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Abstract
This study investigates the possible effects of climate change on temperature and precipita-
tion variables in the Eastern Black Sea Basin, Türkiye’s wettest and flood-prone region. 
The outputs of three GCMs under historical, RCP4.5, and RCP8.5 scenarios were down-
scaled to regional scale using the multivariate adaptive regression splines method. The 
future monthly temperature and precipitation for 12 stations in the basin were projected 
for three periods: the 2030s (2021–2050), 2060s (2051–2080), and 2090s (2081–2100). In 
addition to relative changes, high and low groups and intra-period trends were analyzed for 
the first time using innovative methods. For the pessimistic scenario, an increase of 3.5 °C 
in the interior and 3.0 °C in the coastal areas of the basin is projected. For the optimistic 
scenario, these values are expected to be 2.5 and 2.0 °C, respectively. A decrease in pre-
cipitation is projected for the interior region, and a significant increase is expected for the 
eastern and coastal areas of the basin, especially in spring. This result indicates that floods 
will occur frequently coastal areas of the basin in the coming periods. Also, although the 
monotonic trends of temperatures during periods are higher than precipitation in interior 
regions, these regions may have more uncertainty as their trends are in different directions 
of low and high groups of different scenarios and GCMs and contribute to all trends, espe-
cially precipitation.

Keywords  Eastern Black Sea Basin · Climate change · Innovative trend analysis · 
Multivariate adaptive regression splines · Statistical downscaling

1  Introduction

In recent years, depending on the development of technology and the increase in popu-
lation, industrialization, consumption, and environmental destruction have increased rap-
idly. Such increases have also raised greenhouse gas emissions, the most significant cause 
of the change in the world climate (Nourani et  al. 2019). The effects of changes in the 
climate of the regions on the hydrological cycle and, therefore, on water resources have 
critical importance because all life and ecosystems depend on water (Günen and Atasever 
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2024; Mekonnen and Disse 2018; Semadeni-Davies et al. 2008). For this reason, planners 
need to determine how existing water resources will be affected under changing climatic 
conditions, use resources under changing conditions, and prepare new water resource strat-
egies for future periods. This is achieved by obtaining information about the impact of 
climate change on hydro-meteorological variables at a local scale (Al-Mukhtar and Qasim 
2019). Investigating how precipitation and temperature values, the most influential vari-
ables of the hydrological cycle and climate, will change under the effects of climate change 
in the future can help decision-makers make effective decisions to overcome problems such 
as drought and floods (Nourani et al. 2019).

General circulation models (GCMs) are the most reliable tools to predict future cli-
mate based on socio-economic and demographic factors corresponding to different emis-
sion scenarios (Araya-Osses et al. 2020; Ouhamdouch and Bahir 2017). However, one of 
the main problems encountered in evaluating the effects of climate change with the out-
puts of GCMs is that the resolutions of these models are coarse (250 to 600 km). In addi-
tion, GCMs cannot capture the regional processes in the regions, where mountain ranges 
are located and cannot appropriately include the orographic features of these regions in 
the calculations (Campozano et al. 2016). These data cannot be used directly to analyze 
the effects of hydrological and environmental climate change factors on a regional scale 
(Okkan and Inan 2015b; Ouhamdouch and Bahir 2017; Wilby et al. 2002). Therefore, these 
coarse-resolution GCMs must be downscaled to higher spatial and temporal resolution (Al-
Mukhtar and Qasim 2019). Downscaling methods have emerged to downscale large-scale 
atmospheric variables to local-scale meteorological variables (Huang et al. 2011). Downs-
caling methods are divided into two groups in the literature: dynamic and statistical down-
scaling methods (Okkan and Kirdemir 2016; Wilby et  al. 1998). Dynamic downscaling 
is based on physical climate models operated on a regional scale. These models take the 
initial and boundary conditions from the GCM outputs and can be run at higher resolu-
tions, considering their topographic features (Crane and Hewitson 1998; Okkan and Inan 
2015a). However, the computational costs of dynamic downscaling methods are quite high 
compared to statistical methods. In addition, this method includes certain parameterization 
processes to obtain higher-resolution data from the given data set (Araya-Osses et al. 2020; 
Huang et al. 2011). Statistical downscaling methods establish statistical or empirical rela-
tionships between atmospheric variables in GCMs and meteorological variables measured 
at station scale. These methods are inexpensive, easily applicable to different regions, have 
low computational costs, and are frequently used in climate change impact, risk, and uncer-
tainty studies. The disadvantage of statistical downscaling methods is that they require a 
sufficient length of observed historical data (Huang et al. 2011; Wilby et al. 2002). Wilby 
and Wigley (1997) and Chen et al. (2011) have extensive details on the advantages and dis-
advantages of the two downscaling methods.

Wilby and Wigley (1997) divided statistical downscaling methods into three classes: 
regression, weather-type approaches, and stochastic weather generators, respectively. 
In recent years, various statistical downscaling methods, i.e., artificial neural networks, 
gene expression programming methods, least-squares support vector machines, stochastic 
weather generators, have been used in different parts of the world due to their ease of use 
(Fiebig-Wittmaack et al. 2012; Fistikoglu and Okkan 2011; Guven et al. 2021; Huang et al. 
2011; Souvignet et al. 2010). However, the interpretability of the methods used is either 
non-existent or low. For these reasons, multivariate adaptive regression splines (MARS) 
offers the opportunity to explain the importance of variables and the relationships between 
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them (Huang et al. 2020; Şan et al. 2023; Zhang et al. 2021), based on the regression-type 
statistical downscaling method, was preferred in this study.

Beyond the analysis of future quantitative and proportional statistical values of hydro-
meteorological variables, water resources management and planning also place significant 
emphasis on the investigation of trends that provide a chance for a detailed examination of 
climate change (Şan et al. 2021; Şen 2012). Monotonic trend methods are generally pre-
ferred in trend analysis for future scenarios (Nuri Balov and Altunkaynak 2020; Pechliva-
nidis et al. 2017; Yao et al. 2020). However, the study of trends of low and high values of 
hydrometeorological variables that provide information about events such as droughts and 
floods (Dabanli et al. 2016; Okkan et al. 2024) has been neglected.

This study aims to determine the effects of climate change on regional temperature 
and precipitation variables statistically and in terms of intra-period monotonic and group 
trends by using the statistical downscaling method for the first time. Within the scope of 
this study, monthly mean temperature and total precipitation data for the 2021–2100 period 
were produced and evaluated for 12 meteorology stations in the Eastern Black Sea Basin 
(EBSB) that received the highest precipitation in Türkiye. To this end, the MARS statisti-
cal downscaling method was used with monthly observation data from the meteorological 
stations using large-scale ERA-Interim predictors. Then, the calibrated downscaling model 
was applied to project the temperature and precipitation for three future periods using 
three GCMs (CNRM-CM5.1, HadGEM2-ES, and MPI-ESM-MR) outputs under RCP4.5 
and RCP8.5 emission scenarios. Finally, intra-period monotonic trend analyses and the 
trends of low and high values that increase the probability of drought and flood (Dabanlı 
et al. 2016) were examined. The methodology presented in the study is thought to be use-
ful in evaluating the effects of climate change on temperature and precipitation parameters 
in future periods at the basin scale. The outputs obtained from this study can be used in 
watershed modeling studies, water resources planning and management, reservoir opera-
tion, future trend analysis, and water budget planning for the basin.

2 � Study area and data sets

2.1 � Study area

Türkiye is situated in an area characterized by mild climatic conditions. However, because 
it is surrounded by seas on three sides, landforms, and especially the mountains extending 
parallel to the coasts, it experiences quite different climatic conditions. Türkiye is divided 
into 25 large hydrological basins (Fig. 1) (Bayer Altin and Altin 2021). The EBSB is situ-
ated on the northeast coast of Türkiye and receives a lot of precipitation due to its geo-
graphical features and location. Many floods and deaths have occurred after short-term 
heavy precipitation in the EBSB (Aliyazıcıoğlu et  al. 2023; Haltas et  al. 2021; Yüksek 
et  al. 2013). Also, it has a very high energy potential within the country (Akçay et  al. 
2022). Due to these circumstances, it is among the most vulnerable regions to the effects of 
climate change. Therefore, it is one of Türkiye’s most important hydrological basins.

The total area of the basin is 24,077 km2, and it is geographically located between 40° 
15′ and 41° 34′ north latitude and 36° 43′ and 41° 35′ east longitude (Fig. 2). The basin is 
surrounded by the Black Sea in the north, Kaçkar Mountains in the east, Yamanlı, Soğanlı, 
Kemer, and Iğdır Mountains in the south, and extends to the east of Çarşamba Plain in the 
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west. With a mean annual surface water potential of 16.46 × 109 m3, the EBSB is of prime 
importance compared to a yearly mean groundwater potential of 0.49 × 109 m3 (Anilan 
et al. 2016; Bayazit and Avci 1997; Nacar et al. 2020; Yüksek et al. 2013).

The highest precipitation falls around Rize, Pazar, and Hopa on the basin’s northeast 
coastline. Although the basin’s annual average total precipitation amount is 1100  mm, 
the value is 2300  mm at the stations in this region. There are many streams of various 
sizes within the borders of the EBSB. These streams flow into the Black Sea through steep 
slopes and deep valleys. As a result of the melting of the snow in the mountainous regions 
due to the increase in temperature and heavy precipitation falling on the slopes of the 
mountains, massive and destructive floods have occurred in the basin, which comprises 
six provinces: Giresun, Trabzon, Rize, Artvin, Gümüşhane, and Bayburt (Ghiaei et  al. 
2018). During the 90 years from 1930 to 2020, 2101 flood events occurred in Türkiye, and 
206 people died. The first two districts where the most flood events occurred are the Pazar 
and Çayeli districts, located in the EBSB and within the borders of Rize province (Hal-
tas et al. 2021). According to the results of climate change impact studies, it is predicted 
that 450 × 106 people and 430 × 103 km2 of agricultural land will be affected by floods by 
2050 (Arnell and Gosling 2016). In addition, the highest number of fatal landslide events 
(37.8%) occurred in the Black Sea Region, which has rough terrain conditions and high 
precipitation values. Görüm and Fidan (2021) stated that approximately 72% of these land-
slides in the Black Sea region occurred due to heavy precipitation, especially in June and 
July. For example, due to heavy precipitation in 1990, 89 people died in 18 fatal landslides, 
affecting more than 20 settlements in Trabzon, Rize, Artvin, and Giresun provinces.

The EBSB is also one of the most advantageous basins among the 25 hydrological 
basins of Türkiye in terms of hydroelectric potential due to its annual total precipitation 
value and geographical features (Kaygusuz 2018). The average gross energy and tech-
nically achievable generation potential of the EBSB are 48,478 (GWh/year) and 24,239 
(GWh/year), respectively. This value corresponds to approximately 11% of Türkiye’s tech-
nically achievable generation potential (Bilgili et al. 2018).

Fig. 1   Hydrological basins in Türkiye
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2.2 � Meteorological data set

The historical hydro-meteorological data sets for the EBSB were obtained from the Turk-
ish State Meteorological Service. A considerable time series data was missed in almost 
all available stations; hence, 12 stations with monthly mean temperature and precipitation 
data covering 1981–2010 were selected for this study. The locations of these meteorologi-
cal stations in the basin are given in Fig. 2. Stations within the basin are generally located 
on the coastline. Four stations were included to represent the mountainous region south of 
the basin. Bayburt (S02), Suşehri (S09), and Şebinkarahisar (S10) are outside but close to 
the basin. Basic statistics of observed data for temperature and precipitation variables are 
given in Tables 1 and 2, respectively.

Fig. 2   The locations and names of the meteorological stations used in the study and digital elevation model 
of the Eastern Black Sea Basin
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2.3 � Reanalysis data set

The ERA-Interim data set is a global atmospheric reanalysis data set covering the period 
of January 1, 1979 to August 31, 2019. Each grid of the reanalysis data set has a spatial 
resolution of 0.75° × 0.75°. The ECMWF (European Centre for Medium-Range Weather 
Forecasts) web application server offers a default spatial resolution grid of 0.75° and pro-
vides other spatial-resolution grids ranging from 0.125° to 3° based on a bilinear interpola-
tion technique for continuous parameters (Amjad et al. 2020; Liu et al. 2018). The atmos-
pheric variables used in statistical downscaling studies were found to be different from one 
region to the next. Any atmospheric variable can be used to create statistical downscaling 
models (Okkan and Fistikoglu 2014). Specifically, atmospheric variables commonly used 
in downscaling precipitation and temperature, which are available in both reanalysis and 
GCM data sets, were selected (Araya-Osses et al. 2020; Okkan and Fistikoglu 2014; Okkan 
and Kirdemir 2016, 2018; Serbes et al. 2019). The large-scale predictors used in the study 
are given in Table 3.

2.4 � General circulation models (GCMs) data set

GCM output data are frequently used in climate change impact studies. Although data from 
a single GCM can adequately model the current climate, it may not provide sufficiently 
accurate results in determining the effects of climate change in future periods. For this rea-
son, it is recommended to use more than one GCM output data set in the literature to accu-
rately determine the effects of climate change on different variables in the future and to 
reveal the sources of uncertainty (Knutti et al. 2010; Araya-Osses et al. 2020). Data belong-
ing to three different GCMs, namely CNRM-CM5.1, HadGEM2-ES, and MPI-ESM-MR, 
from CMIP5 (5. Climate Model Intercomparison Project) were used in this study. These 
data sets were also used in dynamic downscaling studies conducted by the Turkish State 
Meteorological Service and the General Directorate of Water Management. In order to 
evaluate the findings of this study, care was taken to use common models. While selecting 
these GCMs, attention has also been paid to the fact that the atmospheric variables in the 
ERA-Interim reanalysis data set used in the establishment of downscaling models are also 
included in the historical, RCP4.5, and RCP8.5 scenarios data sets of these GCMs (Araya-
Osses et al. 2020; Taylor et al. 2012). The RCP4.5 scenario assumes that the radiative forc-
ing stabilizes in 2100 without exceeding 4.5 W/m2 (Ouhamdouch and Bahir 2017; Thom-
son et  al. 2011; Wayne 2013). RCP8.5 is the scenario representing the highest emission 
scenario. According to this scenario, emission values increase as time progresses (Ouham-
douch and Bahir 2017; Riahi et al. 2011). Moreover, the release of greenhouse gases linked 

Table 1   The basic statistics for temperature (°C) observed in the Eastern Black Sea Basin

Station S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12

Minimum 3.1  − 11.7 3.5  − 6.2 2.0 3.0 2.1 3.1  − 7.8  − 7.2 3.8 3.2
Mean 14.4 6.9 14.5 9.5 14.4 14.4 13.4 14.3 10.0 9.2 14.7 14.3
Maximum 26.3 22.5 27.0 24.2 28.3 26.7 24.7 27.0 24.8 24.6 27.0 26.9
Standard Dev 6.2 9.0 6.0 8.0 6.1 6.3 6.0 6.3 8.1 8.1 6.1 6.2
Variance 38.5 81.7 36.5 63.8 36.6 39.1 36.2 40.2 65.9 65.4 37.4 38.1
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to RCP2.6 has the potential to restrict global warming to a rise of 2 °C or less since the 
onset of industrialization (Huntingford et al. 2015). In light of this, studying with a stabil-
ity scenario and a pessimistic scenario would be much more requisite. The large-scale data 
sets of the historical, RCP4.5, and RCP8.5 scenario outputs of the GCMs decided to be 
used in the study were accessed from the Earth System Grid Federation website.

