T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

SÜPERPARAMANYETİK DEMİR OKSİT NANOPARÇACIKLAR: SENTEZİ, YÜZEY MODİFİKASYONU, YAPISAL VE MANYETİK KARAKTERİZASYONU İLE TOKSİK ETKİNİN İNCELENMESİ

DOKTORA TEZİ

FATMAHAN ÖZEL

BALIKESİR, EKİM - 2015

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

SÜPERPARAMANYETİK DEMİR OKSİT NANOPARÇACIKLAR: SENTEZİ, YÜZEY MODİFİKASYONU, YAPISAL VE MANYETİK KARAKTERİZASYONU İLE TOKSİK ETKİNİN İNCELENMESİ

DOKTORA TEZİ

FATMAHAN ÖZEL

BALIKESİR, EKİM - 2015

KABUL VE ONAY SAYFASI

Fatmahan ÖZEL tarafından hazırlanan "SÜPERPARAMANYETİK DEMİR OKSİT NANOPARÇACIKLAR: SENTEZİ, YÜZEY MODİFİKSAYONU, YAPISAL VE MANYETİK KARAKTERİZASYONU İLE TOKSİK ETKİNİN İNCELENMESİ" adlı tez çalışmasının savunma sınavı 15.10.2015 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği ile Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı Doktora Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Prof. Dr. Hakan KÖÇKAR

Üye Prof. Dr. Vural BÜTÜN

Üye Prof. Dr. Mürsel ALPER

Üye Prof. Dr. Mustafa GÖKTEPE

Üye Doc. Dr. Öznur KARAAĞAÇ

Jüri üyeleri tarafından kabul edilmiş olan bu tez Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulunca onanmıştır.

Fen Bilimleri Enstitüsü Müdürü

Doç. Dr. Necati ÖZDEMİR

.....

Bu tez çalışması Balıkesir Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Birimi, BAP tarafından BAP 2012/37 nolu proje ile desteklenmiştir.

SÜPERPARAMANYETİK DEMİR OKSİT NANOPARÇACIKLAR: SENTEZİ, YÜZEY MODİFİKASYONU, YAPISAL VE MANYETİK KARAKTERİZASYONU İLE TOKSİK ETKİNİN İNCELENMESİ

DOKTORA TEZİ FATMAHAN ÖZEL BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI (TEZ DANIŞMANI: PROF. DR. HAKAN KÖÇKAR)

BALIKESİR, EKİM - 2015

Bu çalışmada, ortak çöktürme yöntemiyle yüksek doyum manyetizasyon, M_s değerine sahip süperparamanyetik demir oksit nanoparçacıkları sentezlendi ve elde edilen nanoparçacıklara hidrotermal işlem uygulandı. Nanoparçacıkların mikroyapısal ve manyetik özelliklerindeki değişimler incelendi. Bununla beraber, sentezlenen süperparamanyetik nanoparçacıklar yüzey aktif maddelerle kaplandı. Son olarak nanoparçacıkların toksisitesi MTT (3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) yöntemiyle incelendi.

Açık hava ortamında ortak çöktürme yöntemiyle öncül madde sentezlendi ve bu nanoparçacıklara 60-200 °C arasında 12 saat süreyle hidrotermal işlem uygulandı. X-ışınları ve kızılötesi spektroskopi analizleri, nanoparçacıkların demir oksit yapısında olduğunu göstermektedir. Manyetik ölçümlere göre, sıcaklık arttıkça, parçacık boyutlarının arttığı ve M_s, 74.4 emu/g değerinden 92.6 emu/g değerine kadar yükseldiği görüldü. Burada, 200 °C sıcaklıkta sentezlenen parçacıkların çoklu domain yapısında olabileceği görülmüştür. Daha sonra, farklı sıcaklıklarda, reaksiyon süreleri değiştirilerek, hidrotermal işlem nanoparçacıklar üzerine uygulanmaya devam edildi. Artan reaksiyon süresiyle nanoparçacık boyutlarında ve dolayısıyla M_s değerlerinde artış gözlendi. Reaksiyon süresinin, yüksek sıcaklıklarda nanoparçacıkların büyümesinde daha etkili olduğu görüldü.

Daha sonra, parçacıkların yüzeyleri su-bazlı ve yağ-bazlı yüzey aktif maddeler kullanılarak kaplandı. Kaplı nanoparçacıkların demir oksit yapısında ve süperparamanyetik özellikte olduğu görülmüştür. Kaplı nanoparçacıkların 12 hafta açık hava ortamında bekletilmesine rağmen, M_s değerlerinde değişme gözlenmemiştir. Bu kaplamaların, parçacıkları, oksidasyona karşı koruduğu sonucunu ortaya çıkarmıştır. Ayrıca, kaplı nanoparçacıklara hidrotermal işlem de uygulanmış, ortamda yüzey aktif madde varlığından dolayı parçacık boyutlarında küçük artışlar gözlenmiştir.

Suda çözülebilen kaplı süperparamanyetik nanoparçacıkların biyolojik uygulamalar açısından, toksik olup olmadıkları MTT yöntemiyle hücre kültürü kullanılarak incelendi. Burada, hücrelerin canlı kaldıkları gözlenmiştir.

ANAHTAR KELİMELER: foksiyonel demir oksit nanoparçacıklar, ortak çöktürme metodu, hidrotermal işlem, süperparamanyetizma.

ABSTRACT

SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES: SYNTHESIS, SURFACE MODIFICATION, STRUCTURAL AND MAGNETIC CHARACTERIZATION, AND INVESTIGATION OF TOXIC EFFECT PH.D THESIS FATMAHAN OZEL BALIKESIR UNIVERSITY INSTITUTE OF SCIENCE PHYSICS (SUPERVISOR: PROF. DR. HAKAN KÖÇKAR)

BALIKESİR, OCTOBER 2015

In this study, superparamagnetic iron oxide nanoparticles with high saturation magnetization, M_s was synthesized using co-precipitation method. Afterwards, hydrothermal treatment was applied to them. The change of the microstructural and magnetic properties of nanoparticles was studied. And, the superparamagnetic nanoparticles were coated with surfactants. Finally, the toxicity of nanoparticles was investigated by the MTT method.

The precursor was synthesized by co-precipitation in air atmosphere, followed by hydrothermal treatment between 60-200 °C at 12 hours. The X-ray diffraction and fourier transform infrared spectroscopy analysis disclosed that the nanoparticles have iron oxide structure. The magnetization measurements. According the magnetic measurements, with the increase of the temperature, the particle sizes increased and the M_s increased from 74.4 to 92.6 emu/g. It is considered that synthesized nanoparticles at 200°C might be multi-domain structure. And, at different temperatures the hydrothermal treatment were continued to perform on the nanoparticle size increased and hence the M_s values increased. It is seen that the reaction time is more effective on the growth of the nanoparticles at high temperatures.

And, the surface of the superparamagnetic nanoparticles was coated with the water-based and oil-based surfactants. It was observed that the coated nanoparticles have iron oxide structure and are superparamagnetic. Although the coated nanoparticles were kept up to 12 weeks in air atmosphere, no change in their M_s values were observed. This c,oncludes that the coatings on the surface of nanoparticles protected them from oxidation. And, after the hydrothermal treatment performed on the coated nanoparticles, smaller increases in the nanoparticle sizes were observed.

Water-soluble superparmagnetic nanoparticles were investigated whether suitable for biological applications. Thus, the toxicity of the nanoparticles was evaluated using MTT method in vitro culture. And it is seen that the cells survived.

KEYWORDS: functional iron oxide nanoparticles, co-precipitation method, hydrothermal treatment, superparamagnetism.

İÇİNDEKİLER

ÖZET	i
ABSTRACT	ii
İÇİNDEKİLER	iii
ŞEKİL LİSTESİ	V
TABLO LİSTESİ	ix
SEMBOL LİSTESİ	X
ÖNSÖZ	xi
1. GİRİŞ	1
2. KURAMSAL BİLGİ	3
2.1 Demir Oksitler	3
2.2 Katılarda Manyetizma	6
2.2.1 Diyamanyetizma	6
2.2.2 Paramanyetizma	7
2.2.3 Ferromanyetizma, Antiferromanyetizma ve	_
Ferrimanyetizma	8
2.3 Süperparamanyetizma	10
2.4 Manyetik Nanoparçacıkların Sentezi	13
2.4.1 Ortak Çöktürme	13
2.4.2 Hidrotermal Sentez	14
2.4.3 Diğer Sentez Teknikleri	18
2.5 Manyetik Nanoparçacıkların Onemi	19
2.6 Demir Oksit Nanoparçacıklarını Fonksiyonelleştirmenin Önemi	22
3. DENEYSEL TEKNİKLER	25
3.1 Kullanılan Kimyasallar	25
3.2 X-ışını Kırınımı	25
3.3 Kızılötesi Spoktroskopisi	27
3.4 Geçirimli Elektron Mikroskobu	28
3.5 Titreşimli Numune Magnetometresi	28
3.6 Hücre Kültürü ile İlgili Teknikler	30
3.7 Maddelerin Hücrelerin Üzerine Uygulanması ve	
Sitotoksiaktivitenin Belirlenmesi	32
4. BULGULAR VE TARTIŞMA	35
4.1 Öncül Numunenin Sentezi ve Karakterizasyonu	36
4.1.1 Öncül Maddenin Yapısal ve Manyetik Karakterizasyonu	38
4.2 Hidrotermal Yöntemle Nanoparçacıkların Sentezi ve	
Karakterizasyonu	39
4.2.1 Sıcaklığın Nanoparçacıklar Üzerine Etkisi	40
4.2.1.1 Yapısal Analiz	41
4.2.1.2 Manyetik Analiz	46
4.2.2 Reaksiyon Süresinin Nanoparçacıklar Üzerine Etkisi	51
4.2.2.1 Yapısal Analiz	52
4.2.2.2 Manyetik Analiz	61
4.3 Su Bazlı Nanoparçacıkların Sentezi ve Karakterizasyonu	68
4.3.1 Ortak Çöktürme Metodu ile Nanoparçacıkların Kaplanması	68
4.3.1.1 Kaplı Nanoparçacıkların Karakterizasyonu	70

4.3.2 Kaplı Nanoparçacıklara Hidrotermal	İşlem Uygulanması ve
Karakterizayonu	
4.3.3 Nanoparçacıkların Hidrotermal Me	etodla Kaplanması ve
Karakterizasyonu	
4.4 Yağ Bazlı Nanoparçacıkların Sentezi	
4.4.1 Ortak çöktürme ile parçacıkların kap	lanması ve hidrotermal
yöntemle büyütülmesi	
4.4.1.1 Oleat ile Kaplı Nanoparçacıkların	Karakterizasyonu101
4.4.2 Hidrotermal Yöntemle Nanoparçac	ıkların Kaplanması ve
Karakterizasyonu	
4.5 Suda çözülebilen nanoparçacıkların toksite	si115
5. SONUC	
6. KAYNAKLAR	

ŞEKİL LİSTESİ

Şekil 2.1:	Magnetitin yapısı [21].	4
Şekil 2.2:	Ters spinel yapıda katyonların dağılımı [23]	5
Şekil 2.3:	Farklı manyetik özellikteki maddelerde momentlerin	
	sıralanışı [2]	7
Şekil 2.4:	Diyamanyetik maddelerde dış manyetik alanda	
	manyetizasyonun değişimi [26]	7
Şekil 2.5:	Paramanyetik maddelerde dış manyetik alana bağlı olarak	
	manyetizasyondaki değişim [26]	8
Şekil 2.6:	Ferromanyetik katıda manyetik momentler [27]	9
Şekil 2.7:	Ferromanyetik malzemelerde histeresis eğrisi [20]	10
Şekil 2.8:.	Parçacık boyutuna bağlı olarak manyetik özelliklerdeki	
	değişim [29]	11
Şekil 2.9:	Süperparamanyetik malzemelerde manyetizasyon eğrisi [20]	12
Şekil 2.10:	Süperparamanyetik maddelerde momentler [31].	12
Şekil 2.11:	Hidrotermal sentezin akış şeması [39].	15
Şekil 2.12:	Glikoz ve glikonik asit (ajanların yapısı basitleştirilmiştir) ile	
-	kaplı parçacıkların şematik gösterimi [43]	17
Şekil 2.13:	Manyetik nanoparçacıklarda momentlerin rotasyonu [31]	20
Şekil 2.14:	Manyetik ilaç taşıma sisteminin şematik çizimi. Mıknatıs	
-	dokunun içinde veya dışında konumlanarak parçacıkların	
	belli bölgelere yönlendirir [2].	22
Şekil 2.15:	Nanoparçacıkların yüzey alanını gösteren basit bir model [1]	22
Şekil 2.16:	Fonsiyonalleştirilmiş demir oksit nanoparçacıkları [51]	23
Şekil 3.1:	Kristal düzlemden yansıyan X-ışınları [52].	26
Şekil 3.2:	VSM'in çalışma prensibini gösteren şematik gösterim [57]	29
Şekil 3.3:	VSM cihazı	30
Şekil 3.4:	MTT metodunda gerçekleşen kimyasal değişim [59]	33
Şekil 4.1:	Nanoparçacıkların sentez diyagramı.	35
Şekil 4.2:	Standart numune sentezi esnasında kullanılan sistem	36
Şekil 4.4:	(a) Çöktürülmüş ve (b) kurutulmuş nanoparçacıklar	37
Şekil 4.3:	(a) FeCl ₃ ve FeCl ₂ çözeltisi ve (b) öncül madde	37
Şekil 4.5:	Öncül maddenin XRD deseni	38
Şekil 4.6:	Öncül maddenin manyetizasyon eğrisi.	39
Şekil 4.7:	Basınca ve sıcaklığa dayanıklı (a) teflon ve (b) çelik kap	40
Şekil 4.8:	(a) 60 °C, (b) 100 °C, (c) 150 °C, (d) 160 °C, (e) 180 °C ve (f)	
	200 °C sıcaklıklarda 12 saat hidrotermal işleme tabi tutulmuş	
	parçacıkların XRD desenleri.	42
Şekil 4.9:	(a) 60°C, (b) 100°C, (c) 150 °C ve (d) 180°C sıcaklıklarda 12	
	saat hidrotermal işleme tabi tutulmuş nanoparçacıkların	
	FTIR spektrumu.	44
Şekil 4.10:	(a) 100 °C, (b) 150 °C ve (c) 180 °C sıcaklıklarında 12 saat	
	hidrotermal işleme tabi tutulmuş parçacıkların TEM	
	görüntüleri	45

Şekil 4.11:	60-200 °C arasında, 12 saat hidrotermal işleme tabi tutulmuş	
	parçacıkların (a) ±20.000 Oe aralığında ve (b) ±200 Oe	
	aralığında manyetizasyon eğrileri	47
Şekil 4.12:	Sıcaklığa bağlı olarak doyum manyetizasyonu ve	
	koersivitedeki değişim	48
Şekil 4.13:	Boyuta bağlı olarak Co nanoparçacıklarının koersivite ve	
	manyetizasyon değerlerindeki değişim [63]	48
Şekil 4.14:	Farklı malzemelerde tekli domain yapısından çoklu domain	
	yapısına geçiş boyutları [31].	49
Şekil 4.15:	100 °C sıcaklıkta (a) 12 saat ve (b) 72 saat hidrotermal işlem	
	uygulanmış numunelerin XRD desenleri.	53
Şekil 4.16:	150 °C sıcaklıkta (a) 12 saat ve (b) 24 saat hidrotermal işlem	
	uygulanmış numunelerin XRD deseni.	54
Şekil 4.17:	160 °C sıcaklıkta (a) 1 saat, (b) 12 saat, (c) 12 saat-(ortak	
	çöktürmenin ardından bir gün bekletilen numune), (d) 24	
	saat, (e) 48 saat, (f) 92 saat ve (g) 120 saat hidrotermal işlem	
~ • • • • • •	uygulanmış numunelerin XRD desenleri.	55
Şekil 4.18:	180 °C sicaklikta (a) 1 saat, (b) 12 saat, (c) 24 saat ve (d) 48	
	saat hidrotermal işlem uygulanmış numunelerin XRD	
0 1 11 4 10	desenleri	57
Şekil 4.19:	(a) I saat, (b) 12 saat, (c) 24 saat ve (d) 48 saat 180° C	
	sicaklikta hidrotermal işleme tabi tutulmuş numunelerin F1-	50
G . I. 1 4 30.	IK spektrumiari.	39
Şekii 4.20:	150 °C sicaklikta (a) 12 saat ve (b) 24 saat, 160 °C sicaklikta (a) 1 saat ve (d) 120 saat 180 °C sicaklikta (a) 1 saat (f) 12	
	(c) I saat ve (d) 120 saat, 180 C sicaklikta (e) I saat, (l) 12	
	TEM görüptüleri	60
Sekil 4 21.	$100 \circ C$ steaklikta 12 saat ve 72 saat hidrotermal islem	00
ŞCRII 4.21.	uvgulanmis numunelerin (a) $+20000$ Oe araliğinda ve (b)	
	+200 Oe aralığında manyetizasyon eğrileri	62
Sekil 4.22:	150 °C sıcaklıkta 12 saat ve 24 saat hidrotermal islem	
şenn n 22 .	uvgulanmis numunelerin (a) ± 20.000 Oe aralığında ve (b)	
	±200 Oe aralığında manyetizasyon eğrileri.	63
Sekil 4.23:	160 °C sıcaklıkta, 1-120 saat arasında hidrotermal işlem	
5	uygulanmış numunelerin (a) ± 20.000 Oe aralığında ve (b)	
	±200 Oe aralığında manyetizasyon eğrileri.	65
Şekil 4.24:	180 °C sıcaklıkta, 12 saat ve 72 saat hidrotermal işlem	
	uygulanmış numunelerin (a) ±20.000 Oe aralığında ve (b)	
	±200 Oe aralığında manyetizasyon eğrileri	66
Şekil 4.25:	(a) Askorbik asit ve (b) tartarik asidin molekül yapısı [64]	68
Şekil 4.26:	Askorbik asit ve tartarik asit kaplı (0.1 ve 1 mmol/ml)	
	nanoparçacıkların suda dispersiyonu (TA3 nolu numune)	70
Şekil 4.27:	Öncül numune, askorbik asit (A4), tartarik asit (T1) ve her iki	
	yüzey aktif madde (TA3) birlikte kullanılarak sentezlenen	
	numunelerin suda dipsersiyonları	71
Şekil 4.28:	Askorbik asit ve tartarik asitle kaplı nanoparçacıkların (TA3)	
a 1 9 4 5 4	XRD deseni.	71
Şekil 4.29:	(a) askorbik asit, (b) tartarik asit ve (c) askorbik asit ve	
	tartarık asıt kullanılarak sentezlenen nanoparçacıkların FT-IR	
	spektrumuları (1A1 nolu numune)	73

Şekil 4.30:	(a) Askorbik asit (A3), (b) tartarik asit (T1) ve (c) askorbik	
	asit ve tartarik asitle (TA3) kaplanan nanoparçacıkların FT-	
	IR spektrumları	74
Şekil 4.31:	(a) Askorbik asitle (A1), (b) askorbik asit ve tartarik asitle	
	(TA1) kaplı nanoparçacıkların TEM görüntüleri	75
Sekil 4.32:	A1 nolu numunenin (a) ± 20.000 Oe aralığında ve (b) ± 100	
·, · · ·	Oe aralığındaki manyetizasyon eğrileri	77
Sekil 4.33:	A2 ve A2' nolu numunelerin (a) ± 20000 Oe aralığında ve (b)	
Şekir neer	+100 Oe aralığındaki manyetizasyon eğrileri	78
Sekil 4 34.	A 3 ve A 4 nolu numunelerin (a) $+20000$ Oe araliğinda ve (h)	/0
ŞCKII 4.04.	$+100 \Omega$ e aralığındaki manyetizasyon eğrileri	70
Salvil 4 35.	± 100 Oc arangindaki manyetizasyon egriteti	/)
Şekii 4.55.	As notu numunenin (a) ± 20.000 Oe aranginua ve (b) ± 100	00
G.1.1 4.2C.	The analysis of the second se	80
Şekii 4.56:	11 noiu numunenin (a) ± 20.000 Ge araliginda ve (b) ± 100 Ge	01
G 1 1 4 25	araligindaki manyetizasyon egriteri.	81
Şekil 4.37:	1AI ve 1A2 nolu numunelerin (a) ± 20.000 Oe araliginda ve	00
	(b) ± 100 Oe araligindaki manyetizasyon egrileri	82
Şekil 4.38:	TA3, TA2' ve TA4 nolu numunelerin (a) ± 20.000 Oe	
	aralığında ve (b) ± 100 Oe aralığındakı manyetizasyon	
	eğrileri.	83
Şekil 4.39:	Askorbik asit ve tartarik asitle kaplı numunenin (TA3), 1, 3,	
	5, 12, 32 ve 48 hafta sonunda manyetizasyondaki değişimi	
	gösteren grafik	84
Şekil 4.40:	160 °C sıcaklıkta, 12 saat hidrotermal işlem uygulanmış	
	askorbik asit kaplı nanoparçacıkların (HA1) XRD deseni	86
Şekil 4.41:	Ortak çöktürme senteziyle askorbik asit ile kaplanmış (A1)	
	ve 160 °C sıcaklıkta 12 saat hidrotermal işlem görmüş (HA1)	
	numunelerin FT-IR spektrumları.	87
Şekil 4.42:	Ortak çöktürme senteziyle askorbik asitle kaplanmış (A2) ve	
	160 °C sıcaklıkta 60 saat hidrotermal işlem görmüş (HA2)	
	numunelerin FT-IR spektrumları.	88
Sekil 4.43:	Ortak çöktürme sentezi ile askorbik asit ve tartarik asitle	
,	kaplanmıs (TA2), 160 °C sıcaklıkta 12 saat hidrotermal islem	
	görmüs (HTA2-1) ve 160 °C sıcaklıkta 36 saat hidrotermal	
	islem görmüs (HTA2-2) numunelerin FT-IR spektrumları	89
Sekil 4.44:	(a) Ortak cöktürme ile kaplanmış (A1) ve (b) 160 °C	
·; ····	sicaklikta 12 saat hidrotermal islem uvgulanmis (HA1)	
	numunelerin TEM fotoğrafları	90
Sekil 4 45.	A1 ve HA1 nolu numunelerin (a) $+20000$ Oe aralığında ve	
Şeki 1.15.	(h) ± 100 Oe aralığındaki manyetizasyon eğrileri	91
Sekil 4 46.	A2 ve HA2 nolu numunelerin (a) ± 20000 Oe araliğinda ve) 1
ŞCKII 4.40.	(b) $\pm 100 \text{ Op}$ aralığındaki manyetizasyon pörileri	02
Sabil 1 17.	TA2 HTA2-1 ve HTA2-2 nolu numunalarin (a) $\pm 20000\Omega_{0}$)2
ŞTKII 4.47;	araliginda ve (b) ± 100 Oe araligindaki manyatizagiyan ezileri	02
Salvil 4 40-	aranginua ve $(0) \pm 100$ Oe aranginuaki manyeuzasyon egrilen	93
Şekii 4.48:	(a) Fartarik asit (b) askorbik asit (c) tartarik asit ve askorbik	07
	(a) Ortaly a letimera ila (b) bilastarral (c) il to tali	96
şekii 4.49:	(a) Urtak çokturme ile (b) nidrotermal sentez ile tartarik asit	
	ve askorbik asitie kaplanmiş nanoparçacıkların FT-IR	0-
	spekktrumları	97

Şekil 4.50:	(a) Askorbik asidin, (b) tartarik asidin ve (c) askorbik asit ve	
~	tartarık asitle kaplı nanoparçacıkların FT-IR spektrumları	98
Şekil 4.51:	Tartarik asit (H1), askorbik asit (H2) ve askorbik ve tartarik	
	asitle kaplı (H3) nanoparçacıkların (a) ± 20.000 Oe aralığında	
	ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri	99
Şekil 4.52 :	Na-oleatin yapısı [73]	.100
Şekil 4.53:	Kloroform içinde dispers edilmiş nanoparçacıklar (HNaOl2-1).	.101
Şekil 4.54:	HNaOll'in XRD grafiği	.102
Şekil 4.55:	(a) NaOl2, (b)HNaOl2-1 ve (c) HNaOl2-3 nolu numunelerin	
	XRD grefikleri	.103
Şekil 4.56:	Metal karboksilat koordinasyon modları [32]	.104
Şekil 4.57:	NaOl FT-IR spektrumu.	.105
Şekil 4.58:	Ortak çöktürme ile sentezlenmiş (NaOl2), 180 °C sıcaklıkta	
,	24 saat hidrotermal islem uvgulanmıs (HNaOl2-1) ve 180	
	°C'sıcaklıkta 120 saat hidrotermal islm uygulanmış (HNaOl-	
	2) numunelerin FT-IR spektrumları.	.105
Sekil 4.59:	(a) NaOl1, (b) 180 °C sıcaklıkta 48 saat hidrotermal islem	
3	görmüs (HNaOl1), (c) NaOl2, (d) 180 °C sıcaklıkta 48 saat	
	hidrotermal islem görmüs (HNaOl2-1) numunelerin TEM	
	görüntüleri	.107
Sekil 4.60:	NaOl1 ve HNaOl1 nolu numunelerin (a) ± 20000 Oe	
·; ····	aralığında ve (b) ± 100 Oe aralığındaki manyetizasyon	
	eğrileri	108
Sekil 4 61.	NaOl2 ve HNaOl2-1 ve HNaOl2-2 nolu numunelerin (a)	.100
Şekir î.or.	+20000 Oe araliğinda ve (h) $+100$ Oe araliğindaki	
	manyetizasyon eğrileri	109
Sekil 4 62.	NaOl2 ve HNaOl2-3 nolu numunelerin (a) $+20000$ Oe	.107
Şekii 1.02.	aralığında ve (h) ± 100 Oe aralığındaki manyetizasyon	
	eğrileri	110
Sekil 4 63.	1, 3, 5, 12, 32 ve 48 hafta sonunda acik hava ortaminda	.110
ŞCKII 4.05 .	haklatilan sodyum olaat va tartarik askorbik asitla kanlanan	
	numunelerin dovum manyetizasyonu değerleri	111
Solvil 1 61.	(a) Nanonarcacıkların elektron krinim deseni (b) 20 nm ye	
ŞCKII 7.07.	(a) Nanoparçacıkların cickulon krimin desem, (b) 20 mil ve $(c) 0.1 \text{ µm}$ skalaşında TEM görüntüləri	113
Sabil 1 65.	Numunanin (a) ± 20000 Ω_{e} araliginda ve (b) ± 200 Ω_{e}	.115
ŞCKII 4.03.	Numunchini (a) ± 20.000 Oc aranginua vc (b) ± 200 Oc	114
Salvil A 66.	Hügra ortamina kanlı va kanlı almayan domir aksit	.114
Şekii 4.00.	nanonaraaalklari uvgulandiktan sonra hüaralarin fatağrafi	115
Salvil 4 67.	HINEC hüerelerinin (a) 24 seet ve (b) 48 seet serverdeli	.113
ŞEKII 4.0/:	atotoksita grafiklari (SU: gadaga hügra)	117
Salvil A CO.	Han2D hüaralarinin 24 aant convindalii atotaliaita arafiži	.11/
ŞUKII 4.08:	(SU:sadasa hüara)	110
Salel 4 (A-	$(5\pi, 5autot u(t) t)$.	.118
Şekii 4.09:	saus-2 nucreterinin (a) 24 saat ve (b) 48 saat sonundaki	110
	stotoksite grafikieri (SH: sadece hucre).	.119

