	17 51	P0.5			
P0.6	16 50	D GND			
D GND	15 49	P0.2			
+5 V	14 48	P0.7			
D GND	13 47	P0.3			
D GND	12 46	AI HOLD COMP			
PFI 0/AI START TRIG	11 45	EXT STROBE			
PFI 1/AI REF TRIG	10 44	D GND			
D GND	9 43	PFI 2/AI CONV CLK			
+5 V	8 42	PFI 3/CTR 1 SRC			
D GND	7 41	PFI 4/CTR 1 GATE			
PFI 5/AO SAMP CLK	6 40	CTR 1 OUT			
PFI 6/AO START TRIG	5 39	D GND			
D GND	4 38	PFI 7/AI SAMP CLK			
PFI 9/CTR 0 GATE	3 37	PFI 8/CTR 0 SRC			
CTR 0 OUT	2 36	D GND			
FREQ OUT	1 35	D GND			
NC - No Connect					
		The Set			

Şekil 4.3: 6024 E DAQ kartının bağlantıları

Deneysel çalışmalarda motordan hız bilgisinin alınması için Şekil 4.3'teki 37 nolu pin, "CTR 0" sayıcısı modunda kullanılmıştır. Kartın faz farklı enkoder girişi olmadığından dolayı, enkoderin sadece bir kanalı sayılarak LabVIEW ortamında motorun devir bilgisi görüntülenmiştir.

5. DENEYSEL ÇALIŞMALAR

Deney düzeneği üç fazlı asenkron motorun hız kontrolünün gerçekleştirilmesine yönelik tasarlanmıştır. Düzenek bir fazlı doğrultucu, üç fazlı evirici [69], dsPIC30F4011 mikrodenetleyicisi, LabVIEW programı ve DAQ kartı, 1.1 kW'lık üç fazlı asenkron motor, 1024 PPR enkoder [70] ve 20 Nm'lik bir elektromanyetik Fuko freninden oluşmaktadır. Tasarlanan deney düzeneğinin blok diyagramı Şekil 5.1'de, düzeneğin görüntüleri ise Şekil 5.2 ve Şekil 5.3'te verilmiştir.

Şekil 5.1: Tasarlanan deney düzeneğinin blok diyagramı

Şekil 5.2: Deney düzeneğinin kontrol devresi

Şekil 5.3: Deney düzeneğinin güç devresi (motor + enkoder + fren)

Bir fazlı doğrultucu AC şebeke gerilimini DC'ye dönüştürerek eviricinin DC giriş gerilimini temin etmek için kullanılmaktadır. Evirici, üç fazlı asenkron motorun gerilim ve frekansını kontrol etmek için tasarlanmış olup motoru sürme işlevini yapmaktadır. dsPIC30F4011 ise kontrolör olarak kullanılmaktadır. dsPIC30F4011, çıkış hız bilgisi ile referans hız bilgisinin karşılaştırıldığı ve elde edilen hata bilgisine göre PI algoritmasının kontrolör çıktısını üretmekte kullanılan bir mikrodenetleyici elemandır. LabVIEW programı ve DAQ kartı, sistemden elde edilen çıkış bilgilerinin görsel ortama aktarılması veya verilerin EXCEL dosyası olarak saklanması ve grafiğe dönüştürülmesi amacıyla kullanılmaktadır. Bu şekilde deneysel sonuçların yorumlanması daha kolay yapılabilmektedir. Çalışma, araştırma amaçlı olduğundan deney düzeneğinin ekonomik ve uygulanabilir olması için 1.1 kW'lık üç fazlı bir asenkron motor tercih edilmistir. Geribeslemedeki hata payını azaltmak için 1024 puls, çift kanallı bir optik enkoder kullanılmıştır. Klasik PI ve kesirli PI kontrolör algoritmaları, iki algoritma arasındaki farkı görebilmek açısından aynı düzenek üzerinde gerçekleştirilmiştir. İlk etapta klasik PI algoritması tasarlanmış ve uygulanmıştır. Algoritma sayısal ortamda çalışacağından dolayı PI denklemi;

$$u(k) = K_{p}e(k) + Ki\frac{e(k) + e(k-1)}{2}h$$
(5.1)

şeklinde tanımlanmıştır. Denklem (5.1)'de e(k) hata fonsiyonu, h ölçülen iki hata değeri arasındaki birim süre, K_p oransal kontrol katsayısı, K_i integral kontrol katsayısı, u(k) ise çıkış fonksiyonu olarak ifade edilmektedir. K_p ve K_i katsayıları dsPIC30F4011'e girilerek eviriciyi sürmek için gerekli kontrolör işaretleri elde edilmiştir. Kontrolör çıkışı ile sinüsoidal PWM sinyalinin darbe genişliği ve frekansı ayarlanarak motora uygulanan gerilim ve frekans değerleri değiştirilmektedir. Bu algoritmaların çalıştırılmasıyla elde edilen sonuçlar LabVIEW ortamında EXCEL dosyası olarak kaydedilebilmektedir. Verilerin EXCEL'e aktarılması işlemi sistemin çalışmasını az da olsa olumsuz yönde etkilemektedir. Fakat elde edilen verilerin analizi ve grafiğe dönüştürülmesi açısından faydalıdır. Deneyler her iki algoritma için de farklı referans hız, K_p ve K_i katsayıları için gerçekleştirilmiştir. Bazı değerler için elde edilen sonuçlar aşağıda verilmiştir.

Şekil 5.4: PI kontrol (Kp=0.1, Ki=0.1, 750 dev/dak)

Şekil 5.4'ten Şekil 5.13'e kadar olan grafiklerde zaman ekseni, eksendeki sayı ile 100 ms çarpılarak saniye cinsinden hesaplanmaktadır.

Şekil 5.4'te klasik PI kontrolörde referans hız 750 dev/dak, $K_p=0.1$, $K_i=0.1$ için elde edilen sonuç grafik olarak sunulmuştur. Şekilde görüldüğü gibi oturma zamanı 1.5 saniye, maksimum aşım % 26'dır.

Şekil 5.5: PI kontrol (Kp=0.01, Ki=0.1, 1000 dev/dak)

Şekil 5.5'te klasik PI kontrolörde referans hız 1000 dev/dak, $K_p=0.01$, $K_i=0.1$ için elde edilen sonuç grafik olarak sunulmuştur. Şekilde görüldüğü gibi oturma zamanı 8 saniyedir ve maksimum aşım çok küçüktür.

Şekil 5.6: PI kontrol (Kp=0.01, Ki=1, 1000 dev/dak)

Şekil 5.6'da klasik PI kontrolörde referans hız 1000 dev/dak, $K_p=0.01$, $K_i=1$ için elde edilen sonuç grafik olarak sunulmuştur. Şekilde görüldüğü gibi oturma zamanı 4.5 saniyedir ve maksimum aşım yoktur.

Şekil 5.7: FOPI kontrol (Kp=0.1, Ki=0.1, λ =0.8, 750 dev/dak)

Şekil 5.7'de kesirli PI kontrolörde referans hız 750 dev/dak, $K_p=0.1$, $K_i=0.1$, $\lambda=0.8$ için elde edilen sonuç grafik olarak sunulmuştur. Şekilde görüldüğü gibi oturma zamanı 1.0 saniye, maksimum aşım %37'dir.

Şekil 5.8: FOPI kontrol (Kp=0.01, Ki=0.1, λ =0.2, 1000 dev/dak)

Şekil 5.8'de kesirli PI kontrolörde referans hız 1000 dev/dak, $K_p=0.01$, $K_i=0.1$, $\lambda=0.2$ için elde edilen sonuç grafik olarak sunulmuştur. Şekilde görüldüğü gibi oturma zamanı 7.6 saniyedir ve maksimum aşım yoktur.

Şekil 5.9: FOPI kontrol (Kp=0.01, Ki=1, λ =0.8, 1000 dev/dak)

Şekil 5.9'da kesirli PI kontrolörde referans hız 1000 dev/dak, $K_p=0.01$, $K_i=1$, $\lambda=0.8$ için elde edilen sonuç grafik olarak sunulmuştur. Şekilde görüldüğü gibi oturma zamanı 8 saniyedir ve maksimum aşım yoktur.

Deney düzeneğinde bulunan Fuko freni ile bozucu oluşturularak sistemin bozuculara karşı verdiği tepkiler incelenmiştir.

Şekil 5.10: PI kontrol (Kp=0.1, Ki=0.1, 750 dev/dak, 2sn bozucu girip çıkması)

Şekil 5.10'da klasik PI kontrolörde referans hız 750 dev/dak, $K_p=0.1$, $K_i=0.1$ ve sisteme 2 saniye bozucu girip çıkması durumu için elde edilen sonuç grafik olarak sunulmuştur. Bozucu girdiğinde maksimum çökme %7, oturma zamanı 0.9 sn'dir. Bozucu çıktığında maksimum aşım %39, oturma zamanı ise 0.8 sn'dir.

Şekil 5.11: FOPI kontrol (Kp=0.1, Ki=0.1, λ =0.8, 750 dev/dak, 2sn bozucu girip çıkması)

Şekil 5.11'de kesirli PI kontrolörde referans hız 750 dev/dak, $K_p=0.1$, $K_i=0.1$, $\lambda=0.8$ ve sisteme 2 saniye bozucu girip çıkması durumu için elde edilen sonuç grafik olarak sunulmuştur. Bozucu girdiğinde maksimum çökme %7, oturma zamanı 0.9 sn'dir. Bozucu çıktığında maksimum aşım %16, oturma zamanı ise 0.7 sn'dir.

İki kontrolörün performansını karşılaştırmak için asenkron motor referans hızda çalışırken, sisteme fuko freni ile bozucu etki sokulmuş ve 2 sn sonra bu etki motordan kaldırılmıştır. Elde edilen sonuçlar Şekil 5.12'de verilmiştir.