3 � Methods

3.1 � Multivariate adaptive regression splines (MARS)

One of the most fundamental problems in engineering science is developing an equation 
that can predict a dependent variable using one or more independent variables. Many 
researchers are involved in mathematics, statistics, computer science, and engineering to 
solve this problem. The primary purpose of these studies is to obtain a function (f) that can 
predict a variable (y) using one or more (x1, x2, …, xn) predictors. MARS, developed by 
Friedman (1991), is a multivariate non-parametric regression method for flexible regres-
sion modeling high dimensional data. The difference between this method and other meth-
ods is that it overcomes the limitations of the methodologies stated by Friedman (1991). 
One of the most robust features of this method is that it provides an extremely general 
regression equation while avoiding overfitting. The MARS method can process a wide 
range of nested predictor types and naturally combine them without removing the miss-
ing data from the data set (Friedman and Roosen 1995). In the MARS method, instead 
of assuming the relationship between dependent and independent variables, there is an 
approach to revealing this relationship using the divide and conquer strategy (Zhang and 
Goh 2016). This strategy divides the training data set to establish the downscaling model 
into multi-part linear sections called splines. Endpoints of linear segments with multiple 
parts are defined as knots, and linear segments between these nodes are defined as basic 
functions (Suman et al. 2016). Setting up a MARS-based downscaling model involves a 
forward and backward process. In the forward process, the model is created by iteratively 
selecting the best pairs of basic functions that increase the model’s accuracy. However, 
the excess of selected basis functions in this process may create a complex and overfitted 
model with low predictive ability against new data. To increase the prediction capability 
of this model, the second stage, or, in other words, the backward process, is started. The 
model is pruned in this process by removing the ineffective basis functions (Khuntia et al. 
2015; Samui 2013; Tiryaki et al. 2019).

MARS is built on basic functions defined by the following equations:

where t represents the “knots”. The formulations are the basic functions predicting func-
tion Y (Dey and Das 2016). The general MARS model equation can be defined as follows:

(1)|x − t|+ = max(0, x − t) =

{
x − t if x > t

0 otherwise

(2)|t − x|+ = max(0, t − x) =

{
t − x if x < t

0 otherwise
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where y is the output variable, M is the number of basic functions included in the model, β0 
is the constant term, bfm(x) is the m’th basic function that may be a single spline function or 
an interaction of two or more spline functions, �m is the coefficient of the m’th basic func-
tion (Khuntia et al. 2015; Tiryaki et al. 2019). More detailed information about the MARS 
statistical downscaling method and its applications can be found in Friedman (1991).

This study used the MARS method to obtain an equation to estimate monthly average 
temperature and monthly total precipitation data from meteorology stations using coarse-
resolution atmospheric variables. The above analyses were performed using the Salford 
Predictive Modeler 8.0 software.

3.2 � Quantile delta mapping bias correction

It is stated in the literature that the downscaling model outputs can contain some bias. This 
bias may be caused by different reasons, such as the resolution of the GCMs used in down-
scaling, the selection of the estimators in the reanalysis data set, the downscaling method, 
and the period to be projected (Okkan and Inan 2015b). Due to the different sources of 
these biases, it is not easy to resolve them within climate models. Therefore, these biases 
must be corrected after obtaining downscaling model outputs (Kim et  al. 2020). Many 
studies have been carried out in which different bias correction methods are applied to 
correct the bias as mentioned above and to make future climate data more realistic (Guo 
et al. 2019; Kim et al. 2020; Okkan and Inan 2015b; Reiter et al. 2018; Salmani-Dehaghi 
and Samani 2021; Zhao et al. 2017; Okkan et al. 2023). This study used the quantile delta 
mapping (QDM) method for bias correction. QDM was developed to preserve the relative 
change ratio in the modeled quantiles of variables (Cannon et al. 2015; Kim et al. 2020). 
The basic equation of the QDM method is given in Eq. (4). This equation includes the bias-
corrected value term obtained using the observation data and the relative change term (∆) 
obtained from the model outputs.

where X̂m,p(t) is the model (simulated) data at time t of the projected period, Δm(t) is the 
relative change in the model data between the historical and future periods, F−1

m,p
 and F−1

o,h
 

are the cumulative probability function (CDF) of the raw data of the statistical downscale 
model and the inverse CDF of the observed data, and X̂o∶m,h∶p(t) is the bias-corrected data 
for the historical period, respectively. Thus, the bias-corrected future projection at time t is 
given by multiplying the relative change Δm(t) by the historical bias-corrected value (Kim 

(3)y = �0 +

M∑
m=1

�m × bfm(x)y = �0 +

M∑
m=1

�m × bfm(x)

(4)X̂m,p(t) = X̂o∶m,h∶p(t) ⋅ Δm(t)

(5)X̂o∶m,h∶p(t) = F−1

o,h

[
F−1

m,p

{
Xm,p(t)

}]

(6)Δm(t) =
Xm,p(t)

F−1
m,h

[
F
(t)
m,p

{
Xm,p(t)

}]
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et al. 2020). More details about the QDM and its implementation can be found in Cannon 
et al. (2015), Kim et al. (2020), and Okkan et al. (2023).

3.3 � Model evaluation statistics

To evaluate the MARS-based downscaling model performance concerning the observed 
precipitation and temperature data, four statistical performance indices, namely the root 
mean square error (RMSE), scatter index (SI), mean absolute error (MAE), and Nash–Sut-
cliffe (NS), were used. These indices are used primarily to assess the performance of sta-
tistical downscaling models (Al-Mukhtar and Qasim 2019; Okkan and Inan 2015a, b). 
Moriasi et al. (2007) also emphasized the importance of using RMSE and NS statistical 
performance indices for evaluating model performances in hydrological studies. The indi-
ces mentioned above are computed from Eqs. (7–10).

where Xo is the observed value, Xm is the downscaled value, and Xo is the mean value. The 
RMSE, SI, and MAE statistics are among the error-index types used to evaluate the estima-
tion performances of the models. The closer the values of these statistics are to the zero 
value, the higher the model performance (Singh et al. 2005). The NS statistic is a dimen-
sionless model performance statistic (Al-Mukhtar and Qasim 2019; Moriasi et al. 2007). A 
value of NS close to 1 indicates that the model is efficient (Okkan and Inan 2015b). Gen-
eral performance ratings of the NS were presented by Moriasi et al. (2007).

3.4 � Model development applications

To assess the efficacy of statistical downscaling models, the observed data sets and ERA-
Interim atmospheric variables were initially partitioned into two distinct groups: training 
and testing. The data for the 1981–2004 (80%) period were used to train the statistical down-
scaling models, and the remaining data for the 2005–2010 (20%) period were used to test 
the models. The flowchart of the proposed downscaling strategy is summarized in Fig. 3.

The flowchart shows that the time series of large-scale ERA-Interim predictors and pre-
cipitation and temperature variables observed from stations were standardized before being 
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presented to MARS-based downscaling models. Standardization is a simple and conveni-
ent bias correction method proposed by Pan and Van Den Dool (1998) that is applied to 
data sets before being presented to downscaling models. Wilby et al. (2004) also empha-
sized that the standardization procedure is applied before the data is downscaled to reduce 
biases in the mean and variance of the GCM data. Therefore, scenario data of GCMs are 
also standardized before being downscaled. The approach suggested by Wilby et al. (2004) 
was used for the standardization procedure. Selecting the constraints in the MARS method 
is important for model performance. The optimum values for each constraint were deter-
mined separately for each station by trial and error. Once the training phase of the MARS-
based downscaling models for temperature and precipitation variables was accomplished, 
these models were evaluated using the testing data set. NS performance statistics, includ-
ing RMSE, SI, and MAE, were employed to assess the models’ performances.