TABLO LÍSTESÍ

<u>Sayfa</u>

Tablo 2.1:	Başlıca demir oksitler [4].	3
Tablo 3.1:	Hücre kültürü çalışmalarında kullanılan çözeltiler	30
Tablo 3.2:	Kullanılan çözeltiler ve hazırlanışı	33
Tablo 4.1:	Öncül madde için deneysel sonuçlar	39
Tablo 4.2:	Farklı sıcaklıklarda, 12 saat hidrotermal işlem uygulanan	
	nanoparçacıkların sentez şartları.	40
Tablo 4.3:	60-200 °C arasında çeşitli sıcaklıklarda 12 saat hidrotermal	
	işleme tabi tutulmuş nanoparçacıkların deneysel sonuçları	50
Tablo 4.4:	100 °C, 150 °C, 160 °C ve 180 °C sıcaklıklarında, çeşitli	
	reaksiyon sürelerinde hidrotermal işleme tabi tutulmuş	
	numunelerin sentez şartları	51
Tablo 4.5:	100 °C, 150 °C, 160 °C ve 200 °C sıcaklıklarında, farklı	
	reaksiyon sürelerinde sentezlenen nanoparçacıkların sentez	
	şartları ve deneysel sonuçlar.	67
Tablo 4.6:	Askorbik asit ve tartarik asitle kaplanan numunelerin sentez	
	şartları	69
Tablo 4.7:	Suda çözülebilen nanoparçacıkların sentez şartları ve	
	manyetik ölçüm sonuçları.	85
Tablo 4.8:	Kaplı nanoparçacıkların hidrotermal işlem esnasındaki sentez	
	şartları ve manyetik sonuçlar	94
Tablo 4.9:	Hidrotermal işlem sırasında kaplanan nanoparçacıkların	
	manyetik sonuçları.	100
Tablo 4.10	Oleat ile kaplı nanoparçacıkların hidrotermal sentez şartları,	
	parçacık boyutları ve manyetizasyon değerleri	111

SEMBOL LİSTESİ

$\mathbf{M}_{\mathbf{S}}$:	Doyum manyetizasyonu		
χ	:	Manyetik alınganlık		
Μ	:	Manyetizasyon		
Η	:	Manyetik alan		
$\mu_{\rm B}$:	Bohr manyetonu		
T _C	:	Curie sıcaklığı		
Ds	:	Süperparamanyetik boyut		
DT	:	Tek domain boyutu		
d	:	Parçacık boyutu		
Ε	:	Enerji		
K _{eff}	:	Anizotropi sabiti		
k _B	:	Boltzman sabiti		
Т	:	Sıcaklık		
\mathbf{V}	:	Hacim		
θ	:	Açı		
20	:	Kırınım açısı		
λ	:	Dalgaboyu		
M_r	:	Kalıcı manyetizasyon		
H _C	:	Koersivite		
Hs	:	Doyum alanı		

ÖNSÖZ

Doktora çalışmamın her aşamasında bilgi ve tecrübelerini paylaşan, her konuda desteğini esirgemeyen ve deneyimleri ile bana yol gösteren değerli danışmanım Prof. Dr. Hakan KÖÇKAR'a çok teşekkür ederim.

Tez İzleme döneminde bilgi ve deneyimlerini benimle paylaşıp yorumları ile yol gösterici olan Eskişehir Osmangazi Üniversitesi Kimya Bölümünden Prof. Dr. Vural BÜTÜN ve Balıkesir Üniversitesi Fizik Bölümünden Prof. Dr. Mustafa GÖKTEPE'ye çok teşekkür ederim. MTT testi için, Balıkesir Üniversitesi Biyoloji Bölümünden Prof. Dr. Feray KÖÇKAR ve Esra TOKAY'a teşekkür ederim.

Numunelerin XRD ölçümleri ve TEM analizleri için Bilkent Üniversitesi Ulusal Nanoteknoloji Araştırma Merkezi, UNAM'a, FT-IR ölçümleri için Balıkesir Üniversitesi Kimya Bölümü'ne teşekkür ederim. VSM ölçümleri ve ayrıca yol gösterici yorumlarından dolayı Doç. Dr. Öznur Karaağaç'a teşekkür ederim.

BAP 2012/37 nolu proje ile kimyasal-sarf malzemelerin alınmasında ve numunelerin yapısal analizlerinin yapılmasına destek sağlayan Balıkesir Üniversitesi Bilimsel Araştırma Projeleri Birimi'ne ve VSM sisteminin alınmasında 2005K120170 nolu proje ile destek olan Devlet Planlama Teşkilatı'na teşekkür ederim.

Her zaman yanımda olan ve beni destekleyen aileme teşekkürler.

1. GİRİŞ

1 nm ile 100 nm arasında olan malzemeler nanoyapılar olarak adlandırılır [1]. Bu boyutlardaki nanoparçacıklar bulk yapılarla karşılaştırıldığında farklı fiziksel özelliklere sahiptirler [2]. Parçacık boyutlarına bağlı olarak parçacıkların manyetik özellikleri değişmektedir. Belli boyutlarda, parçacıklar tekli domain yapıları oluştururlar ya da ferrimanyetik özelliklerini kaybeder ve süperparamanyetik hale gelirler [3]. Bu durumda, uygulama alanları açısından istenilen boyutta parçacık sentezi önem kazanmaktadır.

Demir oksitler, fizik, kimya, biyoloji, mineraloji, ilaç sektörü, teknoloji ve toprak bilimi gibi pek çok disiplinde önemli rol oynarlar [4]. Doğada yaygın olarak bulunurlar ve laboratuar ortamında sentezlenebilirler. Demir oksitlerin başlıca sentez teknikleri, hidrotermal sentez, ortak çöktürme, termal parçalama ve mikroemülsiyondur [5-8]. Bu tekniklerin avantaj ve dezavantajları vardır. Sentez tekniği, elde edilmek istenen parçacığa bağlı olarak seçilebilir.

Uygulama alanlarının çeştliliği nedeniyle demir oksitlerin sentezi oldukça ilgi görmektedir. Bu uygulama alanlarından bazıları, boya pigmetleri, manyetik kayıt cihazları, ferro-akışkanlar, ilaç taşıma, manyetik rezonans görüntüleme (MRG) dir. [4, 9-12]. Yüksek koersiviteli maghemit parçacıkları, elektronik kayıt cihazlarında kullanılır [13,9]. Ayrıca, demir oksitler, biouyumu olmaları nedeniyle biyolojik uygulamalarda elverişli malzemedir [14]. Biyolojik uygulamalarda aranan özellik nanoparçacıkların süperparamanyetik olmalarıdır. Kalıcı manyetizasyon parçacıkların birbirleri ile etkileşip, bir araya gelip topaklanmalarına ve bu da damarların tıkanmasına neden olabilir [15].

Nano boyuttaki demir oksitler, hacim yüzey alanı oranı çok büyük olduğundan dolayı, büyük yüzey enerjilerine sahiptirler [1]. Toplam yüzey enerjilerini azaltmak için birbirleriyle etkileşerek büyük topaklanmalar oluştururlar. Ayrıca her bir parçacık manyetik özellikleriden dolayı küçük ölçekte birbirleriyle etkileşirler. Bu anlamda yüzey kaplaması önem kazanır. Hava ortamında yüzeylerinde oksitlenme meydana gelir [16]. Manyetik özelliklerinin korunması için parçacıklar, farklı malzemelerle kaplanabilir. Ayrıca bu kaplama ile parçacıkların farklı ortamlarında dispersiyonları sağlanmış ve uygulama alanları açısından elverişli hale getirilmiş olurlar. Parçacıklar organik (polimer veya yüzey aktif malzemeler) ya da inorganik (altın, gümüş, silika, karbon) bir tabakayla kaplanabilirler [3].

Bu çalışmanın amacı, ortak çöktürme ile sentezlenmiş süperparamanyetik nanoparçacıkların hidrotermal metod kullanılarak kristalliklerinin ve boyutlarının kontrollü bir şekilde değiştirilmesi ve manyetik özelliklerindeki değişimlerin incelenmesidir. Ayrıca, nanoparçacıkların oksidasyonunun engellenmesi ve farklı çözücü ortamlarında dispersiyonlarının sağlanabilmesi için nanoparçacıklar yüzey aktif malzemeler ile kaplanmıştır.

Bu çalışmada, nanoparçacık sentezi için ortak çöktürme ve hidrotermal sentez teknikleri kullanılmıştır. Ortak çöktürme ile tek sentezle bol miktarda malzeme sentezlenebilmektedir [3, 9, 16]. Hidrotermal sentez tekniği nanoparçacıkların boyutlarının değiştirilmesi için uygun bir yöntemdir. Ayrıca bu yöntemle yüksek manyetizasyon değerleri ve yüksek kristallik elde edilmektedir [3,16]. Bu nedenle bu çalışmada ortak çöktürme ve hidrotermal sentez teknikleri tercih edilmiştir. İlk bölümde ortak çöktürme yöntemiyle süperparamanyetik demir oksit nanoparçacıkları sentezlenmiş ve hidrotermal yöntemle nanoparçacıkların boyutları arttırılmıştır. Hidrotermal yöntem esnasında, sıcaklık ve süre parametrelerine bağlı olarak boyutlardaki ve buna bağlı olarak manyetik özelliklerdeki değişimler incelenmiştir. İkinci ve üçüncü kısımlarda, parçacıkların yüzeyleri yüzey aktif malzemeyle kaplanarak suda ve kloroformda dispersiyonları sağlanmıştır. Suda çözülebilen nanoparçacıkları biyolojik uygulamalar için elverişlidir. Bu yüzden nanoparçacıkların toksik olup olmadıkları MTT yöntemiyle araştırılmış ve sonuçlar çalışmanın son bölümünde sunulmuştur.

2. KURAMSAL BİLGİ

2.1 Demir Oksitler

Demir oksitler, teknolojik açıdan oldukça önemli geçiş metalleridir. Doğada 16 fazda demir oksit, hidroksit ve oksihidroksit olduğu bilinmektedir. Başlıca demir oksitler Tablo 2.1'de verilmiştir [4, 17, 18].

Mineral adı	Formül
Magnetit	Fe ₃ O ₄
Maghemit	γ-Fe ₂ O ₃
Hematit	α -Fe ₂ O ₃
Lepidocrocite	γ-FeOOH
Goethite	α-FeOOH
Akaganeite	β-FeOOH
Ferroksit	δ-FeOOH
Ferrihidrit	$Fe_5HO_8 \cdot 4H_2O$

 Tablo 2.1: Başlıca demir oksitler [4].

Magnetit, siyah ferrimanyetik mineraldir. Fe^{2+} ve Fe^{3+} iyonlarının ikisini birden içerir. Ters spinel yapıdadır. Titanomagnetit ile birlikte kayaların manyetik özelliklerinden sorumludur [4, 18]. Pek çok organizmada (bakteriler, algler, böcekler, kuşlar ve memeliler) bulunur ve işlevi yön bulmaktır [19].

Maghemit, kırmızı-hahverengi ferrimanyetik mineraldir. Magnetit ile benzer yapıdadır (isostructural). Magnetitin toprakta, havayla temasıyla oluşur [4].

Hematit bilinen en eski demir oksit mineralidir, kayalarda ve topakta bolca bulunur. Rengi, mineral parçalanmışsa kırmızıdır. Kabaca kristallendiyse siyah ya da gri renktedir. Hematit α-Al₂O₃ yapısındadır. Goethite gibi oldukça kararlıdır ve diğer demir oksitlerin dönüşümünde en son oluşan maddedir. Önemli bir renk pigmentidir [4].

Demir oksit bileşimlerinde, çoğunlukla 3 değerlikli demir bulunur (sadece, FeO, (FeOH)₂ ve Fe₃O₄, Fe²⁺ içerir). Bütün demir oksitler kristal yapıdadır. Sadece schwertmannite ve ferrihidrit zayıf kristal özelliktedir. Demir oksit, demir hidroksit ve demir oksihidroksit, demir iyonları ve O²⁻ veya OH⁻ iyonları içerir. Anyonlar katyonlardan daha büyük olduğundan (O²⁻ iyonunun yarıçapı 0.14 nm, Fe³⁺ ve Fe²⁺ nin sırasıyla 0.065 nm ve 0.082 nm dir.), anyonların düzeni kristal yapıyı yönetir, farklı demir oksitler arasındaki topolojik dönüşümü kolaylaştırır. Demir oksitler sıkı paketlenmiş anyon dizilimlerinden oluşurlar. Bu anyon tabakalarının dizilimleri, hekzagonal sıkı paket (hcp), düzlem yığılımları ABAB...,ve kübik sıkı paket (ccp), ABCABC....(sadece Akagenatite hacim merkezli kübik (bcc) anyon düzeninde) şeklindedir. Bu anyon tabakaları bazı kristalografik doğrultularda yığılırlar. Bütün demir oksitler için anyon tabakaları arasındaki ortalama mesafe 0.23-0.25 nm'dir. Katyonlar oktahedral ve tetrahedral düzende anyonlar arasındaki boşlukları doldururlar [4, 18, 20].

Magnetit ters spinel yapıdadır. Magnetitin yapısı Şekil 2.1'de verilmiştir [21]. 32 O²⁻ iyonu içeren yüzey merkezli kübik birim hücreden oluşur. Oksiyen iyonları [111] doğrultusunda sıkı paketlenmiş olarak yerleşir. Birim hücre boyu a=0.839 nm dir [4].

Şekil 2.1: Magnetitin yapısı [21].

Magnetit iki ve üç değerlikli demir iyonlarının ikisini de içerdiğinden ötürü diğer demir oksitlerden farklıdır. Formül Y[XY], (X=Fe²⁺, Y=Fe³⁺) şeklinde yazılır. Tetrahedral alanlar Fe²⁺ ve Fe³⁺ iyonlarını, oktahedral alanlar ise Fe³⁺ iyonlarını içerir. Magnetit genellikle katyon kusurları içerdiğinden stokiometrik değildir. Stokiometrik magnetit için Fe²⁺/Fe³⁺= 0.5 dir. Fe²⁺ diğer iki değerlikli iyonlarla (Mn²⁺, Zn²⁺, Ni²⁺ gibi) yer değiştirebilir [17, 4].

Maghemit, magnetitle benzer yapıdadır. Farklı olarak maghemit sadece üç değerlikli demir iyonlarını içerir. İki değerlikli demir iyonlarının oksidasyonuyla katyon boşlukları oluşur. Her bir birim hüce 32 O²⁻ iyonu, 21 1/3 Fe³⁺ iyonu ve 2 2/3 boşluk içerir. Sekiz katyon tetrahedral alanları doldurur ve kalan katyonlar oktahedral alanlarda rastgele dağılırlar. Boşluklar oktahedral alanlarda sınırlanmışlardır. Boşluklar kristal boyuta, öncül maddeye, ve Fe²⁺ miktarına bağlıdır [4].

Magnetit ferrimanyetik bir malzemedir ve Curie sıcaklığı 850 K'dir. Curie sıcaklığının altında oktahedral alanlardaki Fe^{3+} iyonları elektron spinleri, tetrahedral alanlardaki spinlerle zıt yönde yönelirler. Bu durumda net manyetizasyon sıfırdır. Fe^{2+} iyonlarından gelen elektron spinleri oktahedral alandaki Fe^{3+} iyonlarıyla aynı yönde yönelir [22]. Şekil 2.2'de görüldüğü gibi net manyetizasyonun kaynağı budur . Spin düzenlemeleri $Fe^{3+}[Fe^{3+}Fe^{2+}]O_4$ olarak yazılır [23].

Tetr	ahedral		Okta	hedral	
Fe ⁺³	ſ	Fe ⁺³	Ļ	Ť	Fe ⁺²
Ferrimanyetik					
	Ters spinel				

Şekil 2.2: Ters spinel yapıda katyonların dağılımı [23].

2.2 Katılarda Manyetizma

İlk icat edilen manyetik cihaz pusuladır. Manyetize olmuş magnetitten yapılmıştır ve yüzyıllarca yön bulmakta kullanılmıştır [19, 24]. Pierre weiss katılarda belli sıcaklıkların altında, komşu atomların manyetik etkileşmelerinden dolayı belli alanlarda manyetik düzenin oluştuğunu ileri sürmüştür. 1928 yılında Werner Heisenberg elektronlar arasındaki Exchange etkileşimleri -Pauli prensibine dayanarak- göstererek büyük moleküler alanları açıklayabilmiştir. 1930'a kadar bütün güçlü manyetik momentlerin ferromanyetik oldukları düşünülüyordu. Louis Néel manyetik yapıların daha karmaşık olabileceğini ifade etmiştir. Shull tarafından nötron difraksiyonunun keşfedilmesiyle katılardaki manyetik yapılardaki çeşitlilik de ortaya çıkmış oldu. 1949 da Louis Neel çok küçük boyutta manyetik malzemelerin belli sıcaklıklarda süperparamanyetik olabileceklerini işaret etmiştir [25].

Atomik manyetik momentler, elektronların spinleri ve yörüngesel hareketlerinden oluşur. Katılar manyetik özelliklerine bağlı olarak aşağıdaki gibi sınıflandırılabilir [23].

- Diyamanyetizma
- Paramanyetizma
- ➢ Ferromanyetizma
- Antiferromanyetizma
- > Ferrimanyetizma

2.2.1 Diyamanyetizma

Diyamanyetik malzemeler, Şekil 2.3'de görüldüğü gibi sürekli net bir manyetik momenti olmayan yapılardır. Dış manyetik alanla birlikte malzemenin içinde manyetik alanla zıt yönde küçük bir alan indüklenir. Şekil 2.4'de görüldüğü gibi manyetizasyon, manyetik alanla lineer olarak değişir. Manyetik alan kaldırıldığında da ortadan kalkar. Uygulanan dış manyetik alan, elektronların orbital hareketlerini değiştirerek ters yönde küçük bir manyetik alan oluşmasına neden olur. Diyamanyetik yanıt bütün malzemelerde gerçekleşir. Manyetik alınganlık, χ negatif ve sıcaklıktan bağımsızdır (SI birim sisteminde -10⁻⁵, 10⁻⁶ mertebesinde.)[26].

Şekil 2.3: Farklı manyetik özellikteki maddelerde momentlerin sıralanışı [2].

Şekil 2.4: Diyamanyetik maddelerde dış manyetik alanda manyetizasyonun değişimi [26]

2.2.2 Paramanyetizma

Paramanyetik katılarda, atomlar manyetik momentler içerirler ve Şekil 2.3'de görüldüğü gibi, dış manyetik alan uygulandığında bu momentler manyetik alanla aynı yönde sıralanır. Şekil 2.5'de görüldüğü gibi, M, H ile lineer olarak değişim gösterir. Diyamanyetik malzemelerde olduğu gibi manyetik alan kaldırıldığında indüklenen manyetik alan da kaybolur.

Paramanynetik maddeler pozitif değerli ve küçük bir manyetik alınganlığa(χ) sahiptir (SI birim sisteminde, 10⁻³-10⁻⁵ mertebesindedir.). Sözkonusu alınganlık, dış magnetik alan etkisi altında sıralanabilecek serbestlikteki daimi magnetik momentlerin varlığından kaynaklanır. Bu atomik manyetik momentler kuantize olmuşlardır ve en küçük birimi, Bohr manyetonudur [27]:

$$\mu_B = \frac{e\hbar}{2mc} = 0.927 \times 10^{-20} emu \ (=9.27 \times 10^{-24} \,\mathrm{Am}^2). \tag{2.1}$$

Şekil 2.5: Paramanyetik maddelerde dış manyetik alana bağlı olarak manyetizasyondaki değişim [26].

2.2.3 Ferromanyetizma, Antiferromanyetizma ve Ferrimanyetizma

Ferromanyetik katılar, paramanyetikler gibi net manyetik momente sahip atomlar içerir. Farklı olarak momentler birbirleriyle etkileşim halindedir. Manyetik alınganlıkları 50-10000 civarındadır. Momentlerin birbirleri ile etkileşmeleri nedeniyle Şekil 2.6'da görüldüğü gibi, katı içinde belli yönlerde sıralanmış bölgeler oluşur. Bu yüzden de ferromanyetik madde enerjilerini minimize edecek şekilde domainlere ayrılır. Kararlı bir yapıda boyutları 10⁻⁵ cm düzeyinde domainler vardır. Her bir domain farklı mıknatıslanma yönüne sahiptir bu yüzden de net manyetizasyon değeri sıfırdır. Domainler birbirlerinden domain duvarlarıyla ayrılırlar. Dışarıdan manyetik alan uydulandığında domainler manyetik alan yönünde sıralanırlar. Paramanyetik maddelerden farklı olarak manyetik alan kaldırıldığında momentler aynı yönde yönlenmeye devam ederler. Yani ferromanyetik maddelerde manyetizasyon kalıcıdır. Ferromanyetik maddelerde mıknatıslanma değeri çok büyüktür. Mıknatıslanma şiddeti sadece uygulanan manyetik alana değil, numunenin önceki durumuna ve içinde bulunduğu koşullara da bağlı olarak değişir. Dış manyetik alan uygulandığında alanla aynı yönde manyetik alan indüklenir [2, 27].

Şekil 2.6: Ferromanyetik katıda manyetik momentler [27].

Doyum manyetizasyonu, M_s sıcaklığa bağlıdır, sıcaklığın artmasıyla azalır. Curie sıcaklığının, T_C üstünde manyetizasyon sıfır olur. T_C , her ferromanyetik malzeme için karakteristiktir ve bu sıcaklığın üstünde momentler arasındaki etkileşimler ortadan kalkar ve ferromanyetik maddeler paramanyetik hale geçer [27].

Dış manyetik alana bağlı olarak manyetizasyondaki değişim histeresis eğrisini oluşturur. Histeresis eğrisi Şekil 2.7'de verimiştir. Mıknatıslanma için gerekli manyetik alan uygulandığında domain çeperleri domainlerin büyümesine katkıda bulunacak şekilde hareket ederler. Bu durumda domainlerin mıknatıslanma yönü aşağı yukarı manyetik alan yönünde olacaktır. Eğer alan şiddeti arttırılırsa mıknatıslanmanın yönü, alan ile tamamen aynı yönde olacak şekilde düzenlenir. Bütün manyetik momentler sıralandıktan sonra M mıknatıslanma değeri sabit bir değere ulaşarak doyuma gider. H manyetik alanın şiddeti azaltıldığı zaman M mıknatıslanma şiddeti de azalacaktır, ancak bu durumda eğri farklı bir yol izleyecektir. H değeri sıfır değerine düşürüldüğü zaman, manyetizasyonun sıfırlanmadığı görülür. Manyetik alanın yönünü ve şiddetini değiştirerek kapalı bir döngü elde edilmiş olur [20].

Şekil 2.7: Ferromanyetik malzemelerde histeresis eğrisi [20].

Manyetik momentler arasındaki etkileşme enerjisi, manyetik momentler arasında paralel ya da antiparalel çiftlenimler üretir. Bu çiftlenimler geçiş elementlerine ve kristal yapılara bağlıdır. Ferromanyetizmada, atomik manyetik momentler paralel çiftlenmiştir. Şekil 2.3'de görüldüğü gibi, momentler paralel ve atiparalel yönlenmiştir. Eğer zıt yönlenmiş momentler eşitse, antiferromanyetizma, eşit değilse ferrimanyetizma olarak adlandırılır [27].

2.3 Süperparamanyetizma

Küçük boyutlardaki maddeler, bulk malzemelerden farklı manyetik özelliklere sahiptirler. Fiziksel geçişlerin yaşandığı bu boyutlar her madde için karakteristiktir. Çoklu domain yapısındaki maddelerin boyutları küçüldükçe oluşan boyut etkisi Şekil 2.8'de görüldüğü gibi iki bölümde incelenebilir [3, 28-30].

- ✓ Tek domain limiti
- ✓ Süperparamanyetik limit

Şekil 2.8:. Parçacık boyutuna bağlı olarak manyetik özelliklerdeki değişim [29].