Şekil 5.12: Klasik PI ve Kesirli PI kontrol yöntemlerinin bozucu etkisi altındaki üç fazlı asenkron motorun performansına etkisi

Şekil 5.12'de 750 dev/dak hızda çalışan bir üç fazlı asenkron motorun kontrolünde klasik PI katsayıları $K_p=0.1$, $K_i=0.1$, kesirli PI^{λ} katsayıları $K_p=0.1$, $K_i=0.1$ ve $\lambda=0.8$ olarak alınmıştır. Sisteme 2 saniye süresince bozucu girip çıkmıştır. Klasik PI için, bozucu sisteme girdiğinde maksimum çökme %7, oturma zamanı 0.9 sn, bozucu sistemden çıktığında maksimum aşım %39, oturma zamanı ise 0.8 sn'dir. Kesirli PI^{λ} için, bozucu sisteme girdiğinde maksimum çökme %7, oturma zamanı 0.9 sn, bozucu sistemden çıktığında maksimum aşım %16, oturma zamanı ise 0.7 sn'dir.

Şekil 5.12'deki grafikte de görüldüğü gibi klasik PI ve Kesirli PI^{λ} için aynı K_p ve K_i katsayıları kullanılarak kontrolörlerin sisteme etkileri karşılaştırılmıştır. Bozucu devreye girdiğinde oluşan çökme için iki yöntemin performansları yaklaşık olarak aynıdır (maksimum çökme yaklaşık %7'dir). Bozucu sistemden çıktığında klasik PI kontrolörde maksimum aşımın %39, kesirli PI^{λ} kontrolörde ise maksimum aşımın %16 olduğu grafiklerden anlaşılmaktadır. Sonuç olarak Kesirli PI^{λ} kontrolörün klasik PI kontrolöre göre maksimum aşıma oranının daha az olduğu görülmüştür.

700 dev/dak referans hız için kesirli PI^{λ} kontrolörün K_p ve K_i değerleri sabit tutularak λ değiştirilmiş ve elde edilen sonuçlar grafik olarak Şekil 5.13'te sunulmuştur. λ 'nın değişimine bağlı olarak ölçülen maksimum aşım ve oturma süreleri ise Tablo 5.1'de verilmiştir.

Şekil 5.13: λ 'nın değişiminin kesirli PI^{λ} kontrolörün performansına etkisi

K _p	K _i	λ	Maks. Aşım (%)	Oturma Süresi (s)
0.05	0.01	0.8	14.0	1.0
0.05	0.01	0.6	6.6	0.9
0.05	0.01	0.4	7.0	1.0
0.05	0.01	0.2	6.9	1.2

Tablo 5.1: Referans $h_{12} = 700 \text{ dev/dak}$ için λ 'nın değişimine bağlı sonuçlar

700 dev/dak referans hız için kesirli PI^{λ} kontrolörün K_i ve λ değerleri sabit tutularak K_p değiştirilmiş ve elde edilen sonuçlar grafik olarak Şekil 5.14'te sunulmuştur. K_p 'nin değişimine bağlı olarak ölçülen maksimum aşım ve oturma süreleri ise Tablo 5.2'de verilmiştir.

Şekil 5.14: K_p 'nin değişiminin kesirli PI^{λ} kontrolörün performansına etkisi

K _p	K _i	λ	Maks. Aşım (%)	Oturma Süresi (s)
0.09	0.01	0.6	31.6	1.0
0.07	0.01	0.6	19.7	1.0
0.05	0.01	0.6	6.6	0.9
0.03	0.01	0.6	0.0	2.0

Tablo 5.2: Referans $h_1 z = 700 \text{ dev/dak için } K_p$ 'nin değişimine bağlı sonuçlar

700 dev/dak referans hız için kesirli PI^{λ} kontrolörün K_p ve λ değerleri sabit tutularak K_i değiştirilmiş ve elde edilen sonuçlar grafik olarak Şekil 5.15'te sunulmuştur. K_i 'nin değişimine bağlı olarak ölçülen maksimum aşım ve oturma süreleri ise Tablo 5.3'te verilmiştir.

Şekil 5.15: K_i 'nin değişiminin kesirli PI^{λ} kontrolörün performansına etkisi

K _p	Ki	λ	Maks. Aşım (%)	Oturma Süresi (s)
0.05	0.07	0.6	36.0	0.9
0.05	0.05	0.6	18.8	0.9
0.05	0.03	0.6	15.1	1.1
0.05	0.01	0.6	6.6	0.9

Tablo 5.3: Referans hız = 700 dev/dak için K_i 'nin değişimine bağlı sonuçlar

Hıza ait deneysel verilerin LabVIEW ortamında EXCEL dosyasına aktarılması sırasında oluşan gecikmelerden dolayı, çizdirilen grafiklerin sürekli hal durumunda çatırtı varmış gibi görünmektedir. Fakat bu veriler LabVIEW programının ekranında doğrudan görüntülendiği zaman sürekli hal durumunda çatırtının olmadığı görülmüştür. Bu nedenle EXEL'de çizdirilen grafikler ile LabVIEW programının ekranında doğrudan çizdirilen grafikler arasında farklılık gözükmektedir. Şekil 5.16 ve Şekil 5.17'de EXCEL dosyasına veri kaydı yapılmadan, sadece programın ön panelinde anlık olarak motorun devir hızının izlendiği grafik ekranlarından iki örnek verilmiştir.

Şekil 5.16: Motorun devir hızının LabVIEW ortamında görüntülenmesi

Şekil 5.17: Motorun devir hızının LabVIEW ortamında görüntülenmesi

6. SONUÇ VE ÖNERİLER

Yapılan çalışmada, maliyeti ucuz ve az arıza yapması gibi avantajlarından dolayı endüstrideki değişken hızlı tahrik sistemlerinde sıkça tercih edilen üç fazlı asenkron motorların hız kontrolü üzerine çalışmalar yapılmıştır. Asenkron motorun referans hızda tutulması için V/f kontrol uygulanmış, kontrol elemanı olarak dsPIC30F4011 mikrodenetleyicisi kullanılmıştır. Kontrolör olarak klasik PI ve kesirli PI^{λ} yöntemleri uygulanmıştır.

Mikrodenetleyiciye kontrol algoritmalarının yazılması sırasında klasik PI yönteminde hesaplama basit olduğundan dolayı sorun çıkmamaktadır. Kesirli PI^{λ} yönteminin karmaşık bir hesaplamasının olması, sistem çalıştığı andan itibaren hesaplanan hata değerlerinin hafizada saklanarak sürekli kullanılmasının gerekmesi mikrodenetleyicide bellek yetersizliğine neden olmaktadır. Bu sorunun çözümü için kesirli PI^{λ} kontrol yönteminde hatanın sadece son 50 değeri hafizada tutulmuş ve böylece ayrılan bellek miktarı kısıtlanmıştır. Son 50 değerin alınmasında, kesirli PI^{λ} kontrol algoritmasındaki her bir elemanının sırasının önemli olmasından dolayı her yeni hata değeri hesaplandığında dizinin elemanları birer sıra geriye kaydırılmış ve böylece boşta kalan son terime yeni hata değeri kaydedilerek işlemlere devam edilmiştir. Bu değer kaydırma işlemleri mikrodenetleyiciye yazılan programa büyük bir yük getirmekte ve ana program fonksiyonunda gecikmelere sebebiyet vermektedir. Bu gecikmelerden etkilenmemek için kesirli PI^{λ} kontrol algoritması için yazılan kontrol döngüsünün süresi 10 ms olarak ayarlanmıştır. Böylece yeni hata değeri her 10 ms'de bir hesaplanmakta ve yazılan karmaşık algoritmaların çalışma sıklığı azaltılmaktadır.

Yapılan deneysel çalışmalarda Kesirli PI^{λ} kontrolörün klasik PI kontrolöre göre maksimum aşma oranının daha az olduğu görülmüştür. Ayrıca kesirli PI^{λ} kontrolörde K_p ve K_i 'nin yanında λ 'nın değişimine de bağlı olarak maksimum aşma ve oturma süreleri değişmektedir.

Sonraki çalışmalarda, bellek problemi olmayan bir kontrol elemanı kullanarak kesirli PI^{λ} kontrol uygulamalarında daha iyi sonuçlar elde edilebilir. Üzerinde

çalışılan sistem için Kesirli PI^{λ} kontrolörün optimum K_p, K_i ve λ katsayıları çeşitli optimizasyon yöntemleri ile belirlenebilir. Üç fazlı asenkron motorun vektör kontrolünde kesirli PI^{λ} kontrolör kullanılabilir. Asenkron motorun sensörsüz (gözlemcili) kontrol edilmesinde yine kesirli PI^{λ} kontrolör uygulanabilir.

7. KAYNAKLAR

- [1] Parida, P., "A Sliding Mode Controller For Induction Motor Drives", MSc Thesis, *National Institute of Technology*, Rourkela, (2009).
- [2] Patakor, F. A., Sulaiman, M., and Ibrahim, M., "Adaptive Sliding Mode For Indirect Field Oriented Controlled of Induction Motor", *IEEE Student Conference on Research and Development*, (2011).
- [3] Zhao, J., Wang, C., Lin, F. and Wang, L. Y., "Novel Integration Sliding Mode Speed Controller for Vector Controlled Induction Machines", *IEEE Power and Energy Society General Meeting*, (2011).
- [4] Pang, S. Y., Pang, C. F., Saim, H. B. and Soon, C. F., "Binary speed controller for three-phase induction motor", *Student Conference on Research and Development (SCOReD)*, (2002).
- [5] Demirtaş, M., "Alan Yönlendirmeli Asenkron Motorun Bulanık Kayan Kip ve Genetik Kayan Kip Konum Kontrolü", Doktora Tezi, *Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü*, (2002).
- [6] Senol, I., Demirtas, M., Rustemov, S. and Gumus, B., "Position Control of Induction Motor a New-Bounded Fuzzy Sliding Mode Controller", *COMPEL*, 24, 145-157, (2005).
- [7] Şenol, İ., Demirtaş, M., ve Rüstemov, S., "Alan Yönlendirmeli Asenkron Motorun Bulanık Kayan Kip Konum Kontrolü", *Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi*, 4 (1-2), 41-55, (2002).
- [8] Üstün, S. V. ve Demirtaş, M., "Modeling and control of V/f controlled induction motor using genetic-ANFIS algorithm", *Energy conversion and management*, 50, 786-791, (2009).
- [9] Suetake, M., da Silva, I. N. and Goedhel, A., "Embedded DSP-Based Compact Fuzzy System and Its Application for Induction-Motor V/f Speed Control", *Transactions on Industrial Electronics*, 58 (3), (2011).
- [10] Fitzgerald, A. E., Kingsley, C.and Umans, S. D., *Electric Machinery*, McGraw-Hill, (2003).
- [11] Üstün, S. V. ve Demirtaş, M., "Optimal Tuning of PI Coefficients by Using