Fig. 3   Flow chart of the statistical downscaling strategy applied in the study
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3.5 � Trend analysis

Linear regression, moving average, and filtering are some approaches for trend detection 
in time series. On the other hand, non-parametric trend studies are less susceptible to 
outliers and independent of key assumptions like linearity and normality (Zhang et al. 
2010). Furthermore, non-parametric trend tests have better power for hydrological time 
series with skewed probability distributions (Önöz and Bayazit 2003). Mann–Kendall 
(MK) is often preferred in the literature to evaluate monotonic trends in hydro-mete-
orological time series, and the World Meteorological Organization recommends its use 
(Kumar et al. 2009; Tongal 2019). However, since the MK is affected by serial correla-
tion, the modified MK by Hamed and Rao (1998) is used in this trend study. The litera-
ture thoroughly describes this procedure (Achite et  al. 2023; Sonali and Kumar 2013; 
Zhang et al. 2010). In addition, the innovative trend analysis (ITA) with significance test 
(ITST) proposed by Şen (2017), which does not contain any assumptions for determin-
ing ITA’s monotonic trends and is based on graphical and trend detection in different 
level groups (Şen 2012), was also used.

In addition to monotonic trends, analyzing the trends of low and high values that trig-
ger drought and flood events enables effective water resources management. To achieve 
this goal, ITA is proposed by Şen (2012), which provides a visual-linguistic interpreta-
tion that does not require any assumptions. However, the definition of low and high 
values in ITA is fuzzy, as it can vary from person to person. Improved visualization of 
innovative trend analysis (IV-ITA) was proposed by Güçlü (2020) for the objective sep-
aration of low and high values to overcome this deficiency. According to this method, 
the time series is divided into two in the center and sorted from lowest to highest. The 
sequence number is placed on the horizontal axis, and both series are placed vertically 
according to the sequence number (Fig. 4). The difference series is formed by subtract-
ing the values of the first series from the values of the second series according to the 
sequence number. Then, the change point is determined by applying the Pettitt test (Pet-
titt 1979) to the difference series. The right side of the change point of the difference 

Fig. 4   Illustration of a IV-ITA and b classical ITA method (Körük et al. 2023)
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series shows the change of high values, and the left side shows the change of low values. 
If the difference values for both sides accumulate above the horizontal axis, it means an 
increasing trend, and if they accumulate below it, it means a decreasing trend. However, 
there is no trend if these accumulate around the horizontal axis. The percentage change 
of the group of low values is calculated as 100 × (average of the difference series on the 
left-hand side)/(average of the sorted first half). The percentage change of the group 
of high values is calculated as 100 × (average of the difference series on the right-hand 
side)/(average of the sorted second half).

4 � Results and discussion

4.1 � Training and testing of statistical downscaling model

Performance statistics for the training and testing data sets for temperature and pre-
cipitation variables are given in Tables 4 and 5, respectively. NS performance statistics 
vary between 0.983–0.996 and 0.967–0.995 for training and testing data sets, respec-
tively (Table 4). The models for all stations are in the very good class, according to 
Moriasi et al. (2007). In addition, the models of all stations give very similar results 
for the temperature variable. Since it will be challenging to provide results for all sta-
tions in terms of presentation, only the time series plots and scatter plots of the tem-
perature prediction of training and testing data sets in Hopa and Suşehri stations are 
given. The EBSB shows two different climatic characteristics: humid climates on the 
coast and continental climates inland. Therefore, the time series and scatter plots of 
temperature predictions at Suşehri station in the interior region and Hopa station in the 
coastal region are representative examples (Fig. 5).

The performance values calculated for the precipitation variable are lower than those 
calculated for the temperature variable (Table  5). For the precipitation variables, it is 
seen that the values of RMSE, SI, MAE, and NSE performance statistics vary between 

Table 4   Performance statistics of statistical downscaling models established for the temperature

Data set Performance statistics for the training data set Performance statistics for the testing data set

Stations RMSE (°C) SI MAE (°C) NS RMSE (°C) SI MAE (°C) NS

S01 0.440 0.031 0.345 0.995 0.571 0.037 0.470 0.992
S02 0.723 0.108 0.538 0.994 0.760 0.099 0.600 0.993
S03 0.474 0.033 0.367 0.994 0.877 0.058 0.628 0.979
S04 0.503 0.054 0.407 0.996 0.591 0.058 0.461 0.995
S05 0.768 0.054 0.565 0.983 1.210 0.080 0.894 0.967
S06 0.384 0.027 0.307 0.996 0.533 0.035 0.443 0.993
S07 0.446 0.034 0.346 0.994 0.498 0.035 0.400 0.993
S08 0.389 0.028 0.308 0.996 0.452 0.030 0.371 0.995
S09 0.518 0.053 0.391 0.996 0.602 0.056 0.476 0.995
S10 0.555 0.062 0.433 0.995 0.591 0.058 0.456 0.995
S11 0.426 0.029 0.334 0.995 0.436 0.028 0.350 0.995
S12 0.427 0.030 0.335 0.995 0.630 0.042 0.495 0.990
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15.641–64.879  mm, 0.330–0.461, 12.227–48.092  mm, and 0.513–0.698 for the train-
ing data set, respectively. For the testing data set, the RMSE, SI, MAE, and NSE perfor-
mance statistics range between 15.172–67.295 mm, 0.311–0.528, 12.398–51.411 mm, and 
0.470–0.777, respectively. When the calculated NS performance statistics values were 
evaluated, the models of Gümüşhane, Rize, and Şebinkarahisar stations were in the good 
class for the training data set. The other stations were in the satisfactory class. For the test-
ing data set, it was determined that only the model belonging to the Ünye station was in the 
unsatisfactory class, while the models belonging to Hopa, Pazar, Rize, Şebinkarahisar, and 
Trabzon stations were in a good class, and the other stations were in the satisfactory class. 
When the calculated performance statistics were evaluated in general, it was seen that the 
statistical downscaling models established for the precipitation variable gave satisfactory 
results for the whole basin except Ünye station. As a representative example, both time-
series and scatter plots of precipitation predictions at Şebinkarahisar and Ünye stations are 
presented in Fig. 6 for both periods.

Although the MARS-based statistical downscaling model results at all stations for the 
temperature variable are in the very good class, it is impossible to say the same for the 
precipitation variable. Al-Mukhtar and Qasim (2019), Hassan et al. (2014), and Yang et al. 
(2012) have demonstrated that downscaling can better reproduce temperature series than 
precipitation. This is thought to be because the dispersion of precipitation data is greater 
than the temperature parameter. Although MARS-based downscaling models gave consist-
ent results in almost all stations in and around the basin, their performance in estimating 
extreme values was limited, especially for some stations on the coastline. In the study of 
Okkan and Kirdemir (2016), it was stated that this situation is highly possible. Also, Trip-
athi et al. (2006) stated in their study that statistical models might not explain all the vari-
ance of the modeled variable.

Table 5   Performance statistics of statistical downscaling models established for the precipitation

Data set Performance statistics for the training data set Performance statistics for the testing data set

Station RMSE (mm) SI MAE (mm) NS RMSE (mm) SI MAE (mm) NS

S01 28.186 0.457 21.845 0.568 24.966 0.419 19.952 0.621
S02 16.633 0.446 12.929 0.619 19.260 0.458 14.539 0.529
S03 37.542 0.353 28.100 0.609 58.500 0.528 35.174 0.501
S04 15.641 0.411 12.227 0.671 18.474 0.423 14.443 0.642
S05 64.816 0.346 48.092 0.639 67.295 0.352 51.411 0.680
S06 31.777 0.367 24.026 0.609 32.019 0.355 25.338 0.641
S07 64.879 0.376 47.180 0.628 58.227 0.314 48.100 0.717
S08 61.446 0.330 47.728 0.656 62.511 0.313 50.159 0.671
S09 16.706 0.461 12.232 0.641 16.198 0.434 12.998 0.609
S10 20.041 0.407 15.042 0.698 15.172 0.311 12.398 0.777
S11 30.784 0.434 22.954 0.513 26.438 0.382 20.488 0.682
S12 37.314 0.391 27.224 0.588 45.177 0.427 32.419 0.470
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4.2 � Downscaling outputs of three GCMs

In the previous section, the highest-performance MARS-based statistical downscaling 
models that estimate local scale temperature and precipitation variables using large-scale 
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Fig. 5   Temperature predictions of Hopa and Suşehri stations derived from the MARS statistical downscal-
ing model for the a training and b testing data sets
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atmospheric variables were determined for all stations. After that, the large-scale atmos-
pheric predictors in the historical, RCP4.5, and RCP8.5 data sets were arranged for the 
basin, and then the standardization procedure was applied. As can be seen in Fig. 3, RCP 
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Fig. 6   Precipitation predictions of Şebinkarahisar and Ünye stations derived from the MARS statistical 
downscaling model for the a training and b testing data sets
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data were standardized using historical scenario data. These standardized large-scale pre-
dictor data sets were used as new inputs for statistical downscaling models established 
using large-scale atmospheric predictors in the ERA-Interim reanalysis data set. Thus, a 
standardized time series of temperature and precipitation variables for each GCM was pro-
duced for each station and past and future scenarios. Standardized temperature and precipi-
tation data obtained from the MARS-based statistical downscaling models were converted 
into units by restandardization.

A bias correction technique was used to obtain the temperature and precipitation time 
series to lessen possible biases in MARS-based forecasts. The obtained MARS statisti-
cal downscaling model outputs may contain different biases depending on the GCM reso-
lutions, atmospheric variables, downscaling technique, and the period in which the data 
is generated (Kang and Moon 2017; Okkan and Kirdemir 2016). Chen et al. (2011) and 
Sachindra et al. (2014) have also emphasized that correcting biases is required before using 
projections in climate impact studies. After the bias correction procedure, past and future 
temperature and precipitation data were evaluated separately for 1980–2005, 2021–2050, 
2051–2080, and 2081–2100, respectively.

To be able to say whether the GCM data produced under different scenarios for future 
periods and downscaled to the local scale are close to the real values, it is necessary to 
determine whether these data sets accurately represent the climatic conditions of the past 
period (Dibike et  al. 2008; Okkan and Kirdemir 2016). Therefore, the basic statistics 
(mean, maximum, minimum, and standard deviation) of the bias-corrected and uncorrected 
historical scenario outputs representing the period 1980–2005 and the basic statistics of the 
temperature and precipitation variables of the observation data for the same period were 
compared for all stations. However, the tables for the Akçaabat station are only given due 
to the page limitation (Tables 6, 7). 

All statistics for the variable temperature approach and the observation values, espe-
cially the monthly average values, are the same as for all three GCMs (Table 7). In this 
case, it is thought that the outputs of the RCP4.5 and RCP8.5 scenarios, which are the 
future optimistic and pessimistic scenarios of GCMs, may more accurately represent the 
possible changes in the temperature values of the region.

As in the temperature variable, the bias correction procedure brings the values of the 
model outputs closer to the observation values (Table 7). After the bias correction proce-
dure, it is seen that the monthly average precipitation values and the maximum precipita-
tion values, which are essential for the region due to floods, are close to the observation 
values.

In general, it has been determined that the outputs of all GCMs for temperature and 
precipitation variables have values close to the observation data for the base period. 
Therefore, using these GCMs to generate future period data is considered plausible as 
it may yield realistic results. In addition, a similar evaluation was performed by Gebre 
and Ludwig (2015). Subsequently, the mean temperature and monthly precipitation 
of 12 meteorology stations strategically proximity of the EBSB were projected under 
RCP4.5 and RCP8.5 scenarios for the three future decades (2021–2050, 2051–2080, and 
2081–2100). Foreseen changes in the future for temperature and precipitation variables 
were evaluated separately.
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4.2.1 � Foreseen changes in future temperature

The bias-corrected outputs of three different GCMs from RCP4.5 and RCP8.5 scenarios 
were compared with the bias-corrected historical scenario outputs of the same GCMs to 
evaluate the foreseen temperature increases in three periods in the future (Fig. 7).

Table 6   Comparison of the basic statistics of the observation data of the Akçaabat station (S01) tempera-
ture variable for the period of 1980–2005 with the statistics of the bias-corrected and uncorrected GCM 
historical scenario data

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Now Dec

Observed
Mean (°C) 7 6.3 7.6 11.2 15.3 20 23 23.2 20 16.1 11.5 8.7
Maximum (°C) 9.2 8.6 10.6 14.4 17.1 21.3 25.3 25.1 22 18.2 13.6 12.5
Minimum (°C) 3.8 3.1 4.9 8.8 13.7 19 20.5 20.6 17.7 14 8.2 6
Standard Dev (°C) 1.7 1.5 1.4 1.4 0.9 0.6 1.1 1 1 1.1 1.3 1.6
CNRM historical
Mean (°C) 6 6.5 9 11.4 13.9 18.5 23.4 24.1 21.2 17.2 12.2 8.1
Maximum (°C) 9 9.5 11.5 12.7 15.2 22.9 27.4 27.3 23.2 18.9 14.7 10.5
Minimum (°C) 2.2 4.2 6.8 9.7 12.8 14.9 21.2 22.6 20 13 8.9 2.6
Standard Dev (°C) 1.7 1.5 1.3 0.7 0.7 1.8 1.2 1.3 1 1.1 1.8 1.6
CNRM historical bias corrected
Mean (°C) 7 6.3 7.6 11.2 15.3 20 23 23.2 20 16.1 11.5 8.7
Maximum (°C) 9.9 9.2 10.3 13.8 17.1 21.6 26.9 25.8 22.1 17.7 13.4 11.1
Minimum (°C) 3.4 4.1 5.2 7.8 13.9 18.8 20.9 22 18.8 11.9 9.2 3
Standard Dev (°C) 1.7 1.5 1.4 1.4 0.9 0.6 1.1 1 1 1.1 1.3 1.6
HadGEM historical
Mean (°C) 5.1 6.3 9.5 13.7 18.4 21 22.6 21.7 18.8 16.8 10.8 7.1
Maximum (°C) 9.4 9 12.3 15.9 21.7 23.9 25.1 23.9 20.6 18.8 14 10.1
Minimum (°C)  − 0 2.7 5.6 10.8 15.3 19.5 19.6 20.1 16.5 14 7.4 3.4
Standard Dev (°C) 2 1.7 1.6 1.3 1.3 1 1.4 1.1 1.1 1.2 1.7 1.7
HadGEM historical bias corrected
Mean (°C) 7 6.3 7.6 11.2 15.3 20 23 23.2 20 16.1 11.5 8.7
Maximum (°C) 11 8.7 10.1 13.6 17.5 21.7 25.1 25.3 21.7 17.9 14 11.5
Minimum (°C) 2.7 3.1 4.1 8.1 13.3 19 20.5 21.6 17.8 13.5 8.9 5.3
Standard Dev (°C) 1.7 1.5 1.4 1.4 0.9 0.6 1.1 1 1 1.1 1.3 1.6
MPI historical
Mean (°C) 4.6 6.8 9.9 15.2 16.6 19.5 21.5 22.8 20.9 15.8 11.4 6.6
Maximum (°C) 6.8 10.8 14.4 18 18.6 21.3 24 25.1 24.9 19.1 14.4 9.2
Minimum (°C) 0.9 0.4 6.2 10.5 14.8 17 18.7 19.4 16.7 12.5 7.9 2.6
Standard Dev (°C) 1.6 2.3 2.2 1.9 1.2 1.2 1.2 1.5 1.9 1.6 1.8 1.3
MPI historical bias corrected
Mean (°C) 7 6.3 7.6 11.2 15.3 20 23 23.2 20 16.1 11.5 8.7
Maximum (°C) 9.3 9 10.6 13.2 16.8 20.9 25.2 24.9 22.2 18.4 13.7 11.8
Minimum (°C) 3.1 2.2 5.2 7.7 14 18.7 20.5 20.9 17.7 13.8 9.1 3.8
Standard Dev (°C) 1.7 1.5 1.4 1.4 0.9 0.6 1.1 1 1 1.1 1.3 1.6
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Table 7   Comparison of the basic statistics of the observation data of the Akçaabat station (S01) precipita-
tion variable for the period of 1980–2005 with the statistics of the bias-corrected and uncorrected GCM 
historical scenario data

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Now Dec

Observed
Mean (mm) 76.6 64.6 51 48.8 42.7 48.1 25.1 40.6 55.5 113.3 97.9 76.3
Maximum (mm) 203.5 192.2 96.1 89.1 69.1 90.4 78 88.8 154 204 189.4 191
Minimum (mm) 9.8 26.4 9.7 19.1 9.8 7.9 2.6 9.6 3.2 35.5 4.7 18.2
Standard 

Dev (mm)
53.8 40.4 20.7 20.7 15.9 21.8 17.4 21.6 32.6 48.7 52.8 45.5

CNRM historical
Mean (mm) 85.3 65.4 57.7 51.2 48.4 40.9 35.1 37.6 57.2 85.1 87.6 92.4
Maximum (mm) 150.1 98.9 89.4 88.9 62.1 52.7 46.2 121.6 106 195 128.9 245.6
Minimum (mm) 49.2 39.7 42.1 36.1 32.6 29.9 16.8 24.6 39.2 48.5 37 34.4
Standard 

Dev (mm)
27.2 17.1 12.2 10.7 7.7 6.1 6.7 18.3 15.3 30.8 28.3 50.8

CNRM historical bias corrected
Mean (mm) 76.2 64.4 50.9 48.6 42.7 48 25.1 40.4 55 113.1 98 76.2
Maximum (mm) 221.8 151.4 109.9 133.5 72.8 93.8 56.9 142.3 179 293.8 176.3 216
Minimum (mm) 16.9 14.7 26.1 22 14.7 15.4 0.4 25.2 20.6 56.7 18.5 25.3
Standard 

Dev (mm)
54.8 40.5 21.6 22.3 15.4 21.6 15 22.1 36.1 49.5 50.4 45.8

HadGEM historical
Mean (mm) 76.3 72.5 65.1 53.6 47 38.6 22.7 33.2 62.8 77 97.5 82
Maximum (mm) 128.6 121.9 96.4 73.1 55.9 43.6 36.6 45.5 82.2 139.2 180.3 175.2
Minimum (mm) 0.1 47.3 48.3 41.4 39.1 32.5 0.1 12.2 45.6 39.6 0.1 48.4
Standard 

Dev (mm)
27.5 18.7 12.1 7.5 4.5 2.9 10.3 6.7 10 29.3 41.2 31.6

HadGEM historical bias corrected
Mean (mm) 77.2 64.1 50.9 48.7 42.7 48 25.7 40.7 55.3 113.2 98.4 76
Maximum (mm) 185.8 189.9 110.9 111.2 77.5 88.9 48.6 83.4 127 218.2 206.9 223.6
Minimum (mm) 0 18 24.4 19.7 18.6 13 0 1 12.1 52.3 0 30.3
Standard 

Dev (mm)
47.7 43.5 21.1 21.3 16.2 21.1 14.4 18.3 31.6 48.8 50.4 46.6

MPI historical
Mean (mm) 100.9 62.2 56.1 44.4 51.1 50.3 41.4 39.8 52.9 80.6 71.4 133.4
Maximum (mm) 353.4 111.7 90.8 62 76.3 86.3 56.9 56.5 97.1 112.3 103.4 285.7
Minimum (mm) 44.5 33.4 33.7 23.2 39.1 36.9 30.3 25.8 34.4 46.2 51.8 48.5
Standard 

Dev (mm)
62.8 16.9 13.5 8.6 9.6 10.8 7.8 7.2 16 17.2 16.2 72

MPI historical bias corrected
Mean (mm) 76.1 64.1 50.9 48.9 42.6 47.9 25 40.5 55.1 113.3 97.5 76.2
Maximum (mm) 300.9 205.7 108.1 94.9 88.6 133.4 65.1 98 157 208.3 211.9 173.8
Minimum (mm) 29.1 10.7 19.9 9 23.8 22.7 5.5 8.3 20.9 31.4 39.5 24
Standard 

Dev (mm)
55.2 43.2 21.3 19.3 16.7 23.4 17.4 21.6 34.8 47 53.7 45.7
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The foreseen changes in monthly mean temperature values obtained from three GCMs 
forced under two different scenarios are similar at most of the stations. In addition, accord-
ing to the results, it is expected that there will be temperature increases at all stations for all 
future periods. However, it is predicted that there will be a decrease in the temperature values 
in the winter and spring months at the Bayburt station (S02), which is located in the interior 
part of the basin and has continental climate characteristics. According to the results obtained 
for Bayburt station, while an increase in annual average temperature values is expected, it is 
also expected that summer months will be warmer and winters will be colder in the coming 
periods. For the Akçaabat station (S01), decreases are anticipated during the spring months 
of March, April, and May, as well as during the autumn months of October and November. 
As for the Gümüşhane station (S04), a decrease is anticipated in January.

Station S01 Akçaabat S02 Bayburt S03 Giresun S04 Gümüşhane

G
C

M

R
C

P Month

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

Period

C
N
R
M R
C
P
4
.5 2021-2050

2051-2080

2081-2100

R
C
P
8
.5 2021-2050

2051-2080

2081-2100

H
ad
G
E
M

R
C
P
4
.5 2021-2050

2051-2080

2081-2100

R
C
P
8
.5 2021-2050

2051-2080

2081-2100

M
P
I R
C
P
4
.5 2021-2050

2051-2080

2081-2100

R
C
P
8
.5 2021-2050

2051-2080

2081-2100

Station S05 Hopa S06 Ordu S07 Pazar S08 Rize

C
N

R
M R
C

P
4
.5 2021-2050

2051-2080

2081-2100

R
C

P
8
.5 2021-2050

2051-2080

2081-2100

H
ad

G
E

M

R
C

P
4

.5 2021-2050

2051-2080

2081-2100

R
C

P
8
.5 2021-2050

2051-2080

2081-2100

M
P

I R
C

P
4
.5 2021-2050

2051-2080

2081-2100

R
C

P
8
.5 2021-2050

2051-2080

2081-2100

Station S09 Suşehri S10 Şebinkarahisar S11 Trabzon S12 Ünye

C
N

R
M R
C

P
4
.5 2021-2050

2051-2080

2081-2100

R
C

P
8
.5 2021-2050

2051-2080

2081-2100

H
ad

G
E

M

R
C

P
4
.5 2021-2050

2051-2080

2081-2100

R
C

P
8
.5 2021-2050

2051-2080

2081-2100

M
P

I R
C

P
4
.5 2021-2050

2051-2080

2081-2100

R
C

P
8
.5 2021-2050

2051-2080

2081-2100

(Δt) -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

°C

Fig. 7   Temperature (°C) changes concerning the 1980–2005 historical scenario period for RCP4.5 and 
RCP8.5 scenarios
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It is foreseen that the temperature increases will reach up to 10 °C, especially in the 
summer months. Also, the increases in the projected temperature values according to the 
RCP8.5 scenario outputs were higher than the RCP4.5 scenario outputs. The spatial distri-
bution for the future changes in annual mean temperature and precipitation of the EBSB 
(compared to the base period) under scenarios RCP4.5 and RCP8.5 was built by the 
inverse distance-weighted interpolation technique with the ArcGIS 10.5 software. Maps 
showing the spatial distribution of projected changes in annual mean temperatures are 
given in Fig. 8.