Ferromanyetik maddeler, manyetik momentlerin aynı doğrultularda yönlendiği domainlerden ve domainleri birbirinden aynran domain duvarlarından oluşur. Eğer bu maddelerin boyutları küçültülürse, belli bir boyutun altında domain duvarları oluşamaz. Tek domainli parçacıklar, bütün momentlerin aynı doğrultuda yönlendiği manyetize olmuş parçacıklardır. Manyetizasyon, spinlerin hareketi ile ters çevrilebilir. Domain duvarı olmadığı için duvar hareketi de yoktur, bu da büyük koersiviteye sebep olur. Ayrıca koersivite değerini etkileyen diğer bir sebep de şekil anizotropisidir. Tek bir domain ele alındığında manyetik anizotropi enerjisi, manyetik momentleri belli bir doğrultuda tutmaktan sorumludur. Manyetik anizotropi enerjisi [3]:

$$\mathbf{E} = \mathbf{K}_{\rm eff}.\mathbf{V}.\sin^2\theta \tag{2.2}$$

şeklinde yazılır. V parçacık hacmi, K_{eff} anizotropi sabiti, θ manetizasyon ve kolay eksen arasındaki açıdır. Enerji bariyeri $K_{eff}V$, iki eşit enerjili kolay eksene ayrılır. Eğer parçacık boyutu azalmaya devam ederse, termal enerji, k_BT , enerji bariyerini, $K_{eff}V$ aşar ve manyetizasyon kolaylıkla döndürülebilir. $k_BT > K_{eff}V$ olduğunda sistemin davranışı paramanyetik gibidir. Süperparamanyetik maddelerin manyetizasyon eğrisi Şekil 2.9'da görülmektedir. Atomik manyetik momentler yerine, her bir parçacık için super moment denir. Süperparamanyetik maddelerde manyetik momentler Şekil 2.10'daki gibi gösterilebilir.

Şekil 2.9: Süperparamanyetik malzemelerde manyetizasyon eğrisi [20].

Şekil 2.10: Süperparamanyetik maddelerde momentler [31].

2.4 Manyetik Nanoparçacıkların Sentezi

Nanoparçacıklar, farklı kompozisyon ve fazlarda demir oksitler (Fe₃O₄ ve γ -Fe₂O₃) spinel yapıda ferromagnetler (MgFe₂O₄, MnFe₂O₄, CoFe₂O₄) ve alaşımlar-(CoPt₃, FePt) olarak sentezlenebilir [2, 3]. Pek çok metodla nanoparçacık sentezi yapılabilmektedir. Kullanılan bazı yöntemler hidrotermal sentez, ortak çöktürme, mikroemilsüyon ve termal parçalamadır [3, 32-35].

2.4.1 Ortak Çöktürme

Ortak çöktürme süreci, sulu çözelti ortamında gerçekleşir. Bu teknik, demir oksit (Fe₃O₄, γ -Fe₂O₃) sentezinde kolay ve kullanışlı bir yöntemdir. Uygun oranlarda karıştırılan Fe⁺² ve Fe⁺³ iyonları bazik ortamda (amonyak, sodyumhidroksit gibi) güçlü bir karıştırıcı altında çöktürülür. Fe₃O₄ nanoparçacıklarının çökmesi için pH değeri 8 ile 14 arasında olmalıdır. Nanoparçacık sentezi için reaksiyon aşağıdaki şekilde yazılır [17]:

$$Fe^{+2} + 2Fe^{+3} + 8OH^{-} \rightarrow Fe_3O_4 + 4H_2O$$

Bu yöntemle elde edilen parçacıkların boyutu, şekil ve bileşimi, Fe^{+2}/Fe^{+3} oranı, kullanılan tuz (klorür, sülfat, nitrat), pH, sıcaklık, baz tipi ve iyonik şiddete bağlı olarak değişir. Oda sıcaklığında yada yüksek sıcaklıklarda gerçekleştirilebilir. Sentez şartları belirlendiğinde, aynı nitelikte nanoparçacıklar tekrar elde edilebilir. 3-20 nm arasında parçacık elde etmek mümkündür. Manyetit (Fe₃O₄) kararlı değildir. Havayla ya da asit ortamında kolayca okside olarak maghemite (γ -Fe₂O₃) dönüşür [17, 36].

$$Fe_3O_4 + 2H^+ \rightarrow \gamma - Fe_2O_3 + Fe^{+2} + H_2O$$

Maghemit için oksidasyon büyük bir problem değildir. Bu yüzden, manyetit nanoparçacıkarı kasıtlı olarak okside edilerek maghemit nanoparçacıklarına dönüştürülürler. Bu dönüşüm parçacıkların asit ortamında dispersiyonu ve ardından demir(III)nitrat eklenmesiyle yapılır [17]. Bu şekilde hazırlanan parçacıklar çözeltinin pH değerine bağlı olarak yüzey yüklerine sahiptirler. Ortak çöktürmenin en büyük avantajı büyük miktarda parçacık sentezlenebiliyor olmasıdır. Ortak çöktürmeyle elde edilen nanoparçacıklar polidisperstirler. Ferromanyetikliğe geçiş sıcaklığı parçacık boyutuna bağlıdır. Geniş boyut dağılımı, geniş oranda geçiş sıcaklık dağılımına neden olur. Bu yüzden, parçacıklar pek çok uygulama alanı açısından ideal olmayan manyetik davranışlar sergilerler [3].

2.4.2 Hidrotermal Sentez

Mikroemülsiyon ve termal parçalama metodları karmaşıktır veya yüksek sıcaklık gerektirir. Bu yöntemlere alternatif bir yöntem hidrotermal sentezdir. Sentez daha basittir ve kristallikleri yüksek nanoparçacıklar elde edilir. Ortak çöktürmeyle elde edilmiş nanoparçacıkların sulu çözeltisi teflon kaba konur. Teflon kap da basınca dayanıklı çelik kap içine yerleştirilir. Bu kap da yüksek sıcaklıklarda (genellikle 130 °C ile 250 °C arasında) bekletilerek kristallikleri ve M_s değerleri yüksek manyetik nanoparçacıklar sentezlenir [17].

Hidrotermal sentez tek adımda veya iki adımda gerçekleştirilmektedir [37, 38].

Şekil 2.11'de görüldüğü gibi ilk adımda sodyum oleat ($C_{17}H_{33}COONa$) içeren FeCl₂ ve FeCl₃ çözeltisine amonyak çözeltisi eklenerek nanoparçacıklar çöktürülmüştür. İkinci adımda ise nanoparçacık içeren çözelti basınca dayanıklı çelik kaba konularak 100-230 °C arasında 3 saat bekletilmiştir [39].

Şekil 2.11: Hidrotermal sentezin akış şeması [39].

Bu çalışmada sodyum-oleat, demir konsantrasyon oranı ([SO]/[Fe]=0.25) ve reaksiyon süresi (3 saat) sabit tutulup sıcaklık arttırıldığında parçacık boyutunun arttığı gözlemlenmiş. 100°C sıcaklıkta 8.3 nm, 150 °C sıcaklıkta 8.6 nm, 200 °C sıcaklıkta 9.7 nm, 230 °C sıcaklıkta 10.8 nm boyutlarında parçacıklar elde edilmiştir. Sıcaklık 230 °C'de sabit tutulup [SO]/[Fe] oranı 0-0.5 arasında değiştirildiğinde 21.1, 16.4, 10.8 ve 10.5 nm boyutlarında 71.1, 65.7, 59.3, ve 58.9 emu/g doyum manyetizasyonlarına sahip nanoparçacıklar sentezlenmiş. Kristal boyutları hidrotermal işlemden önce ve sonra hesaplanmış ve işlemden sonra parçacıkların büyüdüğü gözlenmiştir [39].

Diğer bir çalışmada [40] ilk adımda sodyum oleat ve demir klorür çözeltisi ile demir oleat öncül maddesi oda sıcaklığında sentezlenmiş. İkinci adımda ise demir oleat, oleik asit içeren etil alkol çözeltisine eklenerek basınçlı kaba alınmış ve 180 °C de 5 saat bekletilmiştir. Oda sıcaklığına kadar soğutulduktan sonra nanoparçacıklar kabın dibinden toplanmıştır. Nanoparçacıklar hekzan içinde dispers olabilmektedir. Bu yaklaşımla monodispers manyetit nanoparçacıklar, ayarlanabilir boyut ve şekilde sentezlenebilmektedirler. Reaktant konsantrasyonu, sıcaklık, reaksiyon süresi, oleik asidin molar oranının değişimlerinin oluşan manyetit nanoparçacıklar üzerindeki etkileri incelenmiştir. Bütün örnekler-metanol içinde sentezlenmiş olan hariç-hekzan içinde tekrar dispers edilebilmiştir. Polarlık ve çözücüdeki çözünürlük manyetik nanoparçacıkların dispersiyonu için önemli parametrelerdir. Düşük kaynama noktalı alkol yüksek basınç yaratarak düşük sıcaklıklarda kristalleşmeyi kolaylaştırır. Çözme etkisi alkol içinde Fe^{+3} ve oleik iyon arasındaki iyonik bağı zayıflatır. Böylece Fe^{+3} ün O₂ ile reaksiyonu kolaylaşmış olur. Nanokristaller metanol içinde 130 °C sıcaklıkta elde edilirken, etil alkolde sıcaklık 140 °C'nin üstünde olmalıdır. Farklı çözücülerde farklı şekil ve kristallikte nanoparçacıklar elde edilmiştir. Yüksek polariteli ve düşük kaynama noktalı çözücüde doyum manyetizasyonu daha güçlü olmaktadır. En büyük doyum manyetizasyonu ve kristallik, etil alkolde elde edilmiş. 1-hekzanol içinde sentezlenen nanoparçacıklar ise iyi manyetik özellikler göstermemiştir [40].

Bir diğer çalışmada [41] nanoparçacıklar tek adımda sentezlenmiştir. Fe⁺² çözeltisi teflon kaba koyularak üzerine H₄N₂.H₂O (diamine hidrat) içinde çözülen sodyum hidroksit çözeltisi damla damla eklenmiştirtir. Deney sırasında Fe⁺² nin oksidasyonunu engellemek için çözeltiden azot gazı geçirilmiştir. Basınçlı kap 100°C, 140 °C ve 180 °C sıcaklıklarda, 6 saat bekletilmiş, N₂H₄, Fe⁺²'yi Fe⁺³'e dönüştürmüş ve böylece Fe₃O₄ nanoparçacıkları sırasıyla 25, 40 ve 45 nm boyutlarında sentezlemişlerdir. Sıcaklık arttıkça parçacıkların kristal boyutlarının da arttığı gözlemlenmiştir. 100 °C sıcaklıkta M_s 12.3 emu/g, 140 °C'de, 85.8 emu/g değerleri elde edilmiştir ve malzeme ferromanyetik özelliktedir.

Bir diğer çalışmada [42], FeCl₃.6H₂O suda çözülmüş ve bu çözeltinin üstüne damla damla Na₂CO₃ ilave edilmiş. Ardından 10 dakika sonra askorbik asit eklenmiş ve çözelti 15 dakika daha karıştırıldıktan sonra basınçlı kaba alınarak 160 °C sıcaklıkta 3 saat bekletilmiştir. Ortalama 5.2 nm boyutunda parçacıklar elde edilmiştir. Diğer parametreler sabit tutularak sadece askorbik asit miktarı değiştirilerek oluşan parçacıklar incelenmiştir, askorbik asit miktarındaki aşırı artışın (>0.3 g), FeCO₃ oluşumuna neden olduğunu gözlemlenmiştir. C₆H₆O₆ ile (oksidasyon durumundaki askorbik asit), manyetik nanoparçacıkların yüzeylerini kaplayarak nanoparçacıkların kararlılığı ve suda çözünürlüğü sağlanmış. Süperparamanyetik parçacıkların M_s 5.2 emu/g elde edilmiştir. Bu küçük değer, boyutta surfaktanla parçacıkların küçük olması ve kaplı olmasından kaynaklanmaktadır.

Bu çalışmaya göre, magnetit nanokristallerin oluşum mekanizması [42]:

$$Fe^{3+} + 3CO_3^{2-} + 6H_2O \rightarrow 2Fe(OH)_3 + 3H_2CO_3$$
$$2Fe(OH)_3 + C_6H_8O_6 \rightarrow 2Fe(OH)_2 + C_6H_6O_6 + 2H_2O$$
$$2Fe(OH)_3 + 2Fe(OH)_2 \rightarrow Fe_3O_4 + H_2O$$

Diğer bir çalışmada [43], nanoparçacıklar tek adımda hidrotermal metodla sentezlenmiştir. Sükrozun sulu çözeltisi hazırlanmış ve çözeltiye FeCl₃ eklenerek karıştırılmıştır. Daha sonra çözeltiye amonyak eklenerek 30 dakika daha karıştırıldıktan sonra, 180 °C sıcaklıkta 48 saat bekletilmiştir. Parçacıkların boyutları sükroz/FeCl₃ oranınına bağlı olarak 4-16 nm arasında elde edilmiş. Sükroz konsantrasyonu arttıkça parçacık boyutu azalmıştır. Sisteme sükroz ilave edilmediğinde polidispers hematit (53-106 nm arası) parçacıkları elde edilmiş. Sükroz indirgeyici bir şeker değildir, ama nanoparçacık sentezi sırasında sükroz indirgeyici bir şeker değildir, ama nanoparçacık sentezi sırasında sükroz indirgeyici bir şeker olan glikoza parçalanmıştır. Fe⁺³ iyonları glikoz tarafından Fe^{+2,}'ye indirgenerek, Fe₃O₄ nanoparçacıkları sentezlenmiştir. Sükrozun tamamı, glikoz ve glikonik asite çevrilmiş ve parçacık yüzeyleri glikoz ve glikonik asitle kaplanmıştır. Ayrıca parçacıkların büyümesine de etki ederek monodispers parçacıklar elde edilmeşi sağlanmıştır.

Şekil 2.12: Glikoz ve glikonik asit (ajanların yapısı basitleştirilmiştir) ile kaplı parçacıkların şematik gösterimi [43].

2.4.3 Diğer Sentez Teknikleri

Mikroemülsiyon

Mikroemülsiyonla, birbirine karışmayan iki sıvının kararlılığı sağlanır. Yağ fazında nanoboyutta su damlaları içeren, yağ içinde su (water-in-oil, w/o) mikroemulsiyonu demir oksit nanoparçacıkları elde etmek için sıkça kullanılan bir metodtur [35]. Surfaktan kaplı su birikintisi, parçacıkların oluşumu için uygun ortamı oluşturur ve parçacıkların büyümelerini sınırlandırır. Manyetik nanoparçacıklar, su fazındaki Fe^{+2}/Fe^{+3} ve NaOH in çöktürme reaksiyonuyla kolayca elde edilir [3]. Parçacıklar miseller içinde büyütülür ve çözücü ekleyerek (aseton, etil alkol) çöktürülür. Mikroemülsiyon damlalarının boyutu su surfaktan oranıyla belirlenmesine rağmen, nanoparçacıkların boyutu reaksiyona giren maddelerin konsantrasyonu ve surfaktan filmin esnekliğinden etkilenir. Bu yöntemle küresel, dikdörtgen ve küp seklinde, neredeyse monodispers nanoparçacıklar elde edilebilir. Termal parçalama ve ortak çöktürme teknikleriyle karsılastırıldığında elde edilen nanoparçacık miktarı oldukça azdır. Büyük miktarda parçacık sentezi için çok miktarda çözücüye gerek vardır bu yüzden çok kullanılan bir yöntem değildir [3].

<u>Termal Parçalama</u>

Küçük boyutlarda, monodispers, süperparamanyetik nanoparçacıklar termal parçalama yöntemiyle kolaylıkla sentezlenebilmektedir. Bu yöntemle öncül maddeler (Fe-oleat, Fe(CO)₅, demir(III) asetilasetonat) yüksek kaynama noktalı organik çözücüler (1-hekzadeken, 1-oktadeken, 1-ekosen, trioktilamin, phenyl ether, oktil ether) içinde surfaktan (oleik asit) varlığında parçalanarak monodispers nanoparçacıklar elde edilir. Elde edilen nanoparçacıklar hekzan ve toluen gibi organik çözücülerde dispers olurlar. Kullanılan çözücünün cinsi, reaksiyon süresi, kullanılan surfaktan ve miktarı, kullanılan öncül madde, parçacık boyutunu ve morfolojisini belirleyen parametrelerdir. Ayrıca bu sentez tekniğiyle diğer manyetik nanoparçacıklar, CoFe₂O₄, Cr₂O₃, MnO, Co₃O₄ ve NiO da sentezlenebilmektedir [3, 17, 44, 45].

Mikrobiyal Metod

Mikrobiyal metod, yüksek ürün elde edilebilen, tekrar üretilebilir ve düşük maliyetlidir. Fakat düşük sıcaklık ve düşük enerji gerektirir. Fe(III) indirgeyici bakteriler (thermoanaerobacter türleri ve Shewanella türleri) oksijensiz ortamda Fe_3O_4 nanoparçacıkların sentez yeteneğine sahiptir. 65 °C'de birkaç günden üç haftaya kadar, β -FeOOH öncülü, bakterilerle birlikte bekletilir. Glikoz gibi elektron kaynağı ara ara ortama eklenir. Mikrobiyal süreç ile 5-90 nm arasında parçacıklar elde edilir [14].

2.5 Manyetik Nanoparçacıkların Önemi

Küçük boyutlardaki manyetik nanoparçacıklar, bulk yapılarla karşılaştırıldıklarında yeni fiziksel özellikler kazanmaktadırlar. Bu özellikler de manyetik nanoparçacıkların çeşitli alanlarda uygulama bulmasını sağlamaktadır. Süperparamanyetik nanoparçacıklar biyolojik uygulamalar için elverişlidir. Biomedikal uygulamalar, vücut içinde (in vivo) ve vücut dışında (in vitro) olarak ikiye ayrılabilir [14].

Nanoparçacıkların biyomedikal uygulamaları aşağıdaki gibi sınıflandırılabilir [12, 14].

TEDAVİ		TEŞHİS
İlaç Taşıma	<u>Canlı Organizmada</u>	Labratuvar Ortamında
Hipertermi	MRI	Enzim immobilizasyonu
MRI ile kombine		Hücre sıralama,
edilmiş hipertermi		Saflaştırma
		Gen iletimi (magnetofeksiyon)
		Biyo ayırma

Manyetik nanoparçacıklara değişen manyetik alan uygulandığında, manyetik momentlerin hareketiyle, ısı şeklinde enerji açığa çıkar. Bundan dolayı, parçacıklar manyetik hipertermi için uygundur. Hipertermi, günümüzde kanser hücrelerinin ısıtılması ile kanserin iyileştirilmesinin amaçlandığı bir tedavi yöntemidir [46, 47]. Hipertermi, 4000 yıl öncesine dayanmaktadır. Eski mısırda bazı hastalıklarda ısıtarak tedavi uygulanmaktaydı. Hipertermi kanser tedavisinde yeniden ilgi görmüştür. Tümör hücreleri normal dokulara göre ısıya daha duyarlıdır. Değişen manyetik alanla, manyetik nanoparçacıklarda Brown kayıplarıyla ısı elde edilir. Çoklu domain yapısındaki manyetik nanoparçacıklarda momentlerin dönmesi domain duvar hareketiyle olur. Tek domain manyetik nanoparçacıkların manyetik momentlerinin dönmesi Şekil 2.13'de görüldüğü gibi, a) anizotropi enerji bariyerinin aşılarak nanoparçacıklardaki momentlerin dönmesi (neel kayıpları) b) nanoparçacıkların mekanik dönmesi ile çevrede sürtünmeden dolayı kayıplar oluşması (Brown kaybı) ile gerçekleşir [31].

İki çeşit ısı tedavisinden söz edilebilir.

- 41-46 °C de kontrollü ısıtmayla, hücre apoptosisi tetiklenir.
- Termal-çıkarma, sıcaklık 46-48 °C'nin üzerine çıkarıldığında hücre karbonizasyonunun sonucu olarak oluşur.

Isı terapisi, göğüs, beyin, prostat kanserleri ve tümör tedavileri için uygundur. Etkili bir manyetik ısıtma, manyetik nanoparçacıkların boyutuna ve manyetik doyuma bağlıdır. Pek çok çalışma ile diğer terapilerle kombine edildiğinde tümör boyutunda küçülme görülmüştür [14, 31].

Şekil 2.13: Manyetik nanoparçacıklarda momentlerin rotasyonu [31].

İlaç taşımada, manyetik nanoparçacığı kaplayan organik ya da inorganik kabuk tabakasına moleküller yüklenir [11, 48]. Bunlar enzimler, folik asit, genler

(transfection), toksinler, ilaçlar (mitoxantrone, tamoxifen, cefradine, doxorubicin, ammonium glycyrrhizinate, fludarabine, danorubicin, cisplatin ve gemcitabine, pingyangmycin, nonsteroidal anti-inflammatory ilaçları, amethopterin, mitomycin, paclitaxel, diclofenac sodium, ve adriamycin) dır. Manyetik kuvvetler ana damar (10 cm s⁻¹) ve kılcal damarlarda (0.05 cm s⁻¹) kanın akış oranını aşması durumunda manyetik parçacıklar hedef bölgede muhafaza edilir ve hedef dokudaki endotel hücreler tarafından özümsenebilir [16]. Şekil 2.14'de manyetik ilaç taşıma sisteminin şematik gösterimi verilmiştir.

Manyetik Rezonans Görüntülemede kontrast ajanlar görüntü kontrastını arttırmak ve lezyonların görünülebilirliğini kolaylaştırmak için kullanılır. Bu ajanlar T1 (pozitif) ajanlar ve T2 (negatif) ajanlar olarak sınıflandırılabilir. NMR görüntülemede pek çok ajan kullanılmaktadır ve bunlar paramanyetiktir. T1 ajanlar, gadolinyum ve mangan tuzlarından oluşmaktadır. T1 (spin-lattice relaxation time) relaksasyon süresini kısaltarak dokuların beyaz (parlak) görünmesine neden olur. Süperparamanyetik nanoparçacıklar alternatif kontrast ajanlardır. T₂ kontarast ajanı olarak adlandırılır. T2 (spin-spin relaxation time) relaksasyon süresini kısaltarak dokuların siyah görünmesini sağlarlar. Parçacıklar statik manyetik alanda büyük manyetik momentlere sahiptirler. Özellikle 10 nm nin altıdaki parçacıklarda, süperparamanyetik korlar ve çevresindeki çözücü protonlar arasındaki dipolar etkileşmeler boyuna ve enine gevşeme oranlarında artışa neden olur [49, 50]. Günümüzde ticari demir oksit nanoparçacıkları (maghemit) beyin ve kalp enfarktüslerinde ve karaciğer lezyon ve tümörlerinde kontrast ajanı olarak kullanılmaktalar (Endorem[®] ve Resovit[®]) [16].

Gen iletimi, nükleik asitlerin [DNA, antisense oligodeoxynucleotides (AODN) ve small interfering ribonucleic acids (siRNA)] manyetik alanla hücrelerin içlerine taşınmasıdır [14].

Şekil 2.14: Manyetik ilaç taşıma sisteminin şematik çizimi. Mıknatıs dokunun içinde veya dışında konumlanarak parçacıkların belli bölgelere yönlendirir [2].

2.6 Demir Oksit Nanoparçacıklarını Fonksiyonelleştirmenin Önemi

Parçacıkların hazırlanması ve saklanmasında kararlılık çok önemlidir. Nanoparçacıkların boyutları küçüldükçe yüzey alanları genişlemektedir . Yüzeydeki atom miktarı arttıkça hava ile teması ve oksidasyonu da hızlanmaktadır. Şekil 2.15'de yüzey alanındaki artışı gösteren basit bir model verilmişir.

Şekil 2.15: Nanoparçacıkların yüzey alanını gösteren basit bir model [1].

Manyetik nanoparçacıklar sentez sırasında veya sentezden sonra organik bileşikler ile kaplanabilir ve parçacık yüzeyleri pasifleştirilir. Böylece parçacıkların bir araya gelerek büyümeleri engellenir. Parçacıklar organik moleküllerle kaplanabilir. Bunlar küçük moleküller veya sürfaktan olabilir. Ayrıca doğal (Chitosan, Gelatin, Starch, Dextran) veya sentetik (Poly etilen glikol (PEG), Poly vinyl alkol (PVA), Poly laktid asid (PLA), Alginate) polimerlerle kaplanabilirler. Ya da parçacıklar biyouyumlu inorganik moleküllerle (silika ve metaller gibi) kaplanabilirler. Ayrıca biyolojik uygulamaları açısından parçacıkların biyouyumlarını arttırmak için bazı biyomoleküller kullanılır. Nanoparçacıkları organik bileşiklerle kaplayarak pek çok alanada uygulanma potansiyelleri artırılmış olur [3].

Demir oksit parçacıkları genellikle kor kabul edilir ve yapıları 3 şekilde gösterilebilir.

Şekil 2.16: Fonsiyonalleştirilmiş demir oksit nanoparçacıkları [51].

Çekirdek bir çeşit demir oksit parçacığı, kabuk da organik bir molekül olabilir. Matriks yapılar da iki şekilde olabilir. Mozaik ve kabuk-çekirdek. Kabuk-çekirdekte organik nanoparçacık çekirdek, manyetik nanoparçacıklarsa kabuktur. Demir oksit nanoparçacıkları organik çekirdeğe kimyasal bağlarla bağlanır. Mozaik yapı, demir oksit parçacıklarıyla dolu organik molekülden oluşur. Organik moleküllerden oluşan kabuk tabakası kabuk-çekridek yapısını kapladığında kabuk-çekirdek-kabuk yapıları oluşur. Kabuk-a polimer yada biyomolekül, kabuki-b aynı yada farklı fonksiyonel malzemedir. Demir oksit nanoparçacıkları içeren çoklu

bileşene sahip iletken organik malzemelerden oluşan sistemlerle amaçlanan mekanik özellikler elde edilebilir. Ayrıca nanoparçacık yeni elektrik, magnetik ve optik özellikler kazanmış olurlar [11].

Manyetik yüzeydeki kaplamanın çeşidi ve onun geometrik düzeni, sadece toplam boyutu belirlemekle kalmaz ayrıca biyolojik süreç (ilacın vücuttaki emilimi, dağılımı ve atılımı) üzerinde de önemli rol oynar. Uygulama alanları açısından, parçacıklarda belli bir boyut, şekil, yüzey ve manyetik özellik aranır. Biyoteknoloji ve ilaç sektöründe parçacıkların oda sıcaklığında süperparamanyetik olmaları beklenir. Kalıcı manyetizasyon bu parçacıkların bir araya gelerek büyümelerine neden olur. Bu büyüyen parçacıklar damarı tıkayarak kanın akışını engeller. Bu parçacıklar suda, nötral pH da kararlı olmalıdırlar. Manyetik sıvıda koloidal kararlılık parçacık çapına bağlıdır. Yer çekimi kuvveti, yük ve yüzey kimyası nedeniyle çökmeyi minimize edebilmek için parçacıkların yeteri kadar küçük olmaları gereklidir [11, 14].

3. DENEYSEL TEKNİKLER

Bu bölümde sentezlenen nanoparçacıkların karakterizasyonu için kullanılan teknikler yer almaktadır. Elde edilen manyetik nanoparçacıklarının yapısal analizi Xışınları difraksiyonu (X-ray Diffraction, XRD) ve kızılötesi spektroskopisi (Fourier Transform Infrared Spectroscopy, FT-IR), boyut analizi, geçirmeli elektron mikroskobu (Transmission Electron Microscopy, TEM), manyetik analizi, tireşimli numune magnetometresi (Vibrating Sample Magnetometer, VSM) kullanılarak yapılmıştır.

3.1 Kullanılan Kimyasallar

Demir II klorür tetrahidrat (FeCl₂.4H₂O Merck>99%) demir III klorür hekzahidrat (FeCl₃.6H₂O Merck>99%) ve amonyum hidroksit (NH₄OH Merck, 25% of ammonia) demir oksit nanoparçacıklarının sentezinde kullanıldı. Sodium oleat (Sigma-Aldrich 82%), L-(+) Tartaric acid (Sigma-Aldrich 99.7%), L(+)Ascorbic acid (Carlo erba,99%) parçacıkların yüzeylerini kaplamak için kullanıldı.

3.2 X-ışını Kırınımı

Üç boyutlu amorf olmayan yapılar (ör: mineraller), kendini tekrar eden yüzeylerden oluşurlar. X-ışınları bu yüzeylere etki ettiklerinde, ışının bir kısmı yüzeyden geçer, bir kısmı yüzey tarafından absorblanır, bir kısmı kırılıp yansır ve dağılır, bir kısmı da difraksiyona uğrar (Şekil 3.1). X-ışınları kristalde birim hücrelerin hangi atomlardan oluştuğuna ve bu atomların nasıl düzenlendiğine bağlı olarak her bir mineralde farklı bir şekilde difraksiyona uğrar [52].

X-ışınları, vakum altında kapalı bir tüpte üretilir. X-ışınları örneğe çarptığında ve difraksiyona uğradığında Bragg Yasası kullanılarak yüzeyler arası mesafeler ölçülür [52]. Bragg denklemi;

$$n\lambda = 2d \sin\theta \tag{3.1}$$

Şekil 3.1: Kristal düzlemden yansıyan X-ışınları [52].

Denklem (3.1)'de, n tamsayı, d yüzeyler arası mesafe, θ düzlemle ışınlar arasındaki açı, λ gelen X-ışınının dalga boyudur. λ bilindiğinde ve θ ölçüldüğünde d hesaplanabilir ve bu ölçümler her bir örnek için karakteristiktir [52].

Numunlerin parçacık boyutları, aşağıda verilen Sherrer formula ile tayin edilir [53]:

$$d = \frac{0.9\lambda}{B\cos\theta} \tag{3.2}$$

Burada d kristal büyüklüğü, B incelenen düzleme ait pikin yarı yükseklikteki pik genişliği (FWHM), θ incelenen düzleme ait pikin ortaya çıktığı açının yarısıdır.

Numunelerin XRD ölçümleri, Bilkent Üniveristesi, Ulusal Nanoteknoloji Araştırma merkezi, UNAM'da X'pert Pro MPD marka cihazla yapılmıştır.

3.3 Kızılötesi Spoktroskopisi

Fourier dönüşümlü kızılötesi spektroskopisi, (Fourier Transform Infrared Spectroscopy, FT-IR), moleküldeki atomların titreşimlerini baz alan bir tekniktir. İnfrared radyasyonu, elektromanyetik spektrumda görünür bölge ile mikrodalga arasındaki bölgeyi kapsar. Organik kimyada 400-4000 cm⁻¹ arasında FT-IR spektrumu bütün moleküler için karakteristiktir. Aynı gruplar, molekülün kalan yapısına aldırmayarak aynı frekansta veya band aralığında pik veririler. Genelleştirilmiş grup frekanslarıyla, kimyada yapısal incelemeler yapılarak molekül hakkında yapısal bilgiler elde edilebilir [54, 55].

Ölçüm esnasında infrared radyasyonu numune üzerine gönderilir. Radyasyonun bir kısmı soğurulurken diğer kısmı geçirilir. Bu da örnek moleküldeki titreşim frekanslarının elde edilmesini sağlar. 10000-100 cm⁻¹ arasında absorblanan infrared radyasyonu organik molekülde moleküler titreşim enerjisine dönüştürülür. Bu absorbsiyon da kuantumlanmıştır fakat titreşim frekansı çizgilerden ziyade band olarak gözlenir. Çünkü tek bir titreşim enerjisindeki değişime, rotasyon enerji değişimleri de eşlik eder. Rotasyon-titreşim bandları 4000 ve 400 cm⁻¹ arasında meydana gelir. Absorbsiyonun frekansı veya dalgaboyu atomların kütlesine, bağın kuvvet sabitine, atomun geometrisine bağlı olarak değişir. Band pozisyonu dalga numarası, (wavenumbers, v) olarak verilir. Birimi cm⁻¹ dir, dalgaboyuyla orantılıdır. Bu oran, cm⁻¹ = $10^4/\lambda = 10^4/\mu$ m şeklinde tanımlanır [54, 55].

İki çeşit moleküler titreşim vardır; gerilme ve bükülme. Gerilme titreşimi, bağ boyunca oluşan ritmik hareketlerdir, atomlararası mesafenin artıp azalmasıyla oluşur. Bükülme titreşimi ise bağlar arası açıların değişmesiyle oluşur. Atomların hareketi söz konusu değildir. Sadece bu titreşimler, moleküldeki dipol momentlerde ritmik değişimlere neden olur ve FT-IR de gözlenir [54, 55].

Infrared absorbsiyonu üç bölgeye ayrılır. Near-infrared, mid-infrared ve farinfrared. Mid-infrared spektrumu (400-4000 cm⁻¹) 4 bölgeye ayrılır. X-H gerilme bölgesi (4000-2500 cm⁻¹) üçlü bağ bölgesi (2500-2000 cm⁻¹), ikili bağ bölgesi (2000-1500 cm⁻¹) ve parmakizi bölgesi (1500-600 cm⁻¹) [54].

Bu çalışmada FT-IR analizi için Balıkesir Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümünde bulunan Perkin Elmer marka FT-IR cihazı kullanılmıştır. Ölçüm esnasında toz demir oksit numuneleri KBr tozu içine karıştırılarak palet hazırlanmıştır.

3.4 Geçirimli Elektron Mikroskobu

Geçirimli Elektron Mikroskopu (Transmission Electron Microscope, TEM), 1şık mikroskopuyla aynı prensipte çalışır fakat ışık yerine elektronlar kullanılır. Işık mikroskopuyla görülebilenler ışığın dalga boyuyla sınırlıdır. TEM'de kısa dalga boylu elektronlar kullanılır ve böylece ışık mikroskopuna kıyasla daha iyi çözünürlükte görüntü elde edilir. TEM ile birkaç angstrom (10⁻¹⁰ m) büyüklüğünde cisimler görülebilir. Hücre içindeki küçük detaylar veya atomik boyuttaki meteryallerin görüntüleri elde edilebilir. Bu yüzden medikal, biyoloji ve malzeme biliminde sıkça kullanılan bir cihazdır [56].

Elektron kaynağından elektronlar saçılır vakumda hareket ederler. Elektromanyetik lenslerle odaklanarak oldukça ince bir ışık demeti örneğe yönlendirilir. Mikroskobun altında florosan ekranda görüntü oluşur [56].

Parçacık boyutları, İmage J programıyla heasplanmıştır. TEM görüntüleri, Bilkent Üniversitesi Ulusal Nanoteknoloji Araştırma merkezi, UNAM'da bulunan Tecnai G2 F30 marka HRTEM kullanılarak alınmıştır.

3.5 Titreşimli Numune Magnetometresi

Titreşimli numune magnetometresi (Vibrating Sample Magnetometer, VSM), Faradayın indüksiyon yasasına göre çalışır. VSM, manyetik materyalin, manyetik davranışlarını ölçmek için kullanılır. VSM'de ilk önce çalışılacak örnek manyetik alan içine yerleştirilir. Eğer örnek manyetikse, sabit manyetik alan, manyetik domainleri ya da spinleri düzenler ve örnek manyetize olur. Örnekteki manyetik dipol momentler, örnek etrafında manyetik alan yaratırlar. Örnek aşağı yukarı hareket ettirilerek titreştirilir ve manyetik alan zamanın bir fonksiyonu olarak değişir. Değişen manyetik alan Faraday kanununa göre bobinlerde bir akım indükler. Akım numunenin manyetizasyonuyla orantılıdır. İndüksiyon akımı amplifikatör tarafından yükseltilir. Sabit manyetik alan verilen oranlarda değiştirilir ve manyetik alana bağlı manyetizasyon grafiği çizilir. VSM'in şematik gösterimi Şekil 3.2'de verilmiştir [36, 57].

VSM ile manyetizasyonun direkt ölçümü yapılır. Algılayıcı bobinler, arasındaki boşlukta numune varken ve numune yokken ölçülen manyetik indüsiyon arasındaki fark hesaplanır. Bu ölçüm sonucu elde edilen veriler uygulan manyetik alana göre manyetizasyonun nasıl değiştiğini verir. Bu değerler bir standarda göre değerlendirilip hesaplandıktan sonra numunenin gerçek manyetizasyon değeri ortaya konur. Sistem, manyetik moment değeri bilinen nikel (Ni) standart ile kalibre edilir [36].

Şekil 3.2: VSM'in çalışma prensibini gösteren şematik gösterim [57].

Bu çalışmada, ölçüm için kullanılan elektromagnet \pm 20 kOe manyetik alan aralığında çalışabilmektedir. Numune titreştiricisinin titreşim frekansı 75 Hz'dir.

Nanoparçacıkların manyetik ölçümleri Balıkesir Üniversitesi Fen Edebiyat Fakültesinde bulunan ADE EV9 Model VSM ile yapılmıştır. Kullanılan cihazın resmi Şekil 3.3'de verilmiştir.

Şekil 3.3: VSM cihazı.

3.6 Hücre Kültürü ile İlgili Teknikler

Hücrelerin büyütülmesi ve pasajlanması işlemleri sırasında Tablo 3.1'de verilen çözeltiler kullanılmaktadır [59].

Tablo 3.1: Hücre kültürü çalışmalarında kullanılan çözeltiler.

Çözeltinin Adı	Hazırlanışı
Tripsin-EDTA	0.25 g tripsin
	0.2 g EDTA
	100 mL dH ₂ O/1XPBS içerisinde çözülür ve
	0.22 µm filtreler yardımıyla süzülür20 °C'de
	saklanır.
1X PBS	Önerilen miktarda PBS tableti dH ₂ O içerisinde
	çözülerek hazırlanır. 121 °C'de 20 dk
	otoklavlanarak steril edilir.

Hücre Kültürü Besiyerinin Hazırlanması

Hücre Kültürü deneylerinde kullanılan hücre hatları için ticari olarak temin edilen DMEM (Dulbecco'sModifiedEagleMedium) kullanıldı. Glutamin içeren besiyeri içerisine FCS %10 olacak şekilde eklenerek kullanıldı [59].

FCS veya FBS (Fetal Sığır Serumu)'nin Hazırlanması

Stok serum ilk kullanımdan önce 56 °C sıcaklıkta 1 saat ısı ile inaktive edildi. 0.22 µm'luk filtreden geçirilerek steril edildikten sonra kullanıldı. -20 °C'de muhafaza edildi.

Gibco firmasından temin ettiğimiz FCS +4 °C'de bir gece bekletilip tamamen eridikten sonra 56 °C'de 1 saat ısı ile inaktive edildi [59].

-80 °C Derin Dondurucuda Stoklanan Hücrelerin Açılması

Su banyosu önceden 37 °C'ye ayarlanarak çalışmada kullanılacak olan DMEM ve FCS su banyosunda ılıtıldı. Hücre soyu ile çalışmaya başlanılmadan en az yarım saat önce steril kabin çalıştırıldı. % 70'lik teknik alkol ile steril kabinin iç yüzeyi temizlendikten sonra ılıtılan FCS ve medyumun dış yüzeyleri % 70'lik alkol ile temizlenerek steril kabin içine alındı. Kullanılacak olan medyuma % 10 oranında FCS, filtreden geçirilerek eklendi. -80°C derin dondurucudan çıkarılan hücre hatları su banyosunda çözündükten sonra pastör pipeti yardımıyla falkon içindeki medyuma aktarıldı. 1000 rpm'de 5 dk santrifüjlendikten sonra üstte kalan medyum uzaklaştırıldı. Dipte kalan hücre pelleti belli bir miktar taze medyumda çözülerek eşit oranda flasklara paylaştırıldı. Daha sonra gerekli miktarda medyum hücrelerin paylaştırıldığı flaskların içine eklendi. (75 cm² flasklar için 15 mL ve 25 cm² flasklar için 5 mL). Hücreler % 5 içeren 37 °C sıcaklıktaki inkübatörün içinde büyümeye bırakıldı [59].

Hücrelerin Pasajlanması

Flask içinde %80 sıklıkta olan hücreler pasajlandı. Bu amaçla flask içindeki süspansiyon hücre kültürü falkona aktarılarak 1000 rpm 'de 5 dk santrifüj edildikten sonra üstte kalan medyum uzaklaştırıldı. Dipte kalan hücre pelleti belirli miktarda taze medyumda (%10 FCS içeren) çözüldü. Hücre süspansiyonu flasklara eşit olarak paylaştırıldıktan sonra gerekli miktarda medyum flaskların içerisine eklendi [59].

Hücre Sayımının Yapılması

Flask içerisinde yüzeye tutunmuş olan hücreler 2 mLtripsinedta kullanılarak yüzeyden ayrılmaları sağlandı. Tripsininaktivasyonu için 6 mL %10 FCS içeren besiyeriflask içerisine eklendi ve flask içeriği 15'lik falkon içerisine alındı. 1000 rpm'de 5 dakika santrifüj işleminden sonra üstte kalan besiyeriuzaklaştırıldı. Dipte kalan hücre peleti 6 mL medyumda (%10 FCS içeren besiyeri) çözüldü. Hücreler falkonda homojen bir şekilde çözüldükten sonra hücre süspansiyonundan 30 µL alınarak bir ependorfa koyuldu. Aynı ependorfa 30 µLTripan Mavisi eklendikten sonra 5 dk oda sıcaklığında inkübasyona bırakıldı. Pipetaj yapılarak hücrelerin ependorfta homojen bir şekilde karışması sağlandıktan sonra Bu karışımdan 10 µl alınarak Toma lamına aktarıldı. Mavi renge boyanan hücreler ölü olduklarından sayıma dahil edilmedi. Görüntü alanındaki canlı hücrelerin sayımı yapıldı. Sayım sonucu 1 mL'deki hücre miktarı aşağıdaki formüle göre hesaplandı.

1 mL'deki hücre sayısı = Alanda sayılan hücre miktarı x 10^4 x Seyreltme faktörü

Sayım sonucunda hücreler 96 kuyucuklu plakalara kuyu başına 50.000 hücre olacak şekilde paylaştırıldı. Plakalar bir gece boyunca inkübatörde (37 °C'de %5 CO₂'li ortamda) bekletildi [59].

3.7 Maddelerin Hücrelerin Üzerine Uygulanması ve Sitotoksiaktivitenin Belirlenmesi

Hücre proliferasyonu, canlılığı ve sitotoksisite ölçümü için MTT (3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) yöntemi kullanılmıştır. MTT yöntemiyle, bir hücre topluluğundaki canlı hücrelerin oranı kolorimetrik yöntemle kantitatif olarak saptanabilmektedir. Bu yöntem sağlam hücrelerde mitokondirinin MTT boyasının, tetrazolium halkasını parçalayabilmesi ilkesine dayanmaktadır. Bu reaksiyon bir mitokondrial enzim olan süksinat dehidrogenaz enziminin aktivitesine bağımlıdır. Tetrazolium halkasının parçalanması sonucu soluk sarı renkli MTT boyası koyu mavi-mor formazan ürününe dönüşmektedir (Şekil 3.4). Sonuç olarak canlı ve mitokondri fonksiyonu bozulmamış hücreler mor renkte boyanmakta, ölü ya da mitokondri fonksiyonu bozulmuş hücreler boyanmamaktadır. Tetrazolium tuzunun sadece metabolik aktivitesi olan hücreler tarafından renkli formazanlara indirgenmesinden dolayı bu yöntem sadece canlı hücreleri saptar [58, 59].

Çözeltinin Adı	Hazırlanışı
MTT solüsyonu	5 mg/mL olacak şekilde steril PBS içerisinde çözülerek hazırlanır. +4 °C'de muhafaza edilir.
0.004M HCl içeren izopropanol	500 mLizopropanol (2- Propanol) son hacim içerisine 210 μL HCl eklenir. Oda sıcaklığında saklanır

Tablo 3.2: Kullanılan çözeltiler ve hazırlanışı.

Şekil 3.4: MTT metodunda gerçekleşen kimyasal değişim [59].

Uygulama esnasında kullanılan çözeltiler Tablo 3.2'de verilmiştir. Öncelikle hücreler 96 kuyucuklu plakalara her kuyucukta 50.000 hücre olacak paylaştırıldı. Bir gece inkübatördeinkübe edilip hücreler tutunduktan sonra .konsatrasyondaolacak şekilde kaplı ve kapsız maddeler uygulandı. Uygulamadan 24 ve 48 saat sonrahücrelerin bulunduğu ortama, optimizasyon sonucu belirlenen son konsantrasyonu 0.5 mg/mL olacak şekilde stok MTT solüsyonu eklendi ve 4 saat 37°C, % 5 CO₂ içeren ortamda inkübe edildi. İnkübasyon sonunda medyum uzaklaştırıldı. 0.004 M HCl içeren izopropanol ile kristaller çözüldü ve UV spektro okuyucu ile 550 nm dalga boyunda absorbans alındı. Sonuçlar Microsoft Excel programı kullanılarak grafiklendirildi [59].

4. BULGULAR VE TARTIŞMA

Çalışmada, ilk olarak ortak çöktürme yöntemiyle öncül madde elde edilmiştir (Bölüm 4.1). Bu nanoparçacıklara hidrotermal işlem uygulanmış ve sentezlenen nanoparçacıkların yapısal ve manyetik özellikleri incelenmiştir (Bölüm 4.2). Sıcaklık ve reaksiyon süresi parametrelerine bağlı olarak nanoparçacıkların yapısal ve manyetik özelliklerindeki değişimler incelenmiştir. Diğer bölümde parçacıkların yüzeyleri yüzey aktif malzemelerle kaplanmıştır. Askorbik asit ve tartarik asit kullanılarak nanoparçacıklar suya aktarılmıştır (Bölüm 4.3). Ayrıca yağ bazlı yüzey aktif madde olan sodyum oleat kullanılarak, parçacıkların kloroformda kararlı dispersiyonları hazırlanmıştır (Bölüm 4.4). Bu aşamalar, Şekil 4.1'deki sentez diyagramında gösterilmiştir.

Şekil 4.1: Nanoparçacıkların sentez diyagramı.

4.1 Öncül Numunenin Sentezi ve Karakterizasyonu

Öncül numune, ortak çöktürme yöntemi kullanılarak, açık hava ortamında sentezlenmiştir. Ortak çöktürme için kullanılan sistem 0-2000 rpm karıştırma aralığında çalışan VELP Scientifica marka mekanik karıştırıcı, cam karıştırma ucu, 250 ml hacminde iki boyunlu balon ile balon için sabitleyici ayaklardan oluşmaktadır. Sisteme ait fotoğraf Şekil 4.2'de verilmiştir.

Şekil 4.2: Standart numune sentezi esnasında kullanılan sistem.

Öncül madde [36]'daki prosedüre göre sentezlendi. Çalışmada, 7.5 g FeCl₂.4H₂O ve 10.1 g FeCl₃.6H₂O 25 ml suda çözülerek çift boyunlu balona alındı. Çözeltinin üzerinde 25 ml NH₄OH (%25) eklenerek mekanik karıştırıcıda 700 rpm hızda 2 dakika karıştırıldı. Amanyok eklendiğinde çözeltinin renginin siyaha döndüğü gözlendi. Şekil 4.3'de amonyak eklenmeden önce ve sonraki aşamalar görülmektedir.

Şekil 4.3: (a) FeCl₃ ve FeCl₂ çözeltisi ve (b) öncül madde.

Çözeltinin bir kısmı karakterizasyon için, Şekil 4.4'de görüldüğü gibi mıknatıs altında çöktürülüp saf suyla dört kez yıkandı ve 60 °C'de kurutularak toz haline getirildi.

Şekil 4.4: (a) Çöktürülmüş ve (b) kurutulmuş nanoparçacıklar.

4.1.1 Öncül Maddenin Yapısal ve Manyetik Karakterizasyonu

Öncül maddenin yapısal karakterizasyonu, X-ışını kırınımı (XRD), ve karakterizasyonu titresimli numune magnetometresi manyetik (VSM) ile gerçekleştirildi. Ortak çöktürmeyle elde edilmiş nanoparçacıkların, XRD deseni ve VSM grafikleri Şekil 4.5 ve Şekil 4.6'da verilmiştir. XRD desenlerinde, kübik spinel yapıya ait demir oksit (220), (311), (400), (422), (511), (440) pikleri sırasıyla 30°, 35°, 43°, 53°, 57° ve 63° civarında görülmektedir. Öncül madde, kübik spinel yapıda magnetit (JCPDS no. 019-0629) veya maghemittir (JCPDS no. 039-1346) [32]. Parçacıkların kristal boyutları en şiddetli pike göre (311), Scherrer eşitliği kullanılarak [53] 8.6 nm olarak hesaplanmıştır. Doyum manyetizasyonu, M_s değeri 69.2 emu/g, koersivite, H_c değeri 1 Oe olarak ölçülmüştür. Nanoparçacıklar 9854 Oe değerindeki dış manyetik alanda doyuma ulaşmışlardır. VSM ölçümleri oda sıcaklığında yapılmıştır ve çok küçük H_c değeri görülmüştür. Buna göre nanoparçacıkların oda sıcaklığında süperparamanyetik olduğu söylenebilir. Tüm deneysel sonuçlar Tablo 4.1'de verilmiştir.

Şekil 4.5: Öncül maddenin XRD deseni.

Şekil 4.6: Öncül maddenin manyetizasyon eğrisi.

Tablo 4.1: Öncül madde için deneysel sonuçlar.

Numune	Sıcaklık	Süre	M _s	H _s	H _C	d _{XRD}
	(°C)	(dakika)	(emu/g)	(Oe)	(Oe)	(nm)
Öncül madde	Oda sıcaklığı	2	69.2	9854	1	8.6

4.2 Hidrotermal Yöntemle Nanoparçacıkların Sentezi ve Karakterizasyonu

Ortak çöktürme ile elde edilen nanoparçacıkların (öncül madde), hidrotermal sentez kullanılarak boyutlarında değişim sağlandı. (Her öncül madde sentezinden sonra, VSM ölçümü yapılmış ve aynı manyetik değerlerin elde edilip edilmediği araştırılmıştır.) Ortak çöktürmenin hemen ardından, yıkama işlemine geçilmeden, nanoparçacıkların sulu çözeltisi (15 ml) Şekil 4.7 (a)'da görülen teflon kaba kondu. Ardından teflon kap Şekil 4.7 (b)'de görülen çelik kap içine yerleştirildi. Daha sonra süperparamanyetik nanoparçacıklar farklı sıcaklıklarda ve sürelerde hidrotermal işleme tabi tutuldu. Karakterizasyon için parçacıklar mıknatıs yardımıyla çöktürülüp üç kez saf suyla yıkandı, 60 °C sıcaklıkta kurutularak toz haline getirildi.

Şekil 4.7: Basınca ve sıcaklığa dayanıklı (a) teflon ve (b) çelik kap.

4.2.1 Sıcaklığın Nanoparçacıklar Üzerine Etkisi

60-200 °C arasında çeşitli aralıklarda, 12 saat süreyle süperparamanyetik nanoparçacıklara hidrotermal işlem uygulanmıştır. Nanoparçacıkların sentez şartları Tablo 4.2'de verilmiştir.

Numune No	Reaksiyon Sıcaklığı (°C)	Reaksiyon Zamanı (saat)
S 1	60	
S2	100	
S 3	150	12
S 4	160	
S5	180	
S6	200	

Tablo 4.2: Farklı sıcaklıklarda, 12 saat hidrotermal işlem uygulanan nanoparçacıkların sentez şartları.

4.2.1.1 Yapısal Analiz

Parçacıkların yapısal analizleri, XRD, kızılötesi spektroskopisi (FT-IR) ve geçirmeli elektron mikroskobu (TEM) ile yapıldı.

4.2.1.1.1 X-Işınları Kırınımı

Sentezlenen nanoparçacıkların XRD desenlerinde, yüzey merkezli kübik spinel yapıya ait demir oksit (220), (311), (222), (400), (422), (511), (440), (620), (533) ve (622) pikleri sırasıyla 30°, 35°, 37°, 43°, 53°, 57°, 63°, 71°, 74° ve 75° civarında görülmektedir. Bütün numuneler kübik spinel yapıda magnetit (JCPDS no. 019-0629) veya maghemittir (JCPDS no. 039-1346). Magnetit ve maghemit aynı pikleri içermektedir [32]. Parçacıkların boyutları, en şiddetli pike (311) göre Scherrer esitliği kullanılarak hesaplanmıştır ve Tablo 4.3'de verilmiştir. 60 °C, 100 °C, 150°C, 160 °C, 180 °C ve 200 °C sıcaklıklarda, 12 saat süreyle hidrotermal işleme tabi tutulmuş parçacıkların XRD grafikleri Şekil 4.8'de verilmiştir. Parçacıkların kristal boyutları 60 °C, 100 °C, 150 °C, 160 °C, 180 °C ve 200 °C sıcaklıklarında sırasıyla 12, 14, 16, 16, 21 ve 50 nm olarak hesaplanmıştır. Buna göre sıcaklık arttıkça parçacıkların kristal boyutları da artmıştır. Magnetit ve maghemit, (222), (620), (533) ve (622) piklerini içermektedir. Bu piklerin şiddetleri her iki mineral için de maghmetite düsüktür. Fakat magnetitte, kıyasla biraz daha siddetlidir. Nanoparçacıkların kristal boyutlarının artmasıyla, pik şiddetleri artmış ve pik genişlikleri azalmış ve böylece şiddeti düşük olan pikler görünür hale gelmiştir. 200 °C sıcaklıkta sentezlenen numunenin çoklu domain yapıda olduğu ve hesaplanan boyuttan daha büyük olabileceği düşünülmektedir.

Şekil 4.8: (a) 60 °C, (b) 100 °C, (c) 150 °C, (d) 160 °C, (e) 180 °C ve (f) 200 °C sıcaklıklarda 12 saat hidrotermal işleme tabi tutulmuş parçacıkların XRD desenleri.

Şekil 4.8: (devam) (a) 60 °C, (b) 100 °C, (c) 150 °C, (d) 160 °C, (e) 180 °C ve (f) 200 °C sıcaklıklarda 12 saat hidrotermal işleme tabi tutulmuş parçacıkların XRD desenleri.

4.2.1.1.2 Kızıl Ötesi Spektroskopisi

60°C, 100 °C, 150 °C ve 180 °C sıcaklıklarda, hidrotermal işleme tabi tutulmuş numunelerin FT-IR spektrumu Şekil 4.9'da görülmektedir. 570 cm⁻¹'de görülen pik manyetite, 630 cm⁻¹'de görülen pik de maghemite aittir [4, 36, 45, 60]. Sıcaklık arttıkça 630 cm⁻¹ bandının şiddeti azalmıştır. Nanoparçacıkların yüzey alanları büyük olduğundan kolayca okside olmaktadırlar. Parçacık boyutu küçüldükçe yüzey alanı artmakta ve parçacıkların yüzeyleri okside olarak maghemite dönüşmektedir [17, 61]. Sıcaklık 180 °C'ye çıkıldıkça parçacık boyutu arttığından dolayı yüzeydeki oksidasyon azalmış ve 630 cm⁻¹'deki pik şiddeti azalmıştır. Ayrıca sıcaklık arttıkça boyut artışı daha hızlı bir biçimde gerçekleşmekte olup bunun da oksidasyonun azalmasına neden olabileceği düşünülmektedir.

Şekil 4.9: (a) 60°C, (b) 100°C, (c) 150 °C ve (d) 180°C sıcaklıklarda 12 saat hidrotermal işleme tabi tutulmuş nanoparçacıkların FTIR spektrumları.

4.2.1.1.3 Yüzey Morfolojisi ve Boyut Analizi

100 °C, 150 °C ve 180 °C sıcaklıklarında hidrotermal işleme tabi tutulmuş nanoparçacıklar için TEM görüntüleri Şeki 4.10'da verilmiştir. Buna göre 100 °C, 150 °C ve 180 °C sıcaklıklarında hidrotermal işleme tabi tutulmuş nanoparçacıklar için elde edilen ortalama boyutlar, sırasıyla 15±4, 17±4 ve 30±9 nm'dir ve sonuçlar Tablo 4.3'de verilmiştir. Parçacıklar küresele yakın ve düzensiz şekillerdedir. 100 °C ve 150 °C sıcaklıklarında, XRD ve TEM boyutları uyumludur. Sıcaklık arttıkça parçacık boyutları artmış, fakat bazı parçacıklar daha fazla büyümüştür. Bu nedenle sistem polidisperstir. Sonuç olarak boyut arttıkça kistal boyut ve TEM boyutları arasında fark oluşmaktadır.

Şekil 4.10: (a) 100 °C, (b) 150 °C ve (c) 180 °C sıcaklıklarında 12 saat hidrotermal işleme tabi tutulmuş parçacıkların TEM görüntüleri.

Boyut artışı literatür ile uyumludur. Cabuil ve grubu [62], hidrotermal işlemin kobalt ferrit nanoparçacıkları üzerindeki etkisini incelemişler ve sıcaklığın nanoparçacıkların boyutunu arttırdığını gözlemlemişlerdir.

4.2.1.2 Manyetik Analiz

Şekil 4.11'de, 60-200 °C arasında 12 saat hidrotermal işleme tabi tutulmuş parçacıkların manyetizasyon eğrileri verilmiştir. Buna göre 60 °C, 100 °C ve 150 °C sıcaklıklarında sırasıyla 74.4 emu/g, 73.5 emu/g ve 74.8 emu/g M_s değerleri elde edilmiştir. Sıcaklık 160 °C ve 180 °C'ye yükseltildiğinde ise küçük bir artışla sırasıyla, 81.4 emu/g ve 81.8 emu/g değerleri elde edilmiştir. Çalışmadaki en yüksek sıcaklık olan 200 °C'ye ulaşıldığında ise 92.6 emu/g yüksek doyum manyetizasyonu elde edilmiştir. Sıcaklık 60 °C'den 200 °C'ye arttırıldığında, boyut arttığından dolayı parçacıklar daha düşük manyetik alanda doyuma ulaşmıştır. Elde edilen bu sonuç literatür ile uyumludur. Salazar ve grubu [60] da büyük parçacıkların daha kolay doyuma gittiğini gözlemlemiştir. 60 °C, 100 °C, 150 °C, 160 °C, 180 °C ve 200 °C sıcaklıklarında H_s değerleri sırasıyla, 9553 Oe, 8723 Oe, 8829 Oe, 8446 Oe, 7251 Oe ve 2684 Oe'dir. Parçacıkların boyutları arttığında, yüzey alanları azaldığından daha kolay manyetize olmaktadırlar. Ayrıca, 200 °C sıcaklıkta elde edilen numunede domain duvarları oluştuğu düşünülmektedir. Bu yüzden bu numunenin doyuma gitmesi kolaylaşmıştır. Sıcaklık 60 °C'den 180 °C'ye çıkarıldığında H_c değerleri artmıştır. 60°C, 100 °C, 150 °C, 160 °C ve 180 °C sıcaklıklarında sırasıyla, 16 Oe, 36 Oe, 70 Oe, 82 Oe ve 90 Oe'dir. 200 °C sıcaklıkta ise H_c 30 Oe değerine düşmüştür. Bu H_c değeri çoklu domain yapısını doğrulamaktadır. Sıcaklığa bağlı olarak M_s ve H_c'deki değişimi gösteren grafik Şekil 4.12'de verilmiştir. Ayrıca tüm manyetik sonuçlar Tablo 4.3'de verilmiştir.

Gajbhiye ve grubu [63] Co nanoparçacıklarının boyutlarına bağlı olarak H_c değerlerindeki değişimi incelemiştir (Şekil 4.13). Buna göre parçacık boyutu arttıkça H_c değeri artmış ve belli bir boyuttan sonra azalmıştır. H_c değerindeki bu düşüşün sebebi nanoparçacıkların çoklu domain yapısına geçmeleridir. Belli bir boyutun üstünde domain duvarları oluşabilir ve artık parçacık tek domain durumunda değildir. Domain duvarları parçacıkların daha kolay manyetize olmasına neden olur

[63]. Şekil 4.14'de farklı malzemelerin çoklu domain yapısına geçiş boyutları görülmektedir [31]. Manyetit için geçiş boyutu 83 nm, maghemit için ise 90 nm'dir.

Şekil 4.11: 60-200°C arasında, 12 saat hidrotermal işleme tabi tutulmuş parçacıkların (a) ±20.000 Oe aralığında ve (b) ±200 Oe aralığında manyetizasyon eğrileri.

Şekil 4.12: Sıcaklığa bağlı olarak doyum manyetizasyonu ve koersivitedeki değişim.

Şekil 4.13: Boyuta bağlı olarak Co nanoparçacıklarının koersivite ve manyetizasyon değerlerindeki değişim [63].

Şekil 4.14: Farklı malzemelerde tekli domain yapısından çoklu domain yapısına geçiş boyutları [31].

Sentez Paramatreleri		Sonuçlar					
Dealeinen		Daaksiyon	Parçacık boyutu		Manyetik ölçümler		
Numune	sıcaklığı (°C)	süresi (saat)	Kristal boyut(XRD) (nm)	Fiziksel boyut(TEM) (nm)	M _s (emu/g)	H _c (Oe)	H _s (Oe)
S1	60		12	-	74.4	16	9553
S2	100	12	14	15±4	73.5	36	8723
S3	150		16	17±4	74.8	70	8829
S4	160		16	-	81.4	82	8446
S5	180		21	30±9	81.8	90	7251
S 6	200		50	-	92.6	30	2684

 Tablo 4.3: 60-200 °C arasında çeşitli sıcaklıklarda 12 saat hidrotermal işleme tabi tutulmuş nanoparçacıkların deneysel sonuçları.

4.2.2 Reaksiyon Süresinin Nanoparçacıklar Üzerine Etkisi

Ortak çöktürmenin ardından nanoparçacıklar 100 °C, 150 °C, 160 °C ve 180 °C sıcaklıklarda farklı reaksiyon zamanlarında hidrotermal işleme tabi tutuldu. Sentez şartları Tablo 4.4'de verilmiştir. Süreye bağlı olarak parçacıkların yapısal ve manyetik özelliklerindeki değişimler gözlendi.

Numune	Reaksiyon	Reaksiyon
	Sıcaklığı	Süresi
	(°C)	(saat)
S2	100	12
S7	100	72
S3	150	12
S8	150	24
S9	160	1
S4	160	12
S4	160	12
S4 ["]	160	12
S10	160	24
S11	160	48
S12	160	92
\$13	160	120
S14	180	1
S5	180	12
S15	180	24
S16	180	48

Tablo 4.4: 100 °C, 150 °C, 160 °C ve 180 °C sıcaklıklarında, çeşitli reaksiyon sürelerinde hidrotermal işleme tabi tutulmuş numunelerin sentez şartları.

S4[']: S4nolu örneğin tekarı. S4 ve S4'nolu örnekler aynı anda sentezlendi ve ölçümleri aynı anda yapıldı.

S4["]: S4nolu örneğin tekrarı. Öncül numune 24 saat bekletildikten sonra hidrotermal işleme tabi tutuldu ve ölçümleri yapıldı.

4.2.2.1 Yapısal Analiz

Parçacıkların yapısal analizleri, XRD ve FT-IR ile, boyut analizi TEM ile yapıldı.

4.2.2.1.1 X-ışını Kırınımı

Numulerin XRD desenlerinde, yüzey merkezli kübik spinel yapıya ait demir oksit (220), (311), (222),(400), (422), (511), (440), (620), (533) ve (622) pikleri sırasıyla 30°, 35°, 37°, 43°, 53°, 57°, 63°, 71°, 74° ve 75° civarında görülmektedir. Nanoparçacıkların kristal boyutları Tablo 4.5'de verilmiştir. 100 °C sıcakllıkta reaksiyon süresi 12 satten 72 saate çıkarıldığında kristal boyut, 14 nm'den 17 nm'ye yükselmiştir. XRD desenleri Şekil 4.15'de verilmiştir. 150 °C sıcaklığında reaksiyon süresi 12 satten 24 saate çıkarıldığında, boyut 16 nm'den 23 nm'ye yükselmiştir (Sekil 4.16). 160 °C sıcaklıkta reaksiyon süreleri 1, 12, 24, 48, 92 ve 120 saat olduğunda kistal boyutlar, sırasıyla 13 nm, 16 nm, 17 nm, 19 nm, 45 nm ve 32 nm olarak hesaplanmıştır ve XRD desenleri Şekil 4.17'de verilmiştir. 180 °C sıcaklığında 1, 12, 24 ve 48 saat hidrotermal işleme tabi tutulan parçacıklar için kristal boyut sırasıyla 20 nm, 21 nm, 41 nm, 49 nm olarak hesaplanmıştır ve bu numunelerin XRD desenleri Şekil 4.18'de verilmiştir. Bu sonuçlara göre, tüm sıcaklıklarda reaksiyon süresi arttırıldığında parçacık boyutlarında artış gözlenmiştir. Nanopaçacıkların boyutları arttıkça pik şiddetleri de artmış, şiddeti oldukça düşük (222), (620), (533) ve (622) pikleri görünür hale gelmiştir. 180 °C sıcaklıkta reaksiyon süresiyle, parçacık boyutları düşük sıcaklıklarla karşılaştığında daha hızlı artmıştır. 1 saat sonunda kristal boyut 20 nm'ye yükselmiştir. Yüksek sıcaklıkta, reaksiyon süresi daha etkili olduğu gözlenmiştir.

Şekil 4.15: 100 °C sıcaklıkta (a) 12 saat ve (b) 72 saat hidrotermal işlem uygulanmış numunelerin XRD desenleri.

Şekil 4.16: 150 °C sıcaklıkta (a) 12 saat ve (b) 24 saat hidrotermal işlem uygulanmış numunelerin XRD deseni.

Şekil 4.17: 160 °C sıcaklıkta (a) 1 saat, (b) 12 saat, (c) 12 saat-(ortak çöktürmenin ardından bir gün bekletilen numune), (d) 24 saat, (e) 48 saat, (f) 92 saat ve (g) 120 saat hidrotermal işlem uygulanmış numunelerin XRD desenleri.

Şekil 4.17: (devam) 160 °C sıcaklıkta (a) 1 saat, (b) 12 saat, (c) 12 saat-(ortak çöktürmenin ardından bir gün bekletilen numune), (d) 24 saat, (e) 48 saat, (f) 92 saat ve (g) 120 saat hidrotermal işlem uygulanmış numunelerin XRD desenleri.

Şekil 4.17: (devam) 160 °C sıcaklıkta (a) 1 saat, (b) 12 saat, (c) 12 saat-(ortak çöktürmenin ardından bir gün bekletilen numune), (d) 24 saat, (e) 48 saat, (f) 92 saat ve (g) 120 saat hidrotermal işlem uygulanmış numunelerin XRD desenleri.

Şekil 4.18: 180 °C sıcaklıkta (a) 1 saat, (b) 12 saat, (c) 24 saat ve (d) 48 saat hidrotermal işlem uygulanmış numunelerin XRD desenleri.

Şekil 4.18: (devam) 180 °C sıcaklıkta (a) 1 saat, (b) 12 saat, (c) 24 saat ve (d) 48 saat hidrotermal işlem uygulanmış numunelerin XRD desenleri.

4.2.2.1.2 Kızıl Ötesi Spektroskopisi

180 °C sıcaklıkta 1, 12, 24 ve 48 saat hidrotermal işleme tabi tutulmuş numunelerin FT-IR spektrumu Şekil 4.19'da verilmiştir. 570 cm⁻¹ ve 630 cm⁻¹ sırasıyla magnetit ve maghemite ait piklerdir [45]. Buna göre 626 cm⁻¹'de maghemite ait pikin şiddeti oldukça düşüktür. 48 saat sürdürülen numunede ise 600 cm⁻¹ civarındaki bölge tamamen kaybolmuştur. Sadece 571 cm⁻¹ bandındaki manyetit piki görülmektedir.

Şekil 4.19: (a) 1 saat, (b) 12 saat, (c) 24 saat ve (d) 48 saat 180 °C sıcaklıkta hidrotermal işleme tabi tutulmuş numunelerin FT-IR spektrumları.

4.2.2.1.3 Yüzey Morfolojisi ve Boyut Analizi

Bazı numunelere ait TEM görüntüleri Şekil 4.20'de verilmiştir. 150 °C sıcaklıkta reaksiyon süresi 12 saatten 24 saate çıkarıldığında, boyut 17±4 nm'den 27±10 nm'ye yükselmiştir. 160 °C ise reaksiyon süresi 1 saatten 120 saate çıkarıldığında boyut, 14±4 nm'den 74±9 nm'ye yükselmiştir. Numune, 180 °C sıcaklığında 1, 12 ve 48 saat bekletildiğinde, boyut sırasıyla 21±6, 30±9 ve 123±44 nm olarak hesaplanmıştır. 180 °C sıcaklığında 48 saat hidrotermal işlem uygulanan numunede, 160 °C sıcaklığında 120 saat bekletilen numuneden çok daha büyük oranda boyut artışı olmuştur. Yüksek sıcaklıkta parçacık boyutları daha hızlı artış göstermiştir. TEM görüntülerinden elde edilen parçacık boyutları Tablo 4.5'de verilmiştir.

Şekil 4.20: 150 °C sıcaklıkta (a) 12 saat ve (b) 24 saat, 160 °C sıcaklıkta (c) 1 saat ve (d) 120 saat, 180 °C sıcaklıkta (e) 1 saat, (f) 12 saat ve (g) 48 saat hidrotermal işlem uygulanmış numunelerin TEM görüntüleri.

Şekil 4.20: (devam) 150 °C sıcaklıkta (a) 12 saat ve (b) 24 saat, 160 °C sıcaklıkta (c) 1 saat ve (d) 120 saat, 180 °C sıcaklıkta (e) 1 saat, (f) 12 saat ve (g) 48 saat hidrotermal işlem uygulanmış numunelerin TEM görüntüleri.

4.2.2.2 Manyetik Analiz

Bütün numunelerin manyetik analizleri Tablo 4.5'de verilmiştir. 100 °C sıcaklığında, hidrotermal işlem 12 saatten 72 saate çıkıldığında, M_s değerinde büyük bir artış görülmemiştir. Numunelerin manyetizasyon eğrileri Şekil 4.21'de verilmiştir. M_s değerleri 12 saat ve 72 saat için sırasıyla 73.5 emu/g ve 75.3 emu/g elde edilmiştir. H_c 36 Oe değerinden 58 Oe değerine yükselmiştir. H_s değerlerinde değişim görülmemiştir. 12 saat ve 72 saat için sırasıyla 8723 Oe ve 8798 Oe'dir.

Şekil 4.21: 100 °C sıcaklıkta 12 saat ve 72 saat hidrotermal işlem uygulanmış numunelerin (a) ±20.000 Oe aralığında ve (b) ±200 Oe aralığında manyetizasyon eğrileri.

150 °C sıcaklıkta, 12 saat ve 24 saat hidrotermal işleme tabi tutulmuş numunelerin manyetizasyon eğrileri Şekil 4.22'de verilmiştir. 150 °C sıcaklıkta boyutun 17.2 nm'den 26.5 nm'ye artmasıyla birlikte M_s değerinde artış gözlenmiştir. 12 saat ve 24 saat için sırasıyla 74.8 emu/g ve 80.8 emu/g'dır. H_c, 70 Oe değerinden 103 Oe değerine yükselmiştir. H_s değerleri de reaksiyon süresiyle, 8829 Oe değerinden 7925 Oe değerine düşmüştür.

Şekil 4.22: 150 °C sıcaklıkta 12 saat ve 24 saat hidrotermal işlem uygulanmış numunelerin (a) ±20.000 Oe aralığında ve (b) ±200 Oe aralığında manyetizasyon eğrileri.

Nanoparçacıklar 160°C sıcaklıkta 1 saat bekletildiklerinde, öncül numunenin M_s değeri, 69.2 emu/g'dan, 74.9 emu/g'a çıktığı görülmüştür. Reaksiyon süreleri 12, 24 ve 48 saat olarak değiştirildiğinde doyum manyetizasyonunda bir değişim gözlenmemiş, sırasıyla 80.8 emu/g, 79.1 emu/g ve 80.6 emu/g elde edilmiştir. 92 ve 120 saat bekletilen numuneler kayda değer bir artışla M_s sırasıyla 90.7 emu/g ve 93.5 emu/g olarak ölçülmüştür. Parçacık boyutu arttığından dolayı H_s değerleri düşmüş-

3318 Oe ve 2773 Oe- parçacıklar daha kolay doyuma ulaşmıştır. Parçacıkların manyetizasyon eğrileri Şekil 4.23'de verilmiştir.

S4 nolu numune ile aynı anda sentez ve karakterizasyon yapılan numune S4', öncül maddesi 24 saat bekletildikten sonra hidrotermal işlem uygulanmış numune ise S4" olarak isimlendirilmiştir, bakınız Tablo 4.4. S4 ve S4' nolu numunelerde aynı manyetik değerler elde edilmiştir. S4" nolu numunede ise doyum manyetizasyonu S4 nolu numuneye kıyasla daha düşük bir değer (75.6 emu/g) elde edilmiştir. Öncül madde bekletildiğinde parçacık yüzeylerinin okside olduğu ve bunun da M_s değerinin düşüşüne neden olduğu düşünülmektedir. Ayıca H_c değeri 6 Oe olarak ölçülmüştür. S4 ve S4' nolu numunelerde H_c, sırasıyla 85 Oe ve 82 Oe olarak ölçülmüştür.

Hidrotermal işleme 180°C sıcaklıkta, 1-48 saat arasında tabi tutulmuş parçacıkların manyetizasyon eğrileri Şekil 4.24'de verilmiştir. 1, 12, 24 ve 48 saat bekletilmiş parçacıkların M_s değerleri sırasıyla 77.9, 81.8, 92.8 ve 92.5 emu/g bulunmuştur. Buna göre reaksiyon süresi arttıkça M_s değeri de artış göstermiştir. Reaksiyon süresi arttırıldığında, parçacık boyutları arttığından dolayı H_s değerleri de azalmıştır ve sırasıyla 8141 Oe, 7251 Oe, 4114 Oe ve 2692 Oe'dir. H_c değerleri ise, 78 Oe, 90 Oe, 84 Oe ve 28 Oe'dir. Reaksiyon süresi ile birlikte parçacık boyutu arttığından dolayı, H_c değerlerinde ilk önce artış sonra da düşüş görülmüştür. Buna göre H_c değerindeki düşüş ile birlikte parçacıklarda domain duvarlarının oluşmaya başladığı ve çoklu domain yapılarının elde edildiği düşünülmektedir.

Şekil 4.23: 160 °C sıcaklıkta, 1-120 saat arasında hidrotermal işlem uygulanmış numunelerin (a) ±20.000 Oe aralığında ve (b) ±200 Oe aralığında manyetizasyon eğrileri.

H (kOe)

Şekil 4.24: 180 °C sıcaklıkta, 12 saat ve 72 saat hidrotermal işlem uygulanmış numunelerin (a) ±20.000 Oe aralığında ve (b) ±200 Oe aralığında manyetizasyon eğrileri.

Numune	Reaksiyon Sıcaklığı (°C)	Reaksiyon Süresi (saat)	Parçacık Boyutu		Manyetik Özellikler			
			Kristal Boyut (nm)	Fiziksel Boyut (nm)	M₅ (emu/g)	H _c (Oe)	H _s (Oe)	
S2	100	12	14	15±4	73.5	36	8723	
S7	100	72	17	-	75.3	58	8798	
S3	150	12	16	17±4	74.8	70	8829	
S 8	150	24	23	27±10	80.8	103	7925	
S9	160	1	13	14±4	74.9	7	8698	
S4	160	12	-	-	80.8	85	8453	
S4'	160	12	16	-	81.4	82	8446	
S4″	160	12	16	-	75.6	6	8334	
S10	160	24	17	-	79.1	41	8202	
S11	160	48	19	-	80.6	69	8099	
S12	160	92	45	-	90.7	68	3318	
S13	160	120	32	74±9	93.5	45	2773	
S14	180	1	20	21±6	77.9	78	8141	
S5	180	12	21	30±9	81.8	90	7251	
S15	180	24	41	-	92.8	84	4114	
S16	180	48	49	123±44	92.5	28	2692	

Tablo 4.5: 100 °C, 150 °C, 160 °C ve 200 °C sıcaklıklarında, farklı reaksiyon sürelerinde sentezlenen nanoparçacıkların sentez şartları ve deneysel sonuçlar.

S4': S4nolu örneğin tekarı. S4 ve S4' nolu örnekler aynı anda sentezlendi ve ölçümleri aynı anda yapıldı.
S4'': S4 nolu örneğin tekrarı. Standart örnek 24 saat bekletildikten sonra hidrotermal işleme tabi tutuldu ve ölçümleri yapıldı.

4.3 Su Bazlı Nanoparçacıkların Sentezi ve Karakterizasyonu

Nanoparçacıkların yüzeylerini kaplamak ve suda dispersiyonlarını sağlamak için yüzey aktif malzeme olarak askorbik asit ($C_6H_8O_6$) ve tartarik asit ($C_4H_6O_6$) kullanıldı. Askorbik asit ve tartarik asidin molekül yapıları Şekil 4.25'de verilmiştir. Nanoparçacıkların yüzeyleri, ortak çöktürme tekniği ve hidrotermal sentez tekniği kullanılarak yüzey aktif maddelerle kaplanmış, yapısal ve manyetik özellikleri incelenmiştir.

Şekil 4.25: (a) Askorbik asit ve (b) tartarik asidin molekül yapısı [64].

4.3.1 Ortak Çöktürme Metodu ile Nanoparçacıkların Kaplanması

Bu kısımda nanoparçacıkların yüzeyleri ortak çöktürme sentezi sırasında yüzey aktif malzemeyle kaplanmıştır. Ortak çöktürme ile nanoparçacıklar sentezlenmiş ardından ortama yüzey aktif maddeler eklenmiştir.

Burada, 14.9 g FeCl₂.4H₂O (75 mmol) ve 20.3 g FeCl₃.6H₂O (75mmol) 50 ml suda çözülerek çift boyunlu balona alındı. Çözeltinin üzerinde 50 ml NH₄OH

eklenerek mekanik karıştırıcıda 700 rpm de 2 dakika karıştırıldı ve öncül numune elde edildi. 5.4 g askorbik asit 50 ml suda çözülerek 2 inci dakika sonunda sisteme ilave edildi. Daha sonra, 30 dakika daha 700 rpm de karıştırıldı ve A1 numunesi elde edildi.