Fuzzy-Genetic for V/f Controlled Induction Motor", *Expert Systems with Applications*, 34, 2714-2720, (2008).

- [12] Üstün, S. V., "Asenkron Motorun DSP (Sayısal İşaret İşlemci) Temelli kontrolunda Yapay Sinir Ağları ve Genetik Algoritmalar Kullanılarak PI katsayılarının Optimizasyonu", Doktora Tezi, *Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü*, (2001).
- [13] Ross, D., Theys, J. and Bowling, S., "Using the dsPIC for Vector Control of an ACIM", *Microchip Application Note*, (2007).
- [14] Cunha, B. S., Camacho, J. R. and Bissochi, C. A., "Single-phase induction motor speed control through a PIC controlled sinusoidal PWM inverter-the mathematical model and various load conditions", *IEEE Power Tech Proceedings*, Porto, (2001).
- [15] Parekh, R., "VF Control of 3-Phase Induction Motors Using PIC16F7X7 Microcontrollers", *Microchip*, (2003).
- [16] Petráš, I., Grega, Š. and Dorčák, Ľ., "Digital Fractional Order Controllers Realized by PIC Microprocessor - Experimental Results", *Proc. of the ICCC'2003 conference*, High Tatras, Slovak Republic, (2003).
- [17] Bowling, S., "An Introduction of to AC Induction Motor Control Using the dsPIC30F MCU", *Microchip Application Note*, (2005).
- [18] Xue, D., Zhao, C. and Chen, Y., "Fractional Order PID Control of A DC-Motor with Elastic Shaft: A Case Study", *Proceedings of the 2006 American Control Conference*, Minnesota, USA, (2006).
- [19] Pandian, G. and Reddy, S. R., "Implementation of single phase to three phase PWM inverter fed induction motor drive", *Information and Communication Technology in Electrical Sciences (ICTES 2007). ICTES. IET-UK International Conference on*, (2007).
- [20] Zong, K., Li, S. and Lin, X., "The Application of Fractional-Order PI Control Algorithm to The PMSM Speed-Adjusting System", *Springer-Verlag*, 660-669, (2007).
- [21] Ashour, H. A. and Ibrahim, R. A., "Implementation and Analysis of Microcontroller Based Soft Starters for Three Phase Induction Motors", *EUROCON. The International Conference on*, (2007).
- [22] Sridhar, S., Raj, P. G., Ramakrishnan, Ramaprabha, R. and Muthu, R., "Microcontroller based maximum power point tracking control for PV fed space

vector controlled three phase induction motor", *TENCON. IEEE Region 10 Conference*, (2008).

- [23] Yıldız, C., "Genetik Algoritma Destekli Bulanık Mantık Denetim Kullanarak Vektör Esaslı Asenkron Motor Kontrolü", Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, (2008).
- [24] Çakır, A., Çalış, H., Ayrılmış, A. and Kızıl, A., "3 Fazlı Asenkron Motorun Sabit V/f Oranlı Kapalı Döngü Hız Denetimi", 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS'09), Karabük, Türkiye, (2009).
- [25] Abraham, A., Biswas, A., Das, S. and Dasgupta, S., "Design of Fractional Order PI^λD^μ Controllers with an Improved Differential Evolution", *Engineering Applications of Artificial Intelligence*, 22 (2), 343-350, (2009).
- [26] Petráš, I., "Fractional Order Feedback Control of a DC Motor", *Journal of Electrical Engineering*, 60 (3), 117-128, (2009).
- [27] Demirtaş, M., "DSP-based sliding mode speed control of induction motor using neuro genetic structure", *Expert Systems with Applications*, 36, 5533-5540, (2009).
- [28] Arulmozhiyal, R., Baskaran, K., Deverajan, N. and Kanagaraj, J., "Real Time MATLAB interface for Speed Control of Induction Motor Drive Using dsPIC 30F4011", *International Journal of Computer Applications*, 1 (5), 85-90, (2010).
- [29] Duarte-Mermoud, M. A., Mira, F. J., Pelissier, I. S. and Travieso-Torres, J. C., "Evaluation of a Fractional Order PI Controller Applied to Induction Motor Speed Control", 8th IEEE International Conference on Control and Automation, Xiamen, China, (2010).
- [30] Mehra, V., Srivastava, S. and Varshney, P., "Fractional-Order PID Controller Design for Speed Control of DC Motor", *Third International Conference on Emerging Trends in Engineering and Technology*, (2010).
- [31] Emar, W., Sarhan, H., Al-Issa, R., TTrad, I. and Awad, M., "V/F Control of Squirrel Cage Induction Motor Drives Without Flux or Torque Measurement Dependency", *International Journal of Robotics and Automation (IJRA)*, 2 (2), 77-92, (2011).
- [32] Singhal, R., Padhee, S. and Kaur, G., "Design of Fractional Order PID Controller for Speed Control of DC Motor", *International Journal of Scientific and Research Publications*, 2 (6), (2012).