When the maps showing the changes in the annual average temperature values were 
examined, it was seen that there were temperature increases in all three periods of the 
future. Increases were between 0.5 and 4 °C in 2021–2050 and 6 °C in 2051–2080. It was 
observed that the highest temperature increase occurred around 7 °C at the end of the cen-
tury. While the highest temperature increase was obtained from the HadGEM model out-
puts, the least was obtained from the MPI model outputs. In large-scale studies covering 
the basin (Bağçaci et al. 2021; Turkes et al. 2020), similar findings suggest that it is also 
projected to increase up to 6 °C towards the end of the century, especially since the inten-
sity of the increase is very high for summer and autumn. It was observed that the tempera-
ture increases were most concentrated in the stations located in the regions with continental 
climates in the south of the basin. In arid areas like the interior part of the EBSB, positive 
changes in temperature will undoubtedly accelerate the desertification process, ultimately 
affecting agricultural activities in the basin (Abbasnia et al. 2016; Al-Mukhtar and Qasim 
2019). In addition, Schroeer and Kirchengast (2018) state that a warmer atmosphere can 
hold more water vapor, producing more intense precipitation, including precipitation inten-
sity increases of 6–7% per degree of warming or even more for sub-hourly precipitation 
(Araya-Osses et al. 2020).

Period 2021-2050 2051-2080 2081-2100
C

N
R

M

R
C

P
4

.5

C
N

R
M

R
C

P
8

.5

H
ad

G
E

M

R
C

P
4

.5

H
ad

G
E

M

R
C

P
8

.5

M
P

I

R
C

P
4

.5

M
P

I

R
C

P
8

.5

Fig. 8   Spatial distribution for the change of annual average temperature (compared to base period) in future 
periods under RCP4.5 and RCP8.5 scenarios
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4.2.2 � Foreseen changes in future precipitation

The relative changes (%) of monthly mean precipitation (compared to the base period 
1981–2005) in the EBSB under RCP4.5 and RCP8.5 scenarios are shown in Fig. 9.

The results obtained for the monthly mean precipitation show more spatial variability 
and less robustness compared to the temperature variable. The changes in seasonal mean 
precipitation in the EBSB under RCP4.5 and RCP8.5 scenarios would present noticeable 
differences in different seasons. In summer, 60–100% decreases are found for the south 
part of the basin, while in spring and winter, 60–100% increases are seen in the coastal 
part of the basin. The maximum change for the precipitation variable was obtained from 
the HadGEM model outputs, as in the temperature variable. According to the HadGEM 
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model results, the highest increase in precipitation occurs in the Pazar, Rize, and Hopa sta-
tions located on the coastline of the basin. Except for the Hopa, Pazar, and Rize stations, a 
decrease in precipitation is expected throughout the basin in the summer. The stations with 
the highest decrease are Bayburt, Giresun, and Şebinkarahisar.

The distributions of precipitation changes are shown in Fig. 10 for the considered future 
periods (2021–2050, 2051–2080, and 2081–2100) under two RCP scenarios. The annual 
total precipitation values decrease in the basin’s interior. In addition, increases are gen-
erally on the coastline stations. The report by the Turkish State Meteorological Service 
evaluates the climate of Türkiye, attributing the situation to the country’s irregular topog-
raphy. Particularly, high mountains parallel to the Black Sea coast and located very close 
to the coastline prevent the passage of moist air and rain-laden clouds from the Black 
Sea into the inner regions. Rain clouds deposit much of their water content in the coastal 
areas (Sensoy et al. 2008). This situation is clearly evident from Table 2, which provides 
basic statistics based on observations. With climate change, increasing temperatures are 
expected to enhance the amount of evaporation from the surface of the Black Sea, leading 
to a greater amount of rainfall in coastal regions. Due to heavy precipitation, many flood 
events occurred in the sub-basins, where these stations are located. Therefore, foreseen 
precipitation increases in these stations may cause severe problems in the basin for future 
periods. At the same time, it is believed that decreases in precipitation may lead to drought 
problems for stations located south of the basin, which already has a dry climate. There-
fore, this fact highlights the importance of swift adaptation and mitigation measures in the 
study areas (Al-Mukhtar and Qasim 2019). Similar findings, i.e., an increase in winter and 
spring precipitation, are projected in large-scale studies covering the basin (Bağçaci et al. 
2021; Demircan et al. 2017; Turkes et al. 2020).

Period 2021-2050 2051-2080 2081-2100 %

C
N
R
M

R
C
P
4
.5

C
N
R
M

R
C
P
8
.5

H
ad
G
E
M

R
C
P
4
.5

H
ad
G
E
M

R
C
P
8
.5

M
P
I

R
C
P
4
.5

M
P
I

R
C
P
8
.5

-20

-15

-10

-5

0

5

10

15

20

25

-25

-15

-5

5

15

25

35

45

55

65

-50

-40

-30

-20

-10

0

10

20

30

Fig. 10   Spatial distribution for the change of annual mean precipitation (compared to base period) in future 
periods under RCP4.5 and RCP8.5 scenarios



9857Natural Hazards (2024) 120:9833–9866	

1 3

4.3 � Intra‑period and scenario trend results

Orographic precipitation prevails in the coastal areas because the mountains extend parallel 
to the sea in the EBSB (Fig. 2). At the same time, the continental climate is more dominant 
in the inland areas (Durukanoğlu 1996; Yüksek et al. 2013). Precipitation is also clustered 
differently in the interior and coastal regions of the basin and shows similar seasonality and 
cluster within themselves in the studies covering the basin (Akbas 2023; Kömüşcü et al. 
2022; Türkeș et al. 2016; Zeybekoğlu and Keskin 2020). For these reasons, trend analyses 
were applied by calculating separate group averages of station data in interior and coastal 
regions. Then, when trend conditions for MK and ITST are analyzed at a 5% significance 
level, a greater than 5% change is determined for the percentage change in IVITA. The 
results of the analyses are given in Fig. 11 for monthly average temperature and Fig. 12 for 
monthly total precipitation.

According to MK, there is an increasing trend in both regions in months 8th and 11th, 
with an increasing trend in about all months and regions according to ITST for tempera-
tures during the observation period (Fig.  11a, b). The increasing trend is clear in more 
than half of GCMs, scenarios, and periods for the future period according to both methods. 
However, there are more statistically significant months in ITST. Although there is gen-
eral agreement in trends and directions among GCMs, there are some discrepancies, espe-
cially in months 1st, 2nd, and 12th. Regarding scenarios, RCP8.5 has a higher trend magni-
tude than RCP4.5 in inland regions, with no significant divergence in coastal regions. The 
trend magnitudes in the 2090s are also more pronounced in the interior compared to other 

Fig. 11   Monotonic trends (a MK and b ITA) and high–low group trends (c IVITA) of the mean monthly 
temperature in the coastal and interior regions according to RCP4.5 and RCP8.5, and periods of observa-
tion, 2030s, 2060s, and 2090s
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periods. In other words, this situation supports the temperature increases according to the 
observation in Fig. 8.