Diğer nanoparçacıklar sentezlenirken öncül madde sentezi esnasında madde miktarları yarıya düşürülmüşür. 7.5 g FeCl₂.4H₂O ve 10.1 g FeCl₃.6H₂O 25 ml suda çözülerek çift boyunlu balona alındı. Çözeltinin üzerinde 25 ml NH₄OH eklenerek mekanik karıştırıcıda 700 rpm'de 2 dk karıştırıldı. Bu aşamadan sonra farklı miktarlarda yüzey aktif maddeler sisteme ilave edilmiştir. Sentez şartları Tablo 4.6'da verilmiştir.

Numune No	Yüzey Aktif Malzeme	Miktar (mM)*	Karıştırma Hızı (rpm)	Reaksiyon Süresi (dk)
A1	AA	200	700	30
A2	AA	150	1000	30
A2	AA	150	1000	30
A3	AA	300	1000	15
A4	AA	600	1000	15
A5	AA	300	1200	15
T1	ТА	600	1000	15
TA1	TA+AA	250 AA 250 TA	1200	15
TA2	TA+AA	300 AA 300 TA	1200	15
TA3	TA+AA	300 TA 300 AA	1000	15
TA2'	TA+AA	300 TA 300 AA	1200	15
TA4	TA+AA	300 AA 300 TA	1800	15

Tablo 4.6: Askorbik asit ve tartarik asitle kaplanan numunelerin sentez şartları.

A2', A2'nin, TA2' TA2'nin tekrarıdır. *Toplam çözelti miktarına göre hesaplandı.

4.3.1.1 Kaplı Nanoparçacıkların Karakterizasyonu

Bütün numuneler, karakterizayon için mıknatıs yardımıyla çöktürülüp saf suyla yıkanarak 60 °C sıcaklıkta kurutuldu. Toz numuneler, XRD, FT-IR ve VSM ölçümlerinde kullanıldı.

Nanoparçacıkların suda dispersiyonunu sağlamak için tartarik asit, askorbik asit ve ikisi birlikte kullanıldı. En iyi disperisyon ikisi birlikte kullanıldığında elde edildi. Şekil 4.26'da suda çözülmüş TA3 nolu numune verilmiştir.

Şekil 4.26: Askorbik asit ve tartarik asit kaplı (0.1 ve 1 mmol/ml) nanoparçacıkların suda dispersiyonu (TA3 nolu numune).

Askorbik asit, tartarik asit ve askorbik-tartarik asit kullanılarak kaplanan numuneler, suda çözülmüş ve mıknatıs altında bekletilmiştir. Numuneler, Şekil 4.27'de verilmiştir. "Askorbik asit" ve "askorbik-tartarik asit" kaplı numuneler mıknatıs altında bekletilmelerine rağmen sudan tamamen ayrılmamışlardır. Tartarik asit kaplı numunenin dispersiyonu bu örnekler kadar iyi değildir. Yüzeyleri kaplı olmayan maddeler suda dispers olamamaktadır.

Şekil 4.27: Öncül numune, askorbik asit (A4), tartarik asit (T1) ve her iki yüzey aktif madde (TA3) birlikte kullanılarak sentezlenen numunelerin suda dipsersiyonları.

Askorbik asit-tartarik asit kaplı nanoparçacıkların XRD deseni Şekil 4.28'de görülmektedir. Buna göre, kübik spinel yapıya ait demir oksit (220), (311), (400), (422), (511), (440) pikleri, sırasıyla 30°, 35°, 43°, 53°, 57° ve 63° civarında görülmektedir (JCPDS no. 19-0629 ve JCPDS no. 39-1346). Parçacık boyutu 8.5 nm olarak hesaplanmıştır. Parçacıkların kristal yapısında bir değişiklik görülmemektedir. Ayrıca öncül numune ile aynı boyutta parçacıklar elde edilmiştir. Yüzey aktif maddeler, sisteme parçacıklar kristallendikten sonra eklenmiştir. Sentez sırasında eklenmediğinden dolayı kristal yapısında bir değişiklik yaratması beklenmemektedir. Reaksiyon süresi artmasına rağmen parçacık boyutlarında artış olmamıştır. Ortama ilave edilen yüzey aktif madde parçacıkların yüzeylerini sararak parçacık boyutunun artışını engellemiştir.

Şekil 4.28: Askorbik asit ve tartarik asitle kaplı nanoparçacıkların (TA3) XRD deseni.

Nanoparçacıkların yüzeylerindeki kaplama, FT-IR ile analiz edildi. Ayrıca karşılaştırma yapabilmek için askorbik asit ve tartarik asidin FT-IR analizleri de yapılmış ve Şekil 4.29'da verilmiştir. Bu şekilde ortamda serbest yüzey aktif madde olup olmadığı incelenmiştir. Askorbik asitte 4 O-H bandı görülmektedir [65]. 3519 cm⁻¹'de C(6)-OH, 3404 cm⁻¹'de C(3)-OH, 3306 cm⁻¹'de C(5)-OH ve 3209 cm⁻¹'de C(2)-OH. Askorbik asitte, 1750 cm⁻¹ ve 1664 cm⁻¹ de sırasıyla C=O ve C=C bandları görülmektedir [65-68]. Tartarik asitte, 3404 cm⁻¹ ve 3325 cm⁻¹ piklerini içeren geniş band, O-H esneme titreşimidir. 1731 cm⁻¹'de C=O bandı görülmektedir [69, 70].

Şekil 4.30'da askorbik asit, tartarik asit ve askorbik-tartarik asit kaplı numunelerin FT-IR spektrumları verilmiştir. Sentezlenen bütün numunelerde (askorbik asit, tartarik asit ve askorbik asit-tartarik asit ile kaplı numuneler) aynı pikler gözlenmiştir. 576 cm⁻¹'de güçlü band demir oksit nanoparçacıklarında Fe-O titreşimidir. C=O gerilim bandı, kaplı nanoparçacıklarda görülmemektedir. Bu da karbonil grubundaki O⁻ atomunun nanoparçacık yüzeyindeki Fe ile koordine olduğunu gösterir. Bu koordinasyonu ayrıca 1652 cm⁻¹'de yeni oluşan pik de doğrular. 1397 cm⁻¹ ve 1050 cm⁻¹ deki pikler C-O ve C-O-C bandlarıdır. Hidroksil grubu(-OH) titreşimi, H₂O moleküllerinden veya nanoparçacık yüzeyindeki yüzey aktif maddeden kaynaklanır ve 3100 cm⁻¹-3600 cm⁻¹ aralığında görülür [42]. 3355 cm⁻¹'de güçlü OH gerilim modu hidroksil gruplarını doğrular, hidrofilik öğe sağlayarak suda çözünürlüğü arttırır [67]. FT-IR spektrumlarından görüldüğü gibi nanoparçacıkların yüzeyleri yüzey aktif maddelerle kaplanmıştır. Böylece nanoparçacıklar suda dispers edilebilmiştir.

Şekil 4.29: (a) askorbik asit, (b) tartarik asit ve (c) askorbik asit ve tartarik asit kullanılarak sentezlenen nanoparçacıkların FT-IR spektrumuları (TA1 nolu numune).

Şekil 4.30: (a) Askorbik asit (A3), (b) tartarik asit (T1) ve (c) askorbik asit ve tartarik asitle (TA3) kaplanan nanoparçacıkların FT-IR spektrumları.

Şekil 4.31(a)'de askorbik asitle, Şekil 4.31(b)'de askorbik ve tartarik asitle kaplı numunelerin TEM fotoğrafları görülmektedir. Askorbik asitle kaplı numunenin boyutu 7 ± 2 ve askorbik-tartarik asitle kaplı numunenin boyutu 7 ± 2 nm'dir. Buna göre yüzey aktif maddeler parçacıkların şekil ve boyutlarında bir değişim yaratmamıştır.

Şekil 4.31: (a) Askorbik asitle (A1), (b) askorbik asit ve tartarik asitle (TA1) kaplı nanoparçacıkların TEM görüntüleri.

A1 nolu numunenin manytizasyon eğrisi 4.32'de verilmiştir. Buna göre, M_s değeri, 62.6 emu/g ve H_s. değeri 9804 Oe'dir. A2' nolu numune A2'nin tekrarıdır. M_s değerleri, A2 ve A2' için sırasıyla 65.1emu/g ve 63.4 emu/g ve H_s değerleri 10970 Oe ve 10168 Oe'dir. Iki örnekte de aynı manyetik sonuçlar elde edilmiştir, sentez tekrarlanabilirdir (Şekil 4.33). A3 ve A4 nolu numunelerde yüzey aktif madde miktarı iki katına çıkarıldığında M_s değerinde çok küçük bir düşüş görülmüştür ve M_s değerleri sırasıyla, 64.4 emu/g ve 60.3 emu/g'dır. Bunun sebebinin, yüzeylerindeki askorbik asit miktarındaki küçük bir artış olduğu düşünülmektedir. Manyetizasyon eğrileri Şekil 4.34'de verilmiştir. A3 ve A5 nolu numunelerde, karıştırma hızı 1000 rpm den 1200 rpm'e yükseltilmiştir ve nanoparçacıkların M_s değeri 64.4 emu/g'dan 60.7 emu/g'a düşüşmüştür. Bu küçük düşüşün sebebinin, karıştırma hızının artmasından dolayı nanoparçacık yüzeylerindeki oksidasyon olduğu düşünülmektedir. A5 nolu numunenin manyetizasyon eğrisi Şekil 4.35'de verilmiştir. T1 nolu numunede, sentez sırasında ortama sadece tartarik asit eklenmistir ve manyetizasyon eğrisi Sekil 4.36'da verilmiştir. M_s ve H_s değerleri sırasıyla 62.4 emu/g ve 9573 Oe'dir. Yüzey aktif madde olarak tartarik asit kullanıldığında aynı manyetik sonuçla elde edilmiştir. Askorbik asit kaplı numunlere bakıldığında parametrelerin M_s değerlerinde büyük değişimler yaratmadığı görülmektedir.

TA1 ve TA2 nolu numunelerde sentez sırasında, askorbik asit ve tartarik asit birlikte kullanılmıştır. Manyetizasyon eğrileri Şekil 4.37'de verilmiştir. TA1 ve TA2 için M_s, 60.5 emu/g ve 60.8 emu/g'dır. Askorbik asit ve tartarik asidin molar oranı arttırıldığında, nanoparçacıkların M_s değeri değişmemiştir. TA3, TA2' ve TA4 nolu numunelerde karıştırma hızı sırasıyla 1000, 1200 ve 1800 rpm'dir ve numunelerin VSM eğrileri Şekil 4.38'de verilmiştir. M_s değerleri sırasıyla, 59.3 emu/g, 59.9 emu/g ve 57.7 emu/g'dır. Karıştırma hızıyla numunelerin M_s değeri değişmemiştir, sadece 1800 rpm de çok küçük bir düşüş gözlenmiştir. Bunun sebebi VSM cihazının hassasiyetiyle ilgili olabileceği veya karıştırma hızındaki artış, nanoparçacık yüzeylerinde küçük bir oksidayona neden olmuş olabileceği düşünülmektedir. Iki yüzey aktif madde birlikte kullanıldığında M_s ortalama 60 emu/g dır. ± 100 Oe arasındaki manyetizasyon eğrilerinin tümüne bakıldığında sentezlenen tüm nanoparçacıkların, süperparamanyetik olduğu görülmektedir. Yüzey aktif maddeler nanoparçacıkların yüzeylerini sararak boyutlarındaki artışı engellemiştir. Bütün manyetik sonuçlar Tablo 4.7'de verilmiştir.

Şekil 4.32: A1 nolu numunenin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.33: A2 ve A2' nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.34: A3 ve A4 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.35: A5 nolu numunenin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.36: T1 nolu numunenin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.37: TA1 ve TA2 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.38: TA3, TA2' ve TA4 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Yapılan manyetizasyon ölçümlerinde M_s değeri ortalama 60 emu/g'dır. Öncül numunenin M_s değeri 69 emu/g'dı. Manyetizasyondaki bu düşüşün sebebi parçacık yüzeylerinin kaplanmış olmasıdır. Elde edilen verileri toplam kütleye böldüğümüzde yüzeydeki kap malzemesini de tartmış oluyoruz. Bu ekstra kütle manyetizasyonun düşmesine sebep olmuştur. Nanoparçacıkların yüzeylerinin kaplanmasının bir sebebi onları oksidasyondan koruyarak M_s değerinin düşmesine engel olmaktı. Yüzey kaplamasının parçacıkları oksidasyona karşı koruyup korumadığını görmek için askorbik asit ve tartarik asitle kaplanmış numune (TA3) açık hava ortamında bekletilerek, 1, 3, 5, 12, 32 ve 48 hafta sonunda VSM ölçümleri tekrar edilmiş ve sonuçlar Şekil 4.39'da verilmiştir. 1, 3, 5 ve 12 haftalar için M_s değerleri sırasıyla, 60.8 emu/g, 60.1 emu/g, 59.7 emu/g ve 62.3 emu/g emu/g'dır. 12 haftaya kadar M_s değerinde değişim gözlenmemiş, 32 inci hafta yapılan ölçümde M_s değerinde çok küçük bir azalma görülmüştür. M_s değeri ortalama 60 emu/g'dan 57 emu/g'a düşmüştür. 48 inci haftada yapılan ölçümde M_s değeri 56.5 emu/g'dır.

Şekil 4.39: Askorbik asit ve tartarik asitle kaplı numunenin (TA3), 1, 3, 5, 12, 32 ve 48 hafta sonunda manyetizasyondaki değişimi gösteren grafik.

Numune No	Yüzey Aktif Malzeme	Miktar (mM)	Karıştırma Hızı (rpm)	Reaksiyon Süresi (dakika)	M _s (emu/g)	H _s (Oe)
A1	AA	200	700	30	62.6	9804
A2	AA	150	1000	30	65.1	10970
A2′	AA	150	1000	30	63.4	10168
A3	AA	300	1000	15	64.4	10490
A4	AA	600	1000	15	60.3	10476
A5	AA	300	1200	15	60.7	10130
T1	ТА	600	1000	15	62.4	9573
TA1	TA+AA	250AA	1200	15	60.5	9065
		250TA				
TA2	TA+AA	300 AA	1200	15	60.8	9276
		300 TA				
TA3	TA+AA	300 TA	1000	15	59.3	10108
		300 AA	1000	10	57.5	10100
TA2'	TA+AA	300 TA	1200	15	59.9	8746
		300 AA	1200			0,10
TA4	TA+AA	300AA	1800	15	57.7	9919
	11111111	300TA	1000		51.1	,,,,,

Tablo 4.7: Suda çözülebilen nanoparçacıkların sentez şartları ve manyetik ölçüm sonuçları.

4.3.2 Kaplı Nanoparçacıklara Hidrotermal İşlem Uygulanması ve Karakterizayonu

A1, A2 ve TA2 nolu numunelere hidrotermal işlem uygulanmıştır. Ortak çöktürme ile nanoparçacıkların yüzeyleri yüzey aktif madde ile kaplandıktan sonra sistemden, 15 ml alınıp basınçlı kaba yerleştirildi ve nanoparacıklar hidrotermal işleme uygulandı. A1 nolu numuneye 160 °C sıcaklıkta, 12 saat hidrotermal işlem uygulanmış ve HA1 olarak isimlendirilmiştir. A2 nolu numuneye 160 °C sıcaklıkta, 60 saat hidrotermal işlem uygulanmış ve HA2 olarak isimlendirilmiştir. TA2 nolu numuneye 150 °C sıcaklıkta, 12 ve 36 saat hidrotermal işlem uygulanmış ve HTA2-1 ve HTA2-2 olarak isimlendirilmiştir.

Hidrotermal işlem uygulanmış HA1 nolu nanoparçacıkların XRD deseni Şekil 4.40'da verilmiştir. Buna göre, kübik spinel yapıya ait demir oksit (220), (311), (400), (422), (511), (440) pikleri sırasıyla 30°, 35°, 43°, 53°, 57° ve 63° civarında görülmektedir. Nanoparçacıkların kristal boyutu 9.6 nm olarak hesaplanmıştır.

Şekil 4.40: 160 °C sıcaklıkta, 12 saat hidrotermal işlem uygulanmış askorbik asit kaplı nanoparçacıkların (HA1) XRD deseni.

Şekil 4.41, Şekil 4.42 ve Şekil 4.43'de hidrotermal işlem öncesi ve sonrasında yüzey aktif maddelerle kaplı nanoparçacıkların FTIR-ATR spektrumları verilmiştir. 3100-3600 aralığındaki geniş band OH tireşim bandıdır. Yeni oluşan 1600 cm⁻¹ bandı yüzey aktif maddenin nanoparçacık yüzeyine bağlandığını gösterir. 1410 cm⁻¹ bandı C-O titreşimine aittir. Hidrotermal işlem öncesinde 1410 cm⁻¹ civarındaki band (1384 cm⁻¹ ve 1269 cm⁻¹) yarılmıştır [65-71].

Şekil 4.41: Ortak çöktürme senteziyle askorbik asit ile kaplanmış (A1) ve 160 °C sıcaklıkta 12 saat hidrotermal işlem görmüş (HA1) numunelerin FT-IR spektrumları.

Şekil 4.42: Ortak çöktürme senteziyle askorbik asitle kaplanmış (A2) ve 160 °C sıcaklıkta 60 saat hidrotermal işlem görmüş (HA2) numunelerin FT-IR spektrumları.

Şekil 4.43: Ortak çöktürme sentezi ile askorbik asit ve tartarik asitle kaplanmış (TA2), 160 °C sıcaklıkta 12 saat hidrotermal işlem görmüş (HTA2-1) ve 160 °C sıcaklıkta 36 saat hidrotermal işlem görmüş (HTA2-2) numunelerin FT-IR spektrumları.

A1 ve HA1 nolu numunelerin TEM resimleri Şekil 4.44'da verilmiştir. A1 nolu numunenin ortalama parçacık boyutu 7±2 nm, HA1 nolu numunenin 10±2 nm olarak hesaplanmıştır.

Şekil 4.44: (a) Ortak çöktürme ile kaplanmış (A1) ve (b) 160 °C sıcaklıkta 12 saat hidrotermal işlem uygulanmış (HA1) numunelerin TEM görüntüleri.

Nanoparçacıkların tüm manyetik sonuçları Tablo 4.8'de verilmiştir. A1 ve HA1 nolu numunelerin manyetizasyon eğrileri Şekil 4.45'de verilmiştir. A1 nolu numunenin M_s değeri 62.6 emu/g , H_s değeri ise 9804 Oe olarak ölçülmüştür ve nanoparçacıklar süperparamanyetik özellik göstermektedirler. 160 °C sıcaklıkta 12 saat hidrotermal işleme tabi tutulduklarında ise M_s değeri 65.8 emu/g, H_s değeri 9150 Oe olarak ölçülmüştür. Parçacık boyutu fazla büyümediğinden dolayı M_s değeri fazla artmamış, H_s değerinde de büyük bir düşüş gözlenmemiştir. Ayrıca, ortak çöktürme sentezi sırasında nanoparçacıkların yüzeyine bağlanmamış serbest yüzey aktif maddeler hidrotermal sentez esnasında nanoparçacıkların yüzeylerine bağlanmış olabileceği bu da M_s değerindeki artışın görülmesini engellediği düşünülmektedir. Sisteme ilave edilen yüzey aktif malzemeler parçacıkların büyümlerini engellemişlerdir. Ayrıca Şekil 4.45 (b)'de görüldüğü gibi HA1 nolu numunenin boyutu 10 nm olduğundan dolayı, hala süperparamanyetik özellik göstermektedir.

Şekil 4.45: A1 ve HA1 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

A2 nolu ve HA2 nolu numunelerin manyetizasyon eğrileri Şekil 4.46'da verilmiştir. Numunelerde birbirine yakın H_s değerleri görülmektedir. M_s değeri hidrotermal işlemle 65.1 emu/g dan 67.9 emu/g a yükselmiştir. Buna göre 160 °C sıcaklıkta, 60 saat hidrotermal işlem sürdürülse bile parçacık boyutunda büyük bir artış görülmemiştir. Şekil 43 (b)'ye bakıldığında nanoparçacıkların H_c değerlerinin sıfır olduğu görülmektedir. Demir oksit nanoparçacıkları 10 nm'nin üzerine çıkıldığında H_c değeri göstermeye başlar. Bu yüzden nanoparçacık boyutlarının 10 nm'nin altında olduğu düşünülmektedir.

Şekil 4.46: A2 ve HA2 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

TA2 nolu numuneye 150 °C sıcaklıkta, 12 ve 36 saat hidrotermal işlem uygulanmıştır ve VSM eğrileri Şekil 4.47'de verilmiştir. 12 saat ve 36 saat hidrotermal işlem uygulandığında M_s değeri sırasıyla 57.5 emu/g ve 56.7 emu/g elde edilmiştir. Reaksiyon süresi arttırılmasına rağmen M_s değerinde değişim görülmemiştir. Yüzey aktif madde nanoparçacık yüzeyini sararak, parçacıkların bir araya gelip büyümelerini engellemiştir. TA2 nolu numunede M_s değeri 60.8 emu/g'dı. Buna göre hidrotermal işlem sonunda M_s değerinde düşme görülmüştür. TA2 nolu numunede ortak çöktürme sentezi sırasında kullanılan yüzey aktif madde niktarı daha fazladır. Bu yüzden ortamda daha fazla serbest yüzey aktif madde olduğu, hidrotermal işlem sırasında da yüzeye kaplanan yüzey aktif maddenin arttığı,

bu da M_s değerinde düşüşe sebep olduğu düşünülmektedir. Şekil 4.47 (b)'ye bakıldığında H_c değeri sıfırdır. Nanoparçacıklar hidrotermal işleme rağmen süperparamanyetiktir.

Şekil 4.47:. TA2, HTA2-1 ve HTA2-2 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri
L. Feng [72] ve grubu askorbik asit kaplı nanoparçacıkları hidrotermal yöntemle tek adımda sentezlemişlerdir. Nanoparçacıkların boyutları 10 nm'den küçüktür. Kristal boyutu 5 nm olarak hesaplamışlardır. M_s değeri 40 emu /g'dır. S. Xuan [42] ve grubu aynı yöntemle kristal boyutu 5.2 nm olan nanoparçacıklar sentezlemişlerdir. Bu parçacıklın M_s değeri ise oldukça düşük 5.2 emu/g'dır. Bu verilere göre sentez sırasında askorbik asit kullanıldığında parçacık boyutları ve M_s değerleri oldukça küçüktür. Bu yüzden ortak çöktürme sentezi esnasında, nanoparçacıklar kristallendikten sonra sisteme ilave edilmiş ve parçacık yüzeylerinin sadece kaplanması ve böylece suda dispersiyonlarının sağlanması amaçlanmıştır. Hidrotermal işlem sonrasında da literatür ile uyumlu olarak küçük boyut artışları görülmüştür.

Numune no	Sıcaklık	Reaksiyon Süresi	M _s	H _s
	(°C)	(saat)	(emu/g)	(Oe)
A1			62.6	9804
HA1	160	12	65.8	9150
A2			65.1	10970
HA2	160	60	67.9	9700
TA2			60.8	9276
HTA2-1	150	12	57.5	8188
HTA2-2	150	36	56.7	7638

Tablo 4.8: Kaplı nanoparçacıkların hidrotermal işlem esnasındaki sentezşartları ve manyetik sonuçlar.

4.3.3 Nanoparçacıkların Hidrotermal Metodla Kaplanması ve Karakterizasyonu

Bu bölümde öncül madde sentezi sırasında kaplama işlemi yapılmadı. Bu işlem hidrotermal sentez esnasında gerçekleştirildi. Yüzey aktif malzeme çözelti halinde basınçlı kap içine yerleştirildi.

Yüzey aktif maddeler, tartarik asit (0.07 g/ml), askorbik asit (0.09 g/ml) ve ikisinin karışımı (0.07 g/ml TA, 0.09 g/ml AA), suda çözüldü. Bu üç çözeltiden, 9 ml alınarak basınçlı kaplara koyuldu. Ardından standart numune sentezlenerek herbir kaba 6 ml eklendi. Sırasıyla numuneler, H1, H2 ve H3 olarak isimlendirildi. Basınçlı kaplar, 160 °C sıcaklıkta 12 saat bekletildi. Numunelerin yapısal karakterizasyonu FT-IR ile yapıldı.

Şekil 4.48'de görüldüğü gibi bütün numunelerde, aynı pikler gözlenmiştir. 576 cm⁻¹'deki güçlü band demir oksit nanoparçacıklarında Fe-O titreşimidir. C=O gerilme bandı, kaplı nanoparçacıklarda görülmemektedir. Bu da karbonil grubundaki O⁻ atomunun nanoparçacık yüzeyindeki Fe⁻ ile koordine olduğunu gösterir. Ayrıca yeni bir pik (1620 cm⁻¹) oluşmuştur. Bu da yüzey aktif maddelerin parçacık yüzeyine bağlandığını göstermektedir. 1397 cm⁻¹, C-O bandıdır [42]. 1050 cm⁻¹ ve 1080 cm⁻¹ de pikler, C-O-C bandıdır. Hidroksil grubu(-OH) titreşimi, H₂O moleküllerinden veya nanoparçacık yüzeyindeki yüzey aktif maddeden kaynaklanır ve 3100 cm⁻¹- 3600 cm⁻¹ aralığında görülür. 3400 cm⁻¹ civarındaki güçlü OH gerilim modu hidroksil gruplarını doğrular [67-71]. Şekil 4.48 (a) tartarik asit kullanılarak sentezlenen numune Şekil 4.48 (b) askorbik asit kullanılarak sentezlenen numune Şekil 4.48 (c) ise ikisini birden içeren numunedir. 1080 cm⁻¹ ve 1049 cm⁻¹ pikleri giderek şiddetlenmiştir. Ortamda daha fazla yüzey altif madde olmasından dolayı, nanoparçacık yüzeylerinin daha fazla kaplandığı düşünülmektedir.