- [33] Villagra, J., Vinagre, B. and Tejado, I., "Data-Driven Fractional PID Control -Application to DC Motors in Flexible Joints", *IFAC Conference on Advances in PID Control*, Brescia, Italy, (2012).
- [34] Ruszewski, A. and Sobolewski, A., "Comparative Studies of Control Systems with Fractional Controllers", *Przegląd Elektrotechniczny (Electrical Review)*, (2012).
- [35] Waskar, S. A., Bombale, U. L. and Sonawane, T. B., "dsPIC Based SPWM Controlled Three Phase Inverter Fed Induction Motor Drive", *International Journal of Computer Applications*, 47 (16), (2012).
- [36] Sarıoğlu, M. K., Gökaşan, M. and Boğosyan, O. S., Asenkron Makinalar ve Kontrolü, Birsen Yayınevi, (2003).
- [37] Ong, C. M., *Dynamic Simulation Of Electric Machinery*, Prentice Hall PTR, (1998).
- [38] Parekh, R., "AC Induction Motor Fundamentals", *Microchip*, (2003).
- [39] Şerifoğlu, A. N., Elektrik Makinalari Cilt 1, Nobel Yayın Dağıtım, (2007).
- [40] "Asenkron motor nedir? Özellikleri nelerdir? [Çevrimiçi]", (8 Şubat 2013), http://www.bilgiustam.com/asenkron-motor-nedir-ozellikleri-nelerdir, (2008).
- [41] Kuo, B. C., *Otomatik Kontrol Sistemleri*, (Çev: A. Bir) Literatür Yayıncılık, (1999).
- [42] Yüksel, İ., Otomatik Kontrol, Nobel Yayın Dağıtım, (2009).
- [43] Karadeniz, D., "Kesirli Yayılım-Dalga Denklemlerinin Silindirik Koordinatlarda İncelenmesi", Yüksek Lisans Tezi, *Balıkesir Üniversitesi Fen Bilimleri* Enstitüsü, (2008).
- [44] İskender, B. B., "Duhem Histerisis Girişli Sistemlerin Oransal İntegral Kontolü", Yüksek Lisans Tezi, *Balıkesir Üniversitesi Fen Bilimleri Enstitüsü*, (2007).
- [45] İskender, B. B., "Histerisis Yapısına Sahip Olan Sistemler için Kontrol Tasarımları", Doktora Tezi, *Balıkesir Üniversitesi Fen Bilimleri Enstitüsü*, (2011).
- [46] Magin, R. L., "Fractional Calculus in Bioengineering", *Critical Reviews in Biomedical Engineering*, 32 (1), (2004).

- [47] Podlubny, I., *Fractional Differential Equations*, New York: Academic Pres, (1999).
- [48] Oldham, K. B. and Spanier, J., *The Fractional Calculus*, New York: Academic Pres, (1974).
- [49] Samko, S. G., Kilbas, A. A. and Marichev, O. I., *Fractional Integrals and Derivatives-Theory and Applications*, Longhorne, PA: Gordon and Breach, (1993).
- [50] Miller, K. S. and Ross, B., An Introduction to The Fractional Calculus and Fractional Differential Equations, New York: Wiley, (1993).
- [51] Hilfer, R., "Applications of Fractional Calculus in Physics", *World Scientific*, Singapore, (2000).
- [52] Özdemir, N. and İskender, B. B., "Fractional Order Control of Fractional Diffusion Systems Subject to Input Hysteresis", ASME Journal of Computational and Nonlinear Dynamics, 5, (2010).
- [53] "dsPIC® Digital Signal Controllers", Microchip, (2005).
- [54] "dsPIC30F4011/4012 Data Sheet", Microchip, (2005).
- [55] Bodur, H., Güç Elektroniği, Birsen Yayınevi, (2012).
- [56] Mohan, N., Undeland, T. M. and Robbins, W. P., *Güç Elektroniği*, (Çev: N. Tuncay, M. Gökaşan, S. Boğosyan), Literatür Yayıncılık, (2007).
- [57] Kassakian, J. G., Schlecht, M. F. and Verghese, G. C., *Principles Of Power Electronics*, Addison-Wesley Publishing Company, (1991).
- [58] "Motor Control PWM", *Microchip dsPIC30F Family Reference Manual*, (2005).
- [59] Zambada, J., "Mesuring Speed and Position Control with QEI Module", *Microchip GS002*, (2005).
- [60] Zambada, J., "Module, Driving an ACIM with the dsPIC® DSC MCPWM", *Microchip Application Note*, (2005).
- [61] "General Techical Data Incremental Encoders", Wachendorff, (2011).
- [62] Çiçek, S., CCS C İLE PIC PROGRAMLAMA, Altaş Yayıncılık, (2012).
- [63] "PCD Reference Manual", CCS, (2011).