There is a general increasing trend in all, high and low values between the 12th–4th 
months in the coastal region (Fig. 11c). These periods also include the winter and spring. 
When the basic statistics of the basin are analyzed, it is seen that precipitation is especially 
high in the spring months. It is predicted that increases in precipitation during these peri-
ods may increase the risk of floods and landslides in the region. However, there are increas-
ing and decreasing trends exceeding 100% in interior regions, except between the 4th–10th 
months. Besides, when the contribution of low and high values to all values is approxi-
mately similar in coastal regions, this situation changes in interior regions. The changes in 
the low and high values do not change at the same rate, and the 1st and 2nd months are the 
months with more than 25% difference between them and are more in the inland regions. 
During the observation period, in the coastal (interior) region, there is a trend in high val-
ues in the 4th, 7th, and 9th (4th) months, while there is no trend in all trends. That is, high 
values do not contribute. For future periods, the contribution of the low and high value 
trends to all trends together is seen in the interior region and between the 12th and 3rd 
months. Discrepancies in the direction of low and high value trends between these months 
are seen in different scenarios, GCMs, and periods. Regarding monotonic and group trends, 
MPI shows a more decreasing trend in the opposite direction than the other two GCMs.

It is seen in ITST that the monthly precipitation has monotonic trends in different 
directions in both regions during the observation period, while in MK, only in the coastal 
region, there is a significant decreasing trend in the 7th month and an increasing trend in 
the 8th–9th months (Fig. 12a, b). ITST results show significant decreasing trends gener-
ally dominate interior regions, while a slightly increasing trend dominates coastal regions. 

Fig. 12   Monotonic trends (a MK and b ITST) and all-high–low-group trends (c IVITA) of the mean 
monthly total precipitation in the coastal and interior regions according to RCP4.5 and RCP8.5, and periods 
of observation, 2030s, 2060s, and 2090s (*:5% significance level)
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However, considering that even small increases in coastal areas carry risks for the region, 
it is possible to say that flood risks will increase. It is seen that there is no consistency 
between GCMs in trend existence and trend directions, especially in the coastal region. 
While there is a decreasing trend at month 11th in the observation period, there is an 
increasing trend in the RCP8.5 scenario in all GCMs in the 2030s in both regions.

There is a decreasing trend in the 5th, 7th, and 11th months in the coastal region and 
the 2nd, 5th, and 11th months in the interior region (Fig. 12c). There is an increasing trend 
in the 9th month in the coastal region and the 3rd month in the interior region in all data 
categories during the observation period. Changes in low and high values do not change at 
the same rate, and the months with more than 25% difference between them are generally 
the 1st and 7th months and are more frequent in interior regions. During the observation 
period, there is a trend in different directions in the low and high categories in months 1st, 
2nd, 8th, and 10th (1st, 4th, 7th, and 8th) in the coastal (interior) region. While there is 
generally a trend in different directions in the low and high groups, there is no trend in all 
groups in the 1st, 10th, and 11th months. So, there is a need for caution against the behav-
iors of these months. In addition, about trend magnitude, the highest change is observed 
in the inner region in the 7th month. Although the trends of the groups may be in different 
directions in the future, there is usually a trend in the same direction. As in the ITST, there 
is a decreasing trend in the coastal region in the months 5th, 6th, and 11th, while there is a 
general increasing trend in all groups in the 2090s.

When the findings of the methods are analyzed, ITST shows a more significant trend 
than MK, while IVITA also shows more trends like ITST. However, IVITA shows a trend 
in the low and/or high groups, although it is not monotonic. Regarding the amount of 
change, trends exceed 100% in separate groups between 12th–3rd months in temperatures. 
Although temperatures mostly increase in intra-period averages according to observation 
averages (Figs. 7, 8), there are also decreases in monotonic and group trends during intra-
periods (Fig. 11). Future temperature trends in groups are also more critical than precipita-
tion. When the trend analyses are evaluated considering the coastal and inland areas of the 
basin, it is seen that the coastal and inland areas have different trend characteristics, which 
shows differences in the future period. When the basin characteristics are analyzed, it is 
seen that inland and coastal areas have quite different climatic characteristics. It can be 
stated that this situation is due to the basin’s characteristics.

All the results obtained within this study’s scope are obtained using the models’ out-
puts in the CMIP5 archive. Although the most recent data set, CMIP6, has not been used, 
it is thought that it will provide a basis for local administrators, the people of the region, 
and researchers. It is thought that the findings obtained from this study prepared for the 
EBSB of Türkiye, which is frequently on the agenda with floods and landslides, causing 
many casualties and economic losses, will provide important data for future basin planning 
and water structures. The findings of this study are also considered important in terms of 
providing data for future downscaling studies and trend analysis studies using CMIP6 or 
different reanalysis data.

5 � Conclusions

This study investigated the possible effects of climate change in the future on tempera-
ture and precipitation variables observed from 12 stations in the Eastern Black Sea Basin 
(EBSB), Türkiye. According to the main results obtained from the study, the MARS 
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statistical downscaling method can be applied as an alternative downscaling method to pro-
duce reasonable results in future studies to determine the effects of climate change. Based 
on the results of NS values, models applied for temperature and precipitation variables 
showed very good and satisfactory/good performance, respectively. Temperature increases 
were projected for the RCP4.5 and RCP8.5 scenarios throughout the basin. The highest 
temperature increases were seen in the summer months for all stations. In the summer 
months, increases of up to 10 °C are predicted for all GCM and scenarios at Gümüşhane, 
Bayburt, Şebinkarahisar, and Suşehri stations, which are located in the interior region and 
have continental climate characteristics. Although the results for all three GCM models 
were similar, the highest and lowest temperature increase models were HadGEM2-ES and 
MPI-ESM-MR, respectively.

When the simulated precipitation values for the future period are compared with the 
base period, the monthly and annual total precipitation values show different patterns of 
variation for three different periods throughout the basin under the RCP4.5 and RCP8.5 
scenarios. The precipitation of the stations in the interior part of the basin was observed 
to decrease by 100% in the summer months, and there would be a 50% increase in the 
spring months. A drier future is expected in the south due to the increasing temperature 
and decreasing precipitation in the summer months. In addition, it is observed that precipi-
tation in Rize, Pazar, and Hopa stations located in the eastern part of the basin will increase 
by 100% in spring. The floods in this region in the past years, especially in the spring, may 
increase due to short-term heavy precipitation and melting snow with increasing tempera-
tures. It is also predicted that the climate of the EBSB, known to be wet in all seasons, will 
change with the decrease in precipitation for the summer and autumn seasons.

Furthermore, although a general increase in temperature averages is more pronounced than 
in precipitation averages, the different trends of low and high groups within periods contribute 
to all data trends. The percentages of temperature change in the low and high groups and all 
data are more pronounced for precipitation. However, GCMs generally show different mono-
tonic and group trends in different directions in inland regions compared to coastal regions, 
which may indicate that uncertainty may be higher in continental climates. It is also concluded 
that the interior and coastal regions of the basin will maintain their differences in the future. 
In conclusion, the difference in trend direction between different groups and GCMs in interior 
regions may indicate that there may be more uncertainty than in coastal regions.

This study has shown that climate change under certain future scenarios may seriously 
affect the hydrology and water resources of the EBSB. Knowing the possible effects of cli-
mate change on temperature and precipitation, the essential hydrological variables can pro-
vide basic information for ecological, economic, social, and health decision-makers. The 
authors suggest further assessing the study area with different statistical downscaling meth-
ods using a large ensemble of CMIP5 and CMIP6 data sets forced under different emission 
and social scenarios. In addition, the contribution of downscaling models developed using 
different reanalysis data to model performance can be examined. Daily, monthly, seasonal, 
and annual changes and cycles of other climatic variables such as maximum temperature, 
minimum temperature, wet period length, and dry period length can be investigated with 
more comparative performance statistics.
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