Şekil 4.48: (a) Tartarik asit (b) askorbik asit (c) tartarik asit ve askorbik asit kullanılarak sentezlenen numuneler.

Şekil 4.49'da ortak çöktürme ve hidrotermal işlemle kaplanan numunelerin FT-IR spektrumları görülmektedir. 1050 cm⁻¹ ve 1080 cm⁻¹ civarındaki pikler, C-O-C bandına aittir [42, 71] ve hidrotermal işlem sonrasında bu pikler daha şiddetlenmiş ve yarılmıştır.

Şekil 4.49: (a) Ortak çöktürme ile (b) hidrotermal sentez ile tartarik asit ve askorbik asitle kaplanmış nanoparçacıkların FT-IR spekktrumları.

Şekil 4.50'de askorbik asit, tartarik asit ve kaplı nanoparçacıkların FT-IR spektrumları görülmektedir. Kaplı nanoparçacıklarda, 1750 cm⁻¹ civarındaki C=O bandı yoktur. Buna göre, ortamda serbest yüzey aktif madde yoktur ve yüzey aktif maddeler nanoparçacıkların yüzeyine kimyasal olarak bağlanmıştır.

Şekil 4.50: (a) Askorbik asidin, (b) tartarik asidin ve (c) askorbik asit ve tartarik asitle kaplı nanoparçacıkların FT-IR spektrumları.

Numunelerin manyetizasyon eğrileri Şekil 4.51'de, manyetik sonuçları Tablo 4.9'da verilmiştir. Sadece tartarik asit kullanılarak sentezlenen numunede, M_s ve H_s değerleri sırasıyla, 72.1 emu/g ve 6930 Oe'dir. Yüksek manyetizasyon değeri ve düşük H_s değerine bakıldığında parçacık boyutunun arttığını söylenebilir. H_c değeri sıfırdır. Bu da bize, parçacık boyutunun 10 nm'nin üstünde olmadığını söylemektedir. Ayrıca, Şekil 4.48'deki FT-IR spekturumuna bakıldığında yüzey aktif madde olarak sadece tartarik asit kullanıldığında pik şiddetleri daha zayıftır. Bu sonuçlara göre parçacık yüzeylerinin daha az kaplanmış olduğu düşünülmektedir. Askorbik asitle kaplı nanoparçacıklarda daha küçük M_s değeri, 57.9 emu/g elde edilmiştir. Askorbik asit ve tartarik asitle kaplı numunede ise M_s değeri (45.3 emu/g) oldukça düşmüştür. Bu da M_s değerini hesaplanırken, manyetik olmayan yüzey kaplaması da dahil olduğundan, M_s değerinde düşüşe sebep olmuştur. FT-IR spektrumuna bakıldığında, en çok kaplanma iki yüzey aktif madde kullanıldığında görülmektedir, en küçük M_s , H3 nolu nanoparçacıklarda elde edilmiştir. H_s değeri 7311 Oe'dir. H_s değerindeki bu düşüşün sebebinin parçacıkların yüzeyindeki kaplama olduğu düşünülmektedir.

Yan ve grubu [71] hidrotermal yöntemle tek adımda tartarik asit ile, 13.5 nm boyutta Fe_3O_4 nanoparçacıklar sentezlemişlerdir. Bu parçacıkların M_s değeri 40.1 emu/g'dır. Buna göre tartarik asit kullanıldığında daha büyük parçacıklar elde edilebilmektedir.

H (kOe)

Şekil 4.51: Tartarik asit (H1), askorbik asit (H2) ve askorbik ve tartarik asitle kaplı (H3) nanoparçacıkların (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Numune No	Ms	H _s	
	(emu/g)	(Oe)	
H1	72.1	6930	
H2	57.9	8843	
H3	45.3	7311	

Tablo 4.9: Hidrotermal işlem sırasında kaplanan nanoparçacıklarınmanyetik sonuçları.

4.4 Yağ Bazlı Nanoparçacıkların Sentezi

Bu bölümde nanoparçacıkların yüzeylerini kaplamak için yüzey aktif madde olarak sodyum oleat kullanılmıştır. Sodyum oleatın yapısı Şekil 4.52'da verilmiştir.

Şekil 4.52: Na-oleatın yapısı [73].

4.4.1 Ortak çöktürme ile parçacıkların kaplanması ve hidrotermal yöntemle büyütülmesi

Bu kısımda nanoparçacıkların yüzeyleri sodyum oleatla kaplanmıştır. 14.91 g $FeCl_2.4H_2O$ (75 mmol) ve 20.27 g $FeCl_3.6H_2O$ (75mmol) 50 ml suda çözülerek çift boyunlu balona alındı. Çözeltinin üzerinde 50 ml NH₄OH eklenerek mekanik karıştırıcıda 700 rpm de 2 dk karıştırıldı. 3.8 g sodyum oleat 100 ml suda çözüldü. Ortak çöktürme sentezi sırasında amonyak eklendikten 2 dk sonra sodyum oleat çözeltisi sisteme ilave edildi. 700 rpm

de 15 dakika karıştırıldı. Numuneler saf su ve etil alkolle yıkanıp 60 °C'de kurutularak toz haline getirildi (NaOI1). Sistem su ve etil alkolle yıkanımadan önce, ortak çöktürme ile parçacıklar kaplandıktan sonra sistemden, 15 ml alınarak basınçlı kaba aktarıldı ve 180°C sıcaklıkta 48 saat hidrotermal işleme tabi tutuldu. Ardından naoparçacıklar çöktürülüp su ve etil alkolle yıkandı ve 60 °C sıcaklıkta kurutuldu (HNaOI1). Diğer sentezlenen numunelerde öncül madde sentezi aşamasında madde miktarı yarıya düşürülmüştür. 7.46 g FeCl₂.4H₂O ve 10.14 g FeCl₃.6H₂O 25 ml suda çözülerek çift boyunlu balona alındı. Çözeltinin üzerinde 25 ml NH₄OH eklenerek mekanik karıştırıcıda 700 rpm de 2 dk karıştırıldı ve ardından 3.8 g sodyum oleat 200 ml suda çözülerek 2 dakika sonunda sisteme eklendi, 1200 rpm de 15 dk karıştırıldı (NaOI2). Daha sonra 180 °C sıcaklıkta 24 saat (HNaOI2-1) ve 120 saat (HNaOI2-2) , 200 °C sıcaklıkta 12 saat (HNaOI2-3) hidrotermal işleme tabi tutuldu. Sentez şartları Tablo 4.10'da verilmiştir. Parçacıkların yüzeyleri oleat ile kaplandığından ötürü parçacıklar Şekil4.53'de görüldüğü gibi kloroform içinde dispers edilebilmiştir.

Şekil 4.53: Kloroform içinde dispers edilmiş nanoparçacıklar (HNaOl2-1).

4.4.1.1 Oleat ile Kaplı Nanoparçacıkların Karakterizasyonu

Oleat kaplı nanoparçacıkların XRD desenleri Şekil 4.54 ve Şekil 4.55'de verilmiştir. XRD desenlerinde, yüzey merkezli kübik spinel yapıya ait demir oksit (220), (311), (400), (422), (511) ve (440) pikleri sırasıyla 30°, 35°, 43°, 53°, 57° ve

63° civarında görülmektedir. Nanoparçacıkların kristal boyutları Tablo 4.10'da verilmiştir. NaOl1 nolu numunede kristal boyut 9 nm olarak hesaplanmıştır. NaOl1 nolu numuneye 180 °C sıcaklıkta, 48 saat hidrotermal işlem uygulandığında kristal boyut 12 nm'ye yükselmiştir. NaOl2 nolu numuneye 180 °C sıcaklıkta 24 saat ve 200 °C sıcaklıkta 12 saat hidrotermal işlem uygulandığında kristal boyut 10 nm'dir.

Şekil 4.54: HNaOll'in XRD grafiği.

Şekil 4.55: (a) NaOl2, (b)HNaOl2-1 ve (c) HNaOl2-3 nolu numunelerin XRD grefikleri.

Nanoparçacıkların sentezi sırasında kullanılan surfaktan, nanoparçacıkların oluşmasında önemli rol oynamaktadır. Kullanılan surfaktana bağlı olarak parçacıkların boyut, şekil, manyetik ve kimyasal özellikleri kontrol edilebilir [28]. Yapılan çalışmada ilk aşamada ortak çöktürme ile parçacıklar kristallenip büyümeleri sağlandıktan sonra sisteme sodyum oleat eklenmiştir. Bu aşamada sadece parçacıkların yüzeylerinin kaplanması amaçlanmıştır. İkinci aşamada ise sistemin sıcaklığı arttırılarak, daha büyük nanoparçacıkların eldesi amaçlanmıştır. Bu esnada nanoparçacıkların yüzeyleri oleat ile kaplı olduğundan dolayı, yüzey aktif madde parçacıkların sentezinde etkili olmuştur.

 $v(\text{COO}^{-})$ bandlarının pozisyon ve yarılmalarından, 1300-1700 cm⁻¹ bölgesinde Δ , karboksilat koordinat modları belirlenir. Dört farklı koordinat modu vardır ve bunlar Şekil 4.56'da gösterilmiştir. Δ >200 cm⁻¹ tek dişli, Δ <110 iki dişli, Δ 140 ve 200 cm⁻¹ arasında köprü ligand olarak tanımlanır [32, 74].

Şekil 4.56: Metal karboksilat koordinasyon modları [32].

Şekil 4.57'de NaOl'ın FT-IR spektrumu görülmektedir. 2920 ve 2850 cm⁻¹'de C-H gerilim bandları ve 1560 cm⁻¹ ve 1430 cm⁻¹'de karboksilat gerilim bandları görülmektedir [75, 76]. Şekil 4.58'de oleat kaplı nanoparçaıkların FT-IR spektrumları görülmektedir. NaOl'da olduğu gibi nanoparçacıklarda da C-H gerilim bandları 2919 cm⁻¹ ve 2849 cm⁻¹'de görülmektedir [75, 76]. Bu bandlar nanoparçacıkların yüzeyinde oleat olduğunu gösterir.

1415 cm⁻¹ ve 1522 cm⁻¹ pikleri karboksilat (COO-) titreşiminden kaynaklanmaktadır [32, 74]. Ortak çöktüme sentezi esnasında nanoparçacıkların yüzeyleri oleat ile kaplandığında Δ , (1522-1415= 107) iki dişli koordinasyon modu görülmektedir. Hidrotermal işlem sonrasında, 1522 cm⁻¹ piki yarılmıştır (1522 cm⁻¹ ve 1581 cm⁻¹). Bu yarılmanın sebebi oleatın, demir iyonları ile farklı koordinasyon modaları ile kimyasal bağ yapmalarından kaynaklandığı düşünülmektedir (1581-1415=166). 1704 cm⁻¹, C=O titreşim pikidir ve ortak çöktürme sentezi ile elde edilen numunede görülmektedir [74-76]. Hidrotermal işlem sonrasında bu pik çekilmiştir. Buna göre hidrotermal işlem öncesinde ortamda kimyasal olarak bağlanmamış surfaktan olduğu düşünülmektedir. Hidrotermal işlem sonucunda serbest bulunan yüzey aktif maddeler kimyasal olarak bağlanmıştır.

Şekil 4.57: NaOl FT-IR spektrumu.

Şekil 4.58: Ortak çöktürme ile sentezlenmiş (NaOl2), 180 °C sıcaklıkta 24 saat hidrotermal işlem uygulanmış (HNaOl2-1) ve 180 °C'sıcaklıkta 120 saat hidrotermal işlm uygulanmış (HNaOl-2) numunelerin FT-IR spektrumları.

NaOl1 ve 180 °C sıcaklıkta 48 saat hidrotermal işleme tabi tutularak sentezlenen nanoparçacıkların (HNaOl1) TEM resimleri Şekil 4.59'da verilmiştir. Hidrotermal işlem öncesinde parçacıkların boyutları 7 nm'dir (NaOl1 ve NaOl2). Hidrotermal işlem sonrası parçacıkların küreselliklerinin arttığı görülmüştür. 180 °C sıcaklıkta 48 saat hidrotermal işleme tabi tutulmuş HNaOl1 nolu numunede parçacık boyutu 10.4±2 nm'dir. Şekil 4.59 (a)'ya bakıldığında parçacıkların bir araya gelerek topaklandığı görülmektedir. Bu yüzden NaOl2 nolu numunede karıştırma hızı arttırılmıştır. 180 °C sıcaklıkta 24 saat hidrotermal işleme tabi tutulmuş HNaOl2-1 nolu numunede parçacık boyutu 11.1±2 nm'dir. Ortamda sodyum oleat olduğundan dolayı, surfaktansız sentezlerle karşılaştırıldığında, yüksek sıcaklıklarda küçük boyut artışları elde edilmiştir. Bu sonuçlar literatür ile uyumludur [39].

Şekil 4.60'deki manyetizasyon eğrilerine bakıldığında, NaOl1 nolu numunenin M_s değeri 53.1 emu/g olarak ölçülürken, bu numune 180 °C sıcaklıkta 48 saat hidrotermal işleme tabi tutulduğunda ise M_s değeri 66.1 emu/g olarak ölçülmüştür. NaOl2 nolu numunenin doyum manyetizasyon değeri 53.3 emu/g, 180 °C sıcaklıkta 24 ve 120 saat hidrotermal işleme tabi tutulduğunda ise 68.4 ve 67.5 emu/g olarak ölçülmüştür (Şekil 4.61). Sıcaklık 200 °C'ye çıkarıldığında ve bu sıcaklıkta 12 saat hidrotermal işlem uygulandığında da M_s değeri aynı artışı göstermiş, 66.9 emu/g olarak ölçülmüştür (Şekil 4.62). NaOl1 ve NaOl2 nolu numunelerde H_s değerleri sırasıyla 8948 Oe ve 9013 Oe olarak ölçülmüştür. Yüzeyleri oleat ile kaplı olmasından dolayı öncül maddeye kıyasla H_s değerleri düşüktür. HNaOl1, HNaOl2-1, HNaOl2-2 ve HNaOl2-3 nolu numunelerde H_s değerleri sırasıyla, 3609 Oe, 4357 Oe, 4138 Oe ve 4895 Oe'dir. Parçacık boyutları arttığı ve yüzeyleri kaplı olduğundan dolayı nanoparçacıklar daha kolay doyuma gitmektedirler. Tüm manyetik sonuçlar Tablo 4.10'da verilmiştir.

Jiang ve grubu [76], nanoparçacık sentezi sırasında NaOl kullanarak, 4-6 nm arasında parçacıklar sentezlemişlerdir. Yaptığımız çalışma ile karşılaştırıldığında, daha küçük boyutta ve M_s değerinde parçacıklar elde etmişlerdir. Ortak çöktürme sentezi esnasında kullanılan surfaktan parçacıkların boyut artışını sınırlandırmıştır.

Açık hava ortamında bekletilen, oleat kaplı numunelerin manyetik ölçümleri 1, 3, 5, 12, 32 ve 48 inci haftalarda tekrarlanmış ve sonuçlar Şekil 4.63'de verilmiştir. M_s değerileri sırasıyla, 52.6 emu/g, 50.8 emu/g, 50 emu/g, 51.0 emu/g, 44.9 emu/g ve 46.7 emu/g olarak ölçüldü. 12inci haftaya kadar M_s değeri değişmemiştir. 32inci haftada yapılan ölçümde M_s değerinde küçük bir düşüş görülmüştür. Bu sonuçlara göre, nanoparçacıkların oleat ile kaplanması onları oksidasyona karşı korumaktadır.

Şekil 4.59: (a) NaOl1, (b) 180 °C sıcaklıkta 48 saat hidrotermal işlem görmüş (HNaOl1), (c) NaOl2, (d) 180 °C sıcaklıkta 48 saat hidrotermal işlem görmüş (HNaOl2-1) numunelerin TEM görüntüleri.

Şekil 4.60: NaOl1 ve HNaOl1 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.61: NaOl2 ve HNaOl2-1 ve HNaOl2-2 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

Şekil 4.62: NaOl2 ve HNaOl2-3 nolu numunelerin (a) ±20.000 Oe aralığında ve (b) ±100 Oe aralığındaki manyetizasyon eğrileri.

- **Şekil 4.63:** 1, 3, 5, 12, 32 ve 48 hafta sonunda açık hava ortamında bekletilen sodyum oleat ve tartarik-askorbik asitle kaplanan numunelerin doyum manyetizasyonu değerleri.
- **Tablo 4.10:** Oleat ile kaplı nanoparçacıkların hidrotermal sentez şartları, parçacık boyutları ve manyetizasyon değerleri.

Numune No	Süre (saat)	Sıcaklık (°C)	Parçacık Boyutu		Manyetik Sonuçlar		
			d _{тем} (nm)	d _{xrD} (nm)	M _s (emu/g)	H _s (Oe)	H _c (Oe)
NaOl1			7		53.1	8948	0
NaOl2			7	9	53.3	9013	0
HNaOl2-1	24	180	11.1±2	10	68.4	4357	2
HNaOl1	48	180	10.4±2	12	66.1	3609	5
HNaOl2-2	120	180			67.5	4138	2
HNaOl2-3	12	200		10	66.9	4895	0

4.4.2 Hidrotermal Yöntemle Nanoparçacıkların Kaplanması ve Karakterizasyonu

Öncül madde sentezlendikten sonra 15 ml alınarak basınçlı kaba aktarıldı. Daha sonra, 5 mmol sodyum oleat basınçlı kaba ilave edilerek karıştırıldı. 160 °C sıcaklıkta 12 saat hidrotermal işleme tabi tutuldu.

Şekil 4.58 (a)'da numunenin elektron krınım deseninde (220), (311), (400), (422), (511), (440) düzlemlerine ait yansımalar görülmektedir. Bu yansımalar XRD desenindeki kristal yapıyı desteklemektedir. Şekil 4.58 (b) ve (c)'de numunenin 20 nm ve 0.1µm skalasında TEM fotoğrafları verilmiştir. Parçacık boyutu Image J programından 11±3 nm olarak hesaplanmıştır. 0.1 µm skalasında TEM fotoğrafına bakıldığında parçacıkların bir araya gelerek topaklandıkları görülmektedir. Bunun sebebinin hidrotermal sentez sırasında karıştırma işleminin yetersizliğinden kaynaklandığı düşünülmektedir.

Numunenin VSM eğrisi Şekil 4.59'da verilmiştir. M_s ve H_s değerleri sırasıyla 61.2 emu/g ve 5319 Oe'dir. Parçacık boyutu 10 nm'yi geçtiğinde küçük H_c değerleri görülmektedir. H_c değeri 4 Oe'dir. Bu H_c değeri oldukça küçüktür. Ve ihmal edilebilir. Buna göre nanoparçacıklar süperparamanyetiktir denilebilir. Kaplı olamayan parçacıklarla kıyaslandığında H_s değeri bu boyutlardaki parçacıklara göre küçüktür. Yüzeyleri oleat ile kaplı olduğundan dolayı, bu boyuttaki parçacıklardan daha düşük M_s değeri ve daha küçük H_s değerleri elde edilmiştir.

Şekil 4.64: (a) Nanoparçacıkların elektron krınım deseni, (b) 20 nm ve (c) 0.1µm skalasında TEM görüntüleri.

H (kOe)

Şekil 4.65: Numunenin (a) ±20.000 Oe aralığında ve (b) ±200 Oe aralığındaki manyetizasyon eğrileri.

4.5 Suda çözülebilen nanoparçacıkların toksitesi

Hücre ortamına, kaplı ve kaplı olmayan nanoparçacıklar uygulanarak hücrelerin canlı kalıp kalamayacakları gözlendi. Bunun için kaplı olmayan öncül madde ve ortak çöktürme sentezi sırasında askorbik asit-tartarik asitle kaplanan nanoparçacıklar kullanıldı.

MTT (3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) yöntemiyle bir hücre topluluğundaki canlı hücrelerin oranı kolorimetrik yöntemle kantitatif olarak saptanabilmektedir. Tetrazolium tuzunun sadece metabolik aktivitesi olan hücreler tarafından renkli formazanlara indirgenmesinden dolayı bu yöntem sadece canlı hücreleri saptar. Tetrazolium halkasının parçalanması sonucu soluk sarı renkli MTT boyası koyu mavi-mor formazan ürününe dönüşmektedir. Sonuç olarak canlı ve mitokondri fonksiyonu bozulmamış hücreler mor renkte boyanmakta, ölü ya da mitokondri fonksiyonu bozulmuş hücreler boyanmamaktadır. [58, 59]. Şekil 4.66'da görüldüğü gibi numunelerde kuyucukların mor renkte olmasıdan dolayı, hücrelerin canlı kaldığı görülmektedir.

Şekil 4.66: Hücre ortamına, kaplı ve kaplı olmayan demir oksit nanoparçacıkları uygulandıktan sonra hücrelerin fotoğrafi.

İnsan göbek bağı damarı endotel hücreleri (Human umbilizol vein endottel cells, HUVEC), İnsan Hepatoma Hücre Hattı (Hep3B) ve İnsan Kemik kanseri hücre hattı (Saos-2) hücreleri %10 FCS içeren DMEM (Dulbecco's Modified Eagle Medium) içerecek şekilde 37 °C ve %5 CO₂'li ortamda büyütüldü. Yeterli olarak flaskları kaplayan pasaj 3 aşamasındaki hücreler 48 kuyucuklu plakalara paylaştırıldı. (60.000 hücre/kuyucuk) Kaplı ve kaplı olmayan parçacıklar, HUVEC hücreleri üzerine, 5 farklı konsantrasyonda 24 ve 48 saat, Hep3B hücreleri üzerine 5 farklı konsantrasyonda 24 ve 48 saat, Hep3B hücreleri üzerine 5 farklı konsantrasyonda 24 ve 48 saat, Hep3B hücreleri üzerine 5 farklı konsantrasyonda, 24 saat, Saos-2 hücreleri üzerine 4 farklı konsantrasyonda, 24 ve 48 saat inkübe edildikten sonra hücrelere 25 µL 50mg/mL MTT solusyonundan eklendi ve 4 saat inkübatör içerisinde bekletildi. 4 saat sonrasında hücrelerin medyum uzaklaştırıldı ve % 0,005 HCl içeren izopropanol solusyonu kullanılarak kristaller çözüldü. 550 nm dalga boyunda spektrofotometrik olarak canlı hücrelerin verdiği absorbans değeri belirlendi [59]. Şekil 4.67'de kök hücrelerinin, Şekil 4.68'de Hep3B hücrelerinin ve Şekil 4.69'de Saos-2 hücrelerinin stotoksite grafikleri verilmiştir. Buna göre hücreler 24 saat ve 48 saat sonunda hala canlıdırlar.

Şekil 4.67: HUVEC hücrelerinin (a) 24 saat ve (b) 48 saat sonundaki stotoksite grafikleri (SH: sadece hücre).

Şekil 4.68: Hep3B hücrelerinin 24 saat sonundaki stotoksite grafiği (SH:sadece hücre).

Şekil 4.69: Saos-2 hücrelerinin (a) 24 saat ve (b) 48 saat sonundaki stotoksite grafikleri (SH: sadece hücre).

5. SONUÇ

Bu çalışma, yüzeyleri kaplı olan ve kaplı olmayan manyetik nanoparçacıkların sentezini ve karakterizasyonunu içermektedir. Çalışmada, yüksek doyum manyetizasyonuna, M_s sahip nanoparçacıklar ortak çöktürme yöntemiyle sentezlenmiştir. Daha sonra da bu nanoparçacıklara hidrotermal metod uygulanmıştır. Hidrotermal metotta, sentez parametrelerinin nanoparçacıkların yapısal ve manyetik özellikleri üzerindeki etkileri incelenmiştir. Daha sonra nanoparçacıkların yüzeyleri, ortak çöktürme ve hidrotermal sentez teknikleri ile su ve yağ bazlı yüzey aktif maddeler ile kaplanmıştır. Suda çözülen nanoparçacıklar biyolojik uygulamalar için elverişlidir. Bu yüzden suda çözülen nanoparçacıkların toksik özellikleri, MTT yöntemiyle araştırılmıştır. Manyetik nanoparçacıklar canlı dokulara uygulanmış, 24 ve 48 saat sonunda hücrelerin canlı kaldıkları görülmüştür.

Numunelerin yapısal karakterizasyonu, X-ışını kırınımı (XRD), kızılötesi spektroskopi (FT-IR) ve geçirmeli elektron mikroskopu (TEM) kullanılarak yapılmıştır. İlk olarak ortak çöktürme ile sentezlenen süperparamanyetik özellikteki nanoparçacıklara (öncül madde) farklı sıcaklıklarda (60 °C, 100 °C, 150 °C, 180 °C ve 200 °C) hidrotermal işlem uygulanmıştır. XRD analizlerine göre tüm numuneler kübik spinel yapıda demir oksittir (magnetit veya maghemit). Sıcaklığın arttırılmasıyla, pik şiddetleri ve kristal boyut artmıştır. TEM fotoğraflarından elde edilen parçacık boyutları, 100 °C, 150 °C ve 180 °C için sırasıyla 15±4 nm, 17±4 nm ve 30±9 nm'dir. 100 °C ve 150 °C sıcaklıklarda kristal boyut ve TEM boyutları uyumludur. 180°C sıcaklıkta polidispersliğin artmasıyla kristal boyut ve TEM boyutu arasında fark oluşmuştur. FT-IR spektrumuna bakıldığında sıcaklık arttıkça 630 cm⁻¹'deki maghemit pikinin şiddetinin azaldığı görülmüştür. Sıcaklık arttıkça parçacık boyutu artmış ve yüzey alanı azaldığından, parçacık yüzeylerindeki oksidasyon azalmıştır. Numunelerin manyetik ölçümleri titreşimli numune magnetometresi (VSM) ile yapılmıştır. hidrotermal işlem sonrası elde edilen tüm parçacıklar ferrimanyetiktir. Parçacık boyutu arttığından dolayı histeresis eğrisi oluşmuştur. Öncül maddenin doyum manyetizasyonu, M_s değeri 69 emu/g'dır. Nanoparçacıklara hidrotermal işlem uygulandığında sıcaklığın artmasıyla birlikte M_s

değeri de artmıştır. 200 °C sıcaklıkta M_s değeri 92.6 emu/g, doyum manyetizasyonu, H_s değeri 2684 Oe ve koersivite, H_c değeri 30 Oe'dir. M_s değeri bulk magnetite eşdeğerdir. (Magnetit için 92 emu/g ve maghemit için ~80 emu/g [77]). Sıcaklığın artmasıyla birlikte H_s değerleri de azalmıştır. Parçacık boyutları arttığından dolayı parçacıklar daha kolay doyuma ulaşmışlardır. 200 °C sıcaklıkta sentezlenen numune için H_s ve H_c değerleri oldukça düşüktür. Bu numunenin çoklu domain yapısında olduğu düşünülmektedir. Ayrıca reaksiyon süresinin nanoparçacıklar üzerine etkisi de incelenmiştir. 100 °C, 150 °C, 160 °C ve 180 °C sıcaklıklarda süperparamanyetik nanoparçacıklar üzerine farklı sürelerinde hidrotermal işlem uygulanmıştır. Her sıcaklıkta reaksiyon süresi arttırıldığında kristal boyutun da arttığı görülmüştür. Reaksiyon süresinin etkisine bakıldığında sıcaklığın etkili olduğu, yüksek sıcaklıklarda, daha kısa reaksiyon sürelerinde daha hızlı boyut artışının gerçekleştiği görüldü. 160 °C sıcaklıkta 92 saatte bulk yapıya eşdeğer M_s değeri elde edilirken 180 °C sıcaklıkta 24 saatte elde edilmiştir. Bulk yapıdaki parçacıkların daha kolay doyuma gitmekte olduğu görülmüştür.

Daha sonra nanoparçackların yüzeyleri, farklı yüzey aktif maddelerle kaplanmıştır. İlk olarak ortak çöktürme sentezi sırasında kaplama yapılmıştır. Suda çözülen nanoparçacıklarda, yüzey aktif madde olarak askorbik asit ve tartarik asit kullanılmıştır. En iyi dispersiyon, iki yüzey aktif madde birlikte kullanıldığında elde edilmiştir. Yapılan FT-IR ölçümlerinden parçacıkların yüzeylerinin askorbik asit ve tartarik asit ve tartarik asitle kaplı olduğu doğrulanmıştır. Askorbik asit ve tartarik asit kaplı numunelerde aynı FT-IR pikleri gözlenmiştir. Yüzey aktif maddeler nanoparçacık yüzeylerine kimyasal olarak bağlanmıştır ve ortamda serbest yüzey aktif madde yoktur.

Nanoparçacıkların yüzey alanları hacimlerine kıyasla oldukça büyüktür. Bu yüzden kolayca okside olarak manyetik özelliklerini kaybetmektedir. Bu anlamda etkili bir yüzey kaplaması önemlidir. Açık hava ortamında bekletilen, tartarik asitaskorbik asit kaplı nanoparçacıkların 1, 3, 5, 12, 32 ve 48 hafta sonunda manyetik ölçümleri tekrarlanmıştır. 12 haftaya kadar M_s değerlerinde değişim görülmemiştir. 32. haftada ise M_s değeri 60 emu/g'dan 57 emu/g'a düşmüştür. 48. haftada yapılan ölçüm sonucunda M_s değerinde değişim görülmemiştir. Yüzey kaplamasının etkili olduğu söylenebilir. Ortak çöktürme ile kaplanan numunerden birkaçına hidrotermal işlem uygulanmıştır. Hidrotermal işlem uygulandığında, yüzey aktif madde kullanılmadan yapılan sentezlerle kıyaslandığında, parçacık boyutlarında büyük artışlar görülmemiştir. Yüzey aktif maddeler nanoparçacıkların yüzeylerini sararak boyut artışını sınırlandırmışlardır. Hidrotermal işlem uygulanmasına rağmen numuneler süperparamanyetik özelliklerini korumaktadırlar. Demir oksitler 10 nm'den sonra süperparamanyetik özelliklerini kaybederler [36]. Buna göre tüm kaplı nanaoparçacıkların 10 nm'nin altında olduğu düşünülmektedir.

Hidrotermal işlem sırasında kaplama yapıldığında, yüzey aktif madde olarak tartarik asit kullanıldığında büyük M_s değeri elde edilmiştir. İki yüzey aktif madde birlikte kullanıldığında en düşük M_s değeri elde edilmiştir. FT-IR sonuçlarına bakıldığında iki yüzey aktif madde birlikte kullanıldığında bazı pik şiddetlerinin arttığı görülmüştür. Nanoparçacıkların yüzeylerindeki yüzey aktif madde miktarı arttığı bu da M_s değerinin düşmesine neden olduğu düşünülmektedir. Ayrıca yüzey kaplaması manyetik nanoparçacıkların daha kolay doyuma gitmesini sağlamıştır. Askorbik asit, tartarik asit ve ikisini de içeren numunelerin mayetik sonuçlarında, H_c değeri görülmemektedir ve numuneler süperparamanyetiktir.

Diğer bir bölümde yüzey aktif madde olarak sodyum oleat kullanılmıştır. Nanoparçacıkların yüzeyleri oleat ile kaplandığında, nanoparçacıklar kloroform içinde dispers eldilmişlerdir. Ortak çöktürme sentezi sırasında, sodyum oleat öncül maddenin kristallenmesinin ardından ortama ilave edilmiştir. Bu yüzden nanoparçacıkların boyutlarına yüzey aktif maddenin etkisi olmamıştır. Sentezlenen nanoparçacıkların TEM boyutu 7 nm'dir. Nanoparçacıkların yüzeyleri oleat ile kaplı olduğundan, öncül maddedeki M_s değeri 69 emu/g iken, kaplı nanoparçacıklarda 53 emu/g değerine düşmüştür.

Ortak çöktürme senteziyle oleat kaplanmış nanoparçacıklarda, kaplamanın etkili olup olmadığını araştırmak için açık hava ortamında bekletilen nanoparçacıkların, 1, 3, 5, 12, 32 ve 48 hafta sonunda manyetik ölçümleri tekrarlanmıştır. Oleat ile kaplı olan numunede de 12 inci haftaya kadar M_s değerinde değişim görülmemiştir. 32 inci haftada ise M_s değeri 51 emu/g'dan 45 emu/g'a düşmüştür. 48 inci haftada yapılan ölçüm sonucunda M_s değerin 46.7 emu/g'dır.

Buna göre 48 haftaya kadar M_s değerinde büyük bir düşüş görülmemiştir. Kaplamanın parçacıkları oksidasyona karşı koruduğu söylenebilir.

Oleat ile kaplı nanoparçacıklara hidrotermal işlem uygulandığında parçacık boyutunda büyük artışlar görülmemiştir. 180 °C sıcaklıkta 24 saat hidrotermal işlem uygulandığında TEM boyutu 11.1 \pm 2 nm'ye yükselmiştir. M_s değeri ortalama 67 emu/g elde edilmiştir. Sıcaklık 200 °C'ye çıkarıldığında bile nanoparçacıklar hala süperparamanyetiktir. Yüzey aktif madde nanoparçacıkların hızlı bir biçimde büyümelerini engellemiştir. Ayrıca H_s değerleri de kaplanmamış nanoparçacıklarla kıyaslandığında oldukça düşüktür. Nanoparçacıkların yüzeyindeki oleat nanoparçacıkların daha düşük manyetik alanda doyuma gitmesini sağlamıştır.

Suda çözülebilen askorbik-tartarik asitle kaplı nanoparçacıkların biyolojik uygulamalar için elverişli oldukları düşünülmektedir. Bu yüzden, toksik etki gösterip göstermediği MTT testi uygulanarak incelenmiştir. Kaplı ve kaplı olmayan (öncül madde) parçacıklar, HUVEC hücreleri üzerine 5 farklı konsantrasyonda 24 ve 48 ssat, Hep3B hücreleri üzerine 5 farklı konsantrasyonda, 24 saat, Saos-2 hücreleri üzerine 4 farklı konsantrasyonda, 24 ve 48 saat inkübe edildi. Canlı ve mitokondri fonksiyonu bozulmamış hücreler mor renkte boyanmakta, ölü ya da mitokondri fonksiyonu bozulmuş hücreler boyanmamaktadır. Bütün konsantrasyonlarda hücrelerin mor renkte oldukları görüldü. Buna göre demir oksit nanoparçacıkları toksik etki göstermemektedir. Ayrıca yüzey kaplaması da biyouyumludur.

6. KAYNAKLAR

[1] Goesmann, H. and Feldmann, C., "Nanoparticle Function Materials", *Angew. Chem. Int. Ed.*, 49, 1362-1395, (2010).

[2] Jeong, U., Teng, X., Wang, Y., Yang, H. and Xia, Y., "Superparamagnetic Colloids: Controlled Synthesis and Niche Applications", *Adv. Matter*, 19, 33-60, (2007).

[3] Lu, A., Salabas, E.L. and Schüth, F., "Magnetic Nanoparticles: Synthesis, Protection, Functionalization and Application", *Angew. Chem. Int. Ed.*, 46, 1222-1244, (2007).

[4] Cornell, R. M., Schwertmann, U., "*The Iron Oxides*", Wiley-VCH 2nd Edition (2003).

[5] Fan, R., Chen, X. H., Gui, Z., Liu, L. and Chen, Z. Y., "A new simple hydrothermal preparation of nanocrystalline magnetite Fe_3O_4 ", *Materials Research Bulletin*, 36, 497-502, (2001).

[6] Liu, Z.L., Liu, Y. J., Yao, K. L., Ding, Z. H., Tao, J. and Wang, X., "Synthesis and magnetic properties of Fe₃O₄ nanoparticles", *Journal of Materials Synthesis and Processing*, 10, 83-87, (2002).

[7] Park, J., An, K., Hwang, Y., Park, J., Noh, H., Kım, J., Park, J., Hwang, N., and Hyeon, T., "Ultra-large-scale synthesesof monodisperse nanocrystals", *Advance online publication* doi:101038/nmat1251, (2004).

[8] Sharifi, I., Shokrollahi, H., Doroodmand, M. M. and Safi R., "Magnetic and structural studies on $CoFe_2O_4$ nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods" *Journal of Magnetism and Magnetic Materials* 324, 1854-1861, (2012).

[9] Mohapatra, M. and Anand, S., "Synthesis and Aplications of nano-structured iron oxide/hydroxides-a review", *International Journal of Engineering, Science and Thecnology 2*, 127-146, (2010).

[10] Shen, L., Laibinis, P. E. and Hatton T. A., "Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces", *Langmuir*, 15, 447-453, (1999).

[11] E van Vlerken, L., Amiji, M. M., "Multi-functional polymeric nanoparticles for tumour-targeted drug delivery", *Expert Opin. Drug Deliv.*, 3, 205, (2006).

[12] Arruebo, M., Fernandez-Pacheco, R., Ibarra, M. R., and santamaria J., "Magentic nanoparticles for drug delivery" *Review Nanotoday*, 2,3, 22-32, (2007).

[13] Lam, U. T., Mammucari, R, Suzuki, K., and Foster, N. R., "Processing of Iron Oxide Nanoparticles by Supercritical Fluids" *Ind. Eng. Chem. Res.*, 47, 599-614, (2008).

[14] Reddy, L. H., Arias, J. L., Nicolas, J., and Couvreur, P., "Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications", *Chem Rev.*, 112, 5818-5878, (2012).

[15] Tartaj, P., Del Puerto Morales, M., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T. and Serna, J. C., "The Preparation of Magnetic nanoparticles for Applications in biomedicine", *J. Phys. D: Appl. Phys.*, 36, 182-197, (2003).

[16] Laurent, S., Forge, D., Port, M., Roch, A. Robic, C. Elst, L.V. and Muller, R.N., "Magnetic Iron Oxide Nanoparticles", *Chem.Rev.*, 108, 2064-2110, (2008).

[17] Gossuin, Y., Gillis, P., Hocq, A., Vuong, Q. and Roch, A., "Magnetic resonance relaxation properties of superparamagnetic particles", *John Willey&sons*, 1, 299-310, (2009).

[18] Schwertmann, U. and Cornell, R. M., *Iron Oxides in the Laboratory*, Wiley-Vch (2000).

[19] Krishanan, M. K., "Biomedical Nanomagnetics: A spin Through Possibilities in Imaging, Diagnostics, and Therapy" *IEEE Transactions on Magnetics*, 46, 2523-(2010).

[20] Teja, A. S. and Koh, P.-Y., "Progress in Crystal Growth and Characterization of Materials", doi: 10.1016/j.pcrysgrow.2008.08.003, (2008).

[21] Umut E., "Surface Modification of nanoparticles used in biomedical applications", <u>http://dx.doi.org/10.5772/55746</u>, (2013).

[22] Sorensen C. M., *Magnetism*, John Wiley & Sons, Inc, DOI: 10.1002/0471220620.ch6, (2002).

[23] Butler, Robert F., University of Portland, *PALEOMAGNETISM:Magnetic Domains to Geologic Terranes*, Electronic Edition, September 2004, http://www.pmc.ucsc.edu/~njarboe/pmagresource/ButlerPaleomagnetismBook.pdf.

[24] Jun, Y-W., SeoJ.-W., and Cheon, J., "Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences" *Accounts of Chemical Research*, 41, 179-189, (2008).

[25] Mørup, S., Hanse, n M.F. and Frandsen, C., "Magnetic interactions between nanoparticles", *Beilstein Journal of Nanotechnology* 1, 182-190,. (2010).

[26] Chikazumi, S., *Physics of Magnetism*, (English Edition Prepared with the assistance of Charap S H.) Robert E. Krieger Publishing Company, Malabar, Florida (1964).

[27] Bayrak, M., Temel Elektrik ve Manyetizma, Nobel Yayın, (2002).

[28] Shylesh, S., Schünemann, V. and Thiel, W. R., "Magnetically Separable Nanocatalysts: Bridges between Homogenous and Heterogeneous Catalysis", *Angew. Chem. Int. Ed.*, 49, 3428-3459, (2010).

[29] Gossuin, Y., Gillis, Pierre., Hocq A., Vuong Q. L., and Roch, A., "Magnetic resonance relaxationproperties of superparamagnetic particles" *John Wiley & Sons, Inc.*, 1, 299-310, (2009).

[30] Huber, D. L.,"Iron Nanoparticles", Small, 1, 5, 482-501, (2005).

[31] Colombo, M., Carregal-Romero, S., Casula, M. F., Gutierrez, L., Morales, M. P., Böhm, I. B., Heverhagen, J. T., Prosperi, D. and Parak, W. J., "Biological applications of magnetic nanoparticles", *Chem. Soc. Rev.*, 41, 4306-4334, (2012).

[32] Bronstein, L. M., Huang, X., Retrum, J., Schmucker, A., Pink, M., Stein, B. D., and Dragnea B., "Influence Of Iron Oleate Complex Structure On Iron Oxide Nanoparticle Formation", *Chem. Matter*, 19, 3624-3632, (2007).

[33] Park, J., Lee, E., Hwang, N., Kang, M., Kim, S. C., Hwang, Y., Park, J., Noh, H., Kim, J., Park, J., and Hyeon, T., "One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles", *Angew. Chem. Int. Ed.*, 44, 2872-2877, (2005).

[34] Lefebure, S., Dubois, E., Cabuil, V., Neveu, S. and Massar, tR., "Monodisperse Magnetic Nanoparticles: Preparation And Dispersion in Water and Oils", *J. Matter. Res*, 13, (1998).

[35] Lee, K.M., Sorensen, C. M. and Klabunde, K. J., "Synthesis And Characterization Of Stable Colloidal Fe_3O_4 Particles In Water-In-Oil Microemulsions", *IEEE*, 7803, 0637,(1992).

[36] Karaağaç, Ö., "Synthesis and Characterization of Superparamagnetic Nanoparticles with Optimized Saturation Magnetization and Their Application of Enzyme Immobilization, Doktora Tezi, *Balikesir Üniversitesi*, (2011).

[37] Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker, J. R., Banaszak Holl, M., Orr, B.G., "Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties" *J.Phys. Chem.*, 113, 13593-13599, (2009).

[38] Daou, T. J., Pourroy, G., Bégin-Colin, S, Grenéche, J. M., Ulhaq-Bouille, t C., Legaré, P., Bernhardt, P., Leuvrey, C., and Rogez, G., "Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles" *Chem. Mater.* 18, 4399-4404, (2006).

[39] Taniguchi, T., Nakagawa, K., Watanabe, T., Matsushita, N., and Yoshimura, M. "Hydrothermal Growth of Fatty Acid Stabilized Iron Oxide Nanocrystals", *J.Phys.Chem.*, C 113, 839-843, (2009).

[40] Li, G., Peng, W., Li, X., Fan, X., Li, X., Zhang, G., and Zhang, F "Pressure and solvent induced low-temperature synthesis of monodisperse superparamagnetic nanocrystals: the case of Fe_3O_4 In Alkanols", *Applied Surfece Science*, 25, 44970-4979, (2008).

[41] Wang, J., Sun, J., Sun, Q., Chen, Q., "One-step hydrothermal process to prepare highly crystalline Fe₃O₄ nanoparticles with improval magnetic properties", *Materials Research Bulletin*, 38, 1113-1118, (2003).

[42] Xuan, S., Hao, L., Jiang, W., Gong, X., Hu, Y, Chen, Z., "Preparation of watersoluble magnetite nanocrystals through hydrothermal approach", *Journal of Magnetism and Magnetic Materials*, 308, 210-213, (2007).

[43] Sun, X., Zheng, C., Zhang, F., Yang, Y., Wu, G., Yu, A., and Guan, N., "Size-Controlled Synthesis of Magnetite (Fe₃O₄) Nanoparticles Coated with Glucose and Gluconic Acid from a Single F(III) Precursor by a Sucrose Bifunctional Hydrothermal Method", *J. Phys. Chem.*, 113,.36, (2009).

[44] Lee, D. K., Kim, Y. H., Zhang, X., Kang, Y. S, "Preparation Of Monodisperse Co and Fe Nanoparticle Using Precursor Of M²⁺-Oleate₂", *Current Applied Physic*, 6, 4, 786-790, (2006).

[45] Roca A.G., Morales M.P., and Serna "Synthesis of Monodispersed Magnetite Particles From Different Organometallic Precursors", C.J., *Ieee Transactions on magnetics*, 42, (2006).

[46] Hergt, R., Dutz, S., Müller, R., and Zeisberger, M., "Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy", *J. Phys.: Condens. Matter*, 18, 2919-2934, (2006).

[47] Kumar, C. S. S. R., Mohammad, F., "Magnetic nanomaterials for hyperthermiabased therapy and controlled drug delivery", *Advenced Drug Delivery Rewievs*, 63, 789-808, (2011).

[48] Kim, J., Kim, H. S., Lee, N., Kim, T., Kim, H., Yu T, Song, C., Moon, W K., Hyeon, T, "Multifunctional Uniform Nanoparticles Composed of a Megnetite Nanocrystal Core and a Mesoprous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery", *Angew. Chem. Int. Ed.*, 47, 8438-8441, (2008).

[49] Dokumacı, D. Ş.,, "Manyetik rezonans görüntüleme kontrast maddeleri ve yan etkileri", *Harran Üniversitesi* Tıp Fakültesi Dergisi 9, 3, 119-125, (2012).

[50] Bin Na, H., Song, C., and Hyeon, T, "Inorganic Nanoparticles for MRI Contrast Agents" *Adv. Mater*, 21, 2133-2148, (2009).

[51] Wu, W., He, Q., Jiang C., "Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies", *Nanoscale Res Lett*, 3, 397-415, (2008).

[52] Cullity B. D., *X-ışınları Difraksiyonu*, Çeviren: Prof. Dr. Ali Sümer, İstanbul Teknik Üniversite Matbaası, 83-90 (1966).

[53] Gubin, S.P., Koksharov, Yu A., Khomutov, G.B., Yu Yurkov, G., "Magnetic nanoparticles: preparation, structure and properties" *Russ. Chem. Rev.*, 74, 489, (2005).

[54] Silverstein, R.M., G.Clayton Bassler, Terence C. Morrill. *Spectrometric Identification Of Organic Compounds*, John Wiley & Sons Inc (1964).

[55] Stuart, B. Inftared Spectroscopy, Fundemental and Aplications" John Wiley&Sons. Ltd (2004).

[56] "Transmission electron microscopy", (2 Mayıs 2015), http://en.wikipedia.org/wiki/Transmission_electron_microscopy, (2015)

[57] "Vibrating sample magnetometer", (2 Mayıs 2015), <u>http://en.wikipedia.org/wiki/Vibrating_sample_magnetometer</u>, (2015).

[58] Oktar, N., K562 Hücre Dizisinde Fosfin Bileşiklerinin Sitotoksik Etkisinin MTT (3-[4,5-DIMETHYLTHIAZOLE-2YL]-2,5-DIPHENYLTETRAZOLIUM BROMIDE; THIAZOLYL BLUE) ile araştırılması *Çukurova Üniversitesi* (2009).

[59] Tokay, E., "İnsan UR6-4 (Up-Regulated Gene-4) geninin transkripsiyonel regülasyonu", Doktora Tezi, *Balikesir Üniversitesi*, Biyoloji Bölümü, (2014).

[60] Roca A. G., Marco J. F., del Puerto Morales M., and Serna C. J., "Effect of Nature and Particle Size on Properties of Uniform Magnetite and MAghemite Nanoparticles", *J. Phys. Chem*, 111, 18577-18584, (2007).

[61] SalazarJ. S., Perez L., de Abril O., Phuoc L. T., Ihiawakrim D., Vazquez M., Greneche J., Begin-Colin S., and Pourroy G., "Magnetic Iron Oxide Nanoparticles in 10-40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties" *Chem. Mater*, 23, 1379-1386, (2011).

[62] Cabuil, V., Dupuis, V., Talbo,t D., Neveu, S., "Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the particle size", *Journal of Magnetism and Magnetic Materials*, 323, 10, 1191-1422, (2011).

[63] Gajbhiye, N. S., Sharma, S.Nigam, A K., Ningthoujam, R. S., "Tuning of single to multi-domain behaviour for monodispersed ferromagnetic cobalt nanoparticles", *Chemical Physics Letters*, 466, 181-185, (2008).

[64] "Ascorbic Acid", (2 Mayıs 2015). <u>http://en.wikipedia.org/wiki/Ascorbic_acid</u>, (2015)

[65] Lohmann, W., Pagel, D., and Penka V., "Structure of ascorbic acid and its biological function", *Eur. J. Biochem.*, 138, 479-480, (1984).

[66] Williams, D., and Rogers, L. H., "The Infrared Absorption of Vitamin C", J. Am. Chem. Soc, 59, 1422,(1937).

[67] Xiao, L., Li J., Broughman, D. F., Fox, E. K., Feliu, N., Bushmelev, A., Schmidt, A, Mertens, N., Kiessling, F., Valldor, M., Fadeel, B., and Mathur, S., "Water-Soluble Superparamgnetic Magnetite Nanoparticles with Biocompatible Coating for Enhanced Magnetic Resonance Imaging", *Americal Chem.*, 5, 8, 6315-6324, (2011).

[68] Xiong J., Wang Y., Xue Q., Wu X., "Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid", *Green Chem.*, 13, 9000-9004, (2011).

[69] Martin Britto D has S. A., Suresh M., Bhagavannarayana, G., Natarajan, S., "Growth and characterization of L-Tartaric acid, an NLO material" *Journal of Crystal Growth*, 309, 48-52, (2007).

[70] Hon, Y. M., Chung, H. Y., Fung, K. Z., and Hon, M. "NMR and FT-IR Investigation of Spinel LiMn2O4 Cathode Prepared by the Tartaric Acid Gel *ProcessJournal of Solid State Chemistry*, 160, 368-374, (2001).

[71] Yan, J., Mo, S., Nie, J., Chen, W., Shen, X., Hu, J., Hao, G., Tong, H., "Hydrothermal ynthesis of monodisperse Fe_3O_4 nanoparticles based on modulation of tartaric acid", *Colloid and Surfaces: Physicochem. Eng. Aspects*, 340, 109-114, (2009).

[72] Feng, L., Cao, M., Ma, X., Zhu, Y., Hu, C., "Superparamagnetic high-surfacearea Fe₃O₄ nanoparticles as adsorbents for arsenic removal", *Journal of Hazardous Materials*, 217–218, 439–446, (2012).

[73] "Sodium oleate", ChemicalBook., (2 Mayıs 2015)
<u>http://www.chemicalbook.com/ChemicalProductProperty_EN_CB7965720.htm</u>,
(2010)

[74] Araújo-Neto, R.P., Silva-Freitas, E.L., Carvalho, J.F., Pontes, T.R.F., Silva, K.L., Damasceno, I.H.M., Egito, E.S.T., Dantas, A.L., Morales, M.A., Carriço, A.S., "Monodisperse sodium oleaate coated magnetite high susceptibility nanoparticles for nhypertermia applications", *Journal of Magnetism and Magnetic Materials*, 364, 72-79, (2014).

[75] Dodi, G., Hritcu, D., Draganescu, D., Popa, M. I., "Iron oxide nanoparticles for magnetically assisted pattern coatings", *Journal of Magnetism and Magnetic Materials*, 338, 49-58, (2015).

[76] Jiang, W., Wu, Y., He, B., Zeng, X., Lai, K., Gu, Z., "Effect of sodium oleate as a buffer on the the synthesis of superparamagnetic magnetite colloids", *Journal of Colloid and Interface Science*, 347, 1-7, (2010).

[77] Guardiaa, P., Batlle-Brugala, B., Rocab, A.G.", Surfactant effects in magnetite nanoparticles of controlled size", *Journal of Magnetism and Magnetic Materials*, 316, e756–e759, (2007).