- [64] "LabVIEW 7 Express User Manual", National Instruments, (2003).
- [65] Dumanay, A. B., "PID, Bulanık Mantık ve Kayan Kip Kontrol Yöntemleri ile İnternet Üzerinden DC Motor Hız Kontrolü", Yüksek Lisans Tezi, *Balıkesir Üniversitesi Fen Bilimleri Enstitüsü*, (2009).
- [66] Altun, Y., "Hiyerarşik Kayan Kip Kontrolün Ters Sarkaç Sistemlerine Uygulanması", Yüksek Lisans Tezi, *Balıkesir Üniversitesi Fen Bilimleri Enstitüsü*, (2008).
- [67] Sevinç, B., "Geleneksel Charpy Vurma Deneyi Verilerinin LabVIEW Programı Kullanılarak Elde Edilmesi ve Değerlendirilmesi", *Muğla Üniversitesi Fen Bilimleri Enstitüsü*, (2007).
- [68] "NI 6023E/6024E/6025E Family Specifications", *National Instruments Corporation*.
- [69] "PM25RSB120 Data Sheet", Mitsubishi, (1998).
- [70] "WGD 50B Data Sheet", Wachendorff, (2010).

EKLER

8. EKLER

Pin Adı	Pin Tipi	Arabellek Tipi	Açıklama	
			Analog giriş kanallarıdır. Ayrıca AN0 ve AN1 kanalları sırasıyla	
AN0-AN8	Giriş	Analog Giriş	cihaz programlamanın veri (data) ve saat (clock) girişleri olarak	
			kullanılmaktadır.	
AV _{DD}	Güç	Güç	Analog modülün pozitif beslemesidir.	
AV _{SS}	Güç	Güç	Analog modülün toprak referansıdır.	
		ST/CMOS	Harici saat kaynağı girişidir. Her zaman OSC1 pini ile ilişklidir.	
CLKI	I	51/CMO5		
CLIN	1	-	Osilatör kristalinin çıkışıdır. kristal osilatör modunda kristale	
СГКО	0		veya resonatöre bağlanır. RC ve EC modlarında isteğe bağlı	
CLIRO	Ũ		olarak CLKO olarak çalışabilir. Her zaman OSC2 pini ile	
			ilişkilidir.	
CN0-CN7			Giriş değişikliği bildirimi girişleridir. Tüm girişler dahilî	
	Ι	ST	zayıflatılmış "pull-up" özelliğinde çalışacak şekilde	
CN17-CN18			programlanabilir.	
C1RX	Ι	ST	CAN1 veri yolunun alıcı pinidir.	
C1TX	0	-	CAN1 veri yolunun iletici pinidir.	
EMUD	Giriş/Çıkış	ST	ICD'nin birincil iletişim kanalının veri giriş/çıkış pinidir.	
EMUC	Giriş/Çıkış	ST	ICD'nin birincil iletişim kanalının saat giriş/çıkış pinidir.	
EMUD1	Giriş/Çıkış	ST	ICD'nin ikincil iletişim kanalının veri giriş/çıkış pinidir.	
EMUC1	Giriş/Çıkış	ST	ICD'nin ikincil iletişim kanalının saat giriş/çıkış pinidir.	
	a:	~		
EMUD2	Giriş/Çıkış	ST	ICD'nın üçüncül iletişim kanalının veri giriş/çıkış pinidir.	
	0	CTT.		
EMUC2	Giriş/Çîkiş	ST	ICD'nın üçüncül iletişim kanalının saat giriş/çıkış pinidir.	
EN (UD)	0	CTT.		
EMUD3	Giriş/Çikiş	51	ICD'nin dorduncul iletişim kanalının veri giriş/çıkış pinidir.	
EMUC2	Cirrie/Colore	CT.		
EMUCS	GIFIŞ/ÇIKIŞ	51	Neleclama (Cantan) sinislari 1, 2, 7 az 8'dir.	
IC1, IC2, IC7, IC8	Giliş	51	Fakalana (Capture) ginşten 1, 2, 7 ve 8 dil.	
NDV	Cinin	CT.	Enkoder modulunun indeks darbesi girişidir.	
INDA	Giřiş	51	Entrates and defenses A Entrational 11 (7) (1) (1)	
054	<u> </u>	CTT.	Enkoder modulunun A Fazi girişidir. Zamanlayıcı modunda	
QEA	Giriş	ST	yardımcı zamanlayıcının harici saat/kapı girişidir.	
OED	Cirri-	CT.	Enkoder medülünün D. Ferr girisidir. Zeneralarını da d	
VER	Giřiş	51	Enkouer modulunun B razi girişidir. Zamanlayıcı modunda	
			yardımcı zamanlayıcının harici saat/kapı girişidir.	

Tablo 8.1: dsPIC30F4011'in giriş/çıkış pinlerinin açıklamaları

INT0	Giriş	ST	Harici Kesme 0.	
INT1	Giris	ST	Harici Kesme 1	
IIII III	Ginş	51		
DUTO	<u> </u>	arr.		
IN12	Giriş	51	Harici Kesme 2.	
FLTA	Giriş	ST	PWM "Hata A" girişi.	
PWM1L	Çıkış	-	PWM1 alt kol çıkışı.	
PWM1H	Çıkış	-	PWM1 üst kol çıkışı.	
PWM2L	Cıkıs	-	PWM2 alt kol cikisi.	
	3 3			
PWM1H	Cikis	_	PWM2 üst kol cıkışı	
	ÇIKIŞ	-		
DUA (A)				
PWM3L	Çıkış	-	PWM3 alt kol çıkışı.	
РѠӍҘҤ	Çıkış	-	PWM3 üst kol çıkışı.	
			Ana temizleme (Reset) girişi veya programlamanın voltaj	
MCLR	Giriş/Güç	ST	girişidir. Bu pin aktif olarak cihazı sıfırlamak (Resetlemek) için	
			kullanılır.	
	<i></i>	~	Karşılaştırma (Compare) "Hata A" girişidir (Karşılaştırma	
OCFA	Giriş	ST	kanalları 1, 2, 3 ve 4 için).	
OC1-OC4	Çıkış	-	1 2 3 ve 4 için karşılaştırma çıkışlarıdır	
			Osilatör kristali girisidir. BC modunda avarlandığında ST	
			arakallažini, dižar durumlarda CMOS arakallažini kullanır	
OSC1	Giriş	ST/CMOS	arabenegini, diger durunnarda CMOS arabenegini kunanir.	
OSC2	Giriş/Çıkış	-	Osilatör kristali çıkışıdır. Kristal osilatör modunda kristale veya	
			resonatöre bağlanır. RC ve EC modlarında isteğe bağlı olarak	
			CLKO olarak çalışabilir.	
PGD	Giriş/Çıkış	ST	Devre üzerinde seri programlamanın veri giriş/çıkış pinidir.	
PGC	Giriş	ST	Devre üzerinde seri programlamanın saat girişi pinidir.	
RB0-RB8	Giriş/Çıkış	ST	PORTB iki yönlü giris/cıkıs portudur.	
8RC13-RC15	8Giris/Cıkıs	8ST	PORTC iki yönlü giriş/cıkıs portudur.	
RD0-RD3	Giris/Cıkıs	ST	PORTD iki yönlü giris/cıkıs portudur	
DEO DES DES	Giriş/Çıkış	ST	DORTE iki yönlü girio/alus portudur	
DE0 DEC	Giriş/Çıkış	51 ST	POKTETKI yonlu giriş/çıkış portudur.	
RFU-RF0	Gifiş/Çikiş	51	PORTF iki yonlu giriş/çikiş portudur.	
SCKI	Giriş/Çikiş	ST	SPI ¹⁴⁴ I için senkron seri saat giriş/çıkışı.	
SDI1	Giriş	ST	SPI 1 veri girişi.	
SDO1	Çıkış	-	SPI 1 saat çıkışı.	
SS1	Giriş	ST	SPI 1 Slave senkronizasyonu.	
SCL	Giris/Cıkıs	ST	I ² C için senkron seri saat giris/cıkısı.	
	,,,,			
SDA	Giris/Cikis	ST	I ² C icin senkron seri veri giris/cikisi	
~~~	Giriş, Çikiş	51	r e rym semition sent ven Smy yntigi.	

			32 kHz düşük güçlü kristal osilatör çıkışıdır.		
SOSCO	Çıkış	-			
			32 kHz düşük güçlü kristal osilatör girişidir. RC modunda		
SOSCI	Giriş	ST/CMOS	ayarlandığında ST arabelleğini, diğer durumlarda CMOS		
			arabelleğini kullanır.		
T1CK	Giriş	ST	Zamanlayıcı 1'in (Timer1) harici saat girişidir.		
T2CK	Giriş	ST	Zamanlayıcı 2'nin (Timer2) harici saat girişidir.		
U1RX	Giriş	ST	UART1 alcisi.		
U1TX	Çıkış	-	UART1 vericisi.		
U1ARX	Giriş	ST	UART1 alternatif alıcısı.		
U1ATX	Çıkış	-	UART1 alternatif vericisi.		
U2RX	Giriş	ST	UART2 alıcısı.		
	~ .				
U2TX	Çıkış	-	UART2 vericisi.		
V _{DD}	Güç	-	Lojik ve Giriş/Çıkış pinlerinin pozitif beslemesidir.		
V _{SS}	Güç	-	Lojik ve Giriş/Çıkış pinlerinin toprak referansındır.		
V _{REF+}	Giriş	Analog Giriş	Analog voltaj referans (yüksek) girişidir.		
V _{REF-}	Giriş	Analog Giriş	Analog voltaj referans (düşük) girişidir.		
CMOS = CMOS uyumlu giriş ve çıkışlar					
ST = CMOS seviyesinde Schmitt Trigger girişi					