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ABSTRACT
Aim: Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial 
resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing 
information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to 
overcome this limitation is to integrate SDMs with expert range maps, which provide coarse- scale information on the extent of 
species' ranges and thereby range limits that are complementary to information offered by SDMs.
Innovation: Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called 
stacked generalisation. Specifically, our approach relies on training a meta- learner regression model using predictions from one 
or more SDM algorithms alongside the distance of training points to expert- defined ranges as predictor variables. We demonstrate 
our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, 
Western Asia and Central Asia.
Main Conclusions: Our approach offers a flexible method to integrate expert range maps with any combination of SDM mod-
elling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data- driven way to account 
for uncertainty in expert- defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating 
expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche 
breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve 
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assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble 
method in species distribution modelling.

1   |   Introduction

While global biodiversity is declining rapidly (Pimm 
et  al.  2014), our knowledge about species' distributions often 
remains limited (Diniz- Filho, De Marco, and Hawkins 2010). 
This lack of detailed information for many regions and taxa, 
referred to as the Wallacean shortfall (Hortal et al. 2015), trans-
lates not only into knowledge gaps in biogeography and ecology 
but also into real barriers to conservation planning to ensure 
that limited conservation funding is spent most effectively 
(Hochkirch et  al.  2021). Species distribution models (SDMs) 
have become a central tool for addressing the Wallacean short-
fall, allowing to characterise species' niches by combining oc-
currence records with environmental predictors for predicting 
species' distributions (Elith and Leathwick  2009; Guisan and 
Thuiller 2005). Yet, although SDMs can accurately assess the 
environmental suitability of habitats (i.e., map potential dis-
tributions), they typically lack information on other factors 
limiting species' ranges, such as barriers to dispersal or biotic 
interactions (i.e., competitive exclusion). This, in turn, means 
that the usefulness of SDMs for mapping realised distributions 
of species can be limited, as their inability to identify range lim-
its often results in an overprediction of species' ranges, partic-
ularly when distributions are modelled across large geographic 
extents (Calabrese et  al.  2014; Merow, Wilson, and Jetz  2017; 
Soberón 2007). While methods for capturing dispersal and bi-
otic interactions within SDMs have been proposed (Ovaskainen 
et al. 2016; Zurell 2017), their applicability is often limited due 
to a lack of adequate datasets or missing knowledge about un-
derlying ecological processes.

A widely applicable solution to improve SDMs' capability 
for assessing realised distributions lies in their combination 
with external information on species' range limits (Domisch, 
Wilson, and Jetz 2016; Fletcher Jr. et al. 2019; Merow, Wilson, 
and Jetz 2017). Most commonly, range information is available 
in the form of expert- based range maps, which offer estimates 
of species' range extents derived from occurrence informa-
tion as well as expert knowledge about geographical, biotic 
or environmental range limits. Although expert range maps 
cannot directly disentangle how biotic interactions and disper-
sal limit ranges, they allow to incorporate the effects of these 
processes indirectly by characterising realised range limits. 
The most important database of range maps (particularly for 
terrestrial animals) is offered by the International Union for 
the Conservation of Nature (IUCN), which provides expert- 
defined ranges for more than 150,000 species (IUCN  2022). 
Expert range maps are frequently criticised for being coarse 
in resolution (meaning that species will often be absent from 
many areas within the expert- defined range), incomplete 
in terms of species coverage or outdated (Higino et al. 2023; 
Ramesh et al. 2017). Despite these shortcomings, expert range 
maps can provide information on range limits that is com-
plementary to data generated by SDMs (Merow, Wilson, and 
Jetz 2017). While range maps characterise a species' extent of 

occurrence (i.e., its range limits), SDMs offer fine- scale repre-
sentations of suitable habitats, making approaches combining 
both datasets promising for improving distribution assess-
ments (Domisch, Wilson, and Jetz 2016; Ellis- Soto et al. 2021; 
Merow, Wilson, and Jetz 2017).

Several approaches have sought to combine these relative 
strengths of expert range maps and SDMs, such as using range 
maps directly as predictors in SDMs (Domisch, Wilson, and 
Jetz 2016) or adding spatial offset terms to models that are fit 
via point process models or related approaches (e.g., Maxent; 
Merow, Wilson, and Jetz 2017). The latter approach is particu-
larly promising as it allows to account for uncertainty in expert 
range maps by incorporating user- defined decay curves that 
reflect a priori expectations about the accuracy of expert range 
boundaries. Applying this approach, however, can be challeng-
ing for two reasons. First, defining spatial offsets and decay 
curves can be difficult if prior information on the accuracy of 
range maps is missing, potentially leading to bias introduced by 
decisions on the strength and decay of the offset term. Second, 
while the use of algorithm ensembles has become a key approach 
in species distribution modelling (Araújo et al. 2019; Araújo and 
New 2007), several widely used and well- performing machine 
learning algorithms (e.g., random forests or support vector ma-
chines) do not feature offset terms.

Here, we suggest stacked generalisation (Wolpert  1992) as an 
alternative approach for integrating external range information 
enabling flexible combinations of multiple SDM algorithms. 
Designed as an ensemble method for combining multiple mod-
elling algorithms, stacked generalisation uses the predictions of 
models built at one level as the input for a meta- learner built 
at a second level (Naimi and Balzer  2018). Although being 
widely applied in machine learning (Sesmero, Ledezma, and 
Sanchis 2015), and despite the general proliferation of algorithm 
ensembles in SDM studies (Buisson et al. 2010; Hao et al. 2019), 
stacked generalisations have rarely been used with SDMs (but 
see Bonannella et al. 2022; El Alaoui and Idri 2023). Here, we 
demonstrate the use of stacked generalisation as an approach for 
integrating expert range information with one or more SDM al-
gorithms. Using available occurrence datasets for characterising 
expert map accuracy, our approach offers an alternative, data- 
driven method to integrate expert range maps in SDMs while 
accounting for their uncertainty.

In the following, we first introduce our approach and high-
light issues important to consider in its application. Then, we 
assess our approach by applying it to a presence- only occur-
rence dataset for 49 bat species collected across a large geo-
graphic extent covering four biodiversity hotspots in the Eastern 
Mediterranean, Western Asia and Central Asia. Specifically, we 
compare the predictive performance as well as resulting distri-
bution maps of (1) single- algorithm SDMs, (2) ensembles of SDM 
algorithms built with stacked generalisations and (3) stacked 
generalisations including expert range maps.
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2   |   Stacked Generalisation for Integrating Expert 
Range Information in SDMs

Stacked generalisation is an ensemble method for combining 
multiple models, often built with different algorithms, using 
their individual predictions as training data in a meta- learner 
(Naimi and Balzer 2018; Wolpert 1992). Here, we apply this ap-
proach to integrate one or more SDM algorithms with expert 
range maps. By using the expert map as an additional model 
containing complementary information to SDMs, that is, a 
coarse- scale estimate of range limits, our approach leverages the 
advantages of stacked generalisations, which have been shown 
to perform particularly well when combining heterogeneous 
input models (Sesmero, Ledezma, and Sanchis 2015).

Multiple potential approaches exist to combine SDMs with ex-
pert range maps via stacked generalisation. One approach is 
creating a predictor variable for the meta- learner by assign-
ing a fixed value ratio to training points lying inside versus 
outside the expert- defined ranges, thereby allowing control of 
how much weight is given to the expert map (Merow, Wilson, 
and Jetz 2017). However, this approach assumes that the prob-
ability of occurrence is the same at any distance outside the 
expert range, although a continuously decreasing probability 
with increasing distance from the expert range should be ex-
pected (Merow, Wilson, and Jetz 2017). Therefore, we instead 
use the spatial distance of the training points to the expert 
range boundaries as a predictor in the meta- learner (Figure 1). 
This predictor, hereafter referred to as distance term, de-
scribes the (relative) probability of observing the modelled 
species within a given distance of the expert- defined range, 
thereby characterising the uncertainty of the expert map. This 
approach is conceptually similar to including spatial offsets 
with decay curves in point process models (Merow, Wilson, 
and Jetz 2017), and results in predicted habitat suitability val-
ues smoothly decreasing outside the expert range. However, 
in contrast to user- defined offsets, the distance term of the 
meta- learner is derived from the occurrence records used to 
train SDMs. While using the same datasets for fitting SDMs 
and assessing the uncertainty of the expert range maps might 
introduce bias if the collection of occurrence records is influ-
enced by knowledge about expert ranges (Merow, Wilson, and 
Jetz  2017), such a data- driven approach will be particularly 
useful when accurate and representatively sampled occur-
rence records are available or if prior knowledge about the 
accuracy of expert range maps is lacking.

While the approach by Merow, Wilson, and Jetz (2017) allows 
control of the shape of the decay curve by choosing several 
curve parameters, in stacked generalisations, the analyst can 
influence the shape of the fitted distance term through the 
choice of the meta- learner algorithm or the functional form of 
the distance term. As a baseline approach we here use logistic 
regression as a meta- learner, which is widely used in stacked 
generalisations and results in distance terms following a logis-
tic function similar to the smooth decay curves proposed by 
Merow, Wilson, and Jetz (2017). Conceptually, adding the dis-
tance term to a logistic regression meta- learner can be seen as 
adding a constant ‘offset’ to all areas inside the expert- defined 
range (i.e., areas with distance = 0). This offset is described 

by the intercept of the logistic regression and expresses the 
(relative) probability of observing the species inside the ex-
pert range given suitability predictions of 0 from all SDM al-
gorithms. Predictions by the meta- learner will decrease with 
increasing distance from the expert range according to the 
distance term (Figure 1).

By relating individual species' occurrences to expert ranges, 
our approach accommodates species- to- species variability 
in the uncertainty of expert ranges. However, due to a lack 
of presence records or highly accurate expert range maps, in 
some cases, only few or no presence records might lie outside 
expert ranges, which will cause (quasi- )complete separation in 
the meta- learner. We propose two potential solutions to this 
issue. First, if species- specific distance terms should be used, 
bias- reduced logistic regression can be applied for fitting meta- 
learners (Firth  1993). This commonly recommended strat-
egy for dealing with (quasi- )complete separation in logistic 
regressions ensures finite parameter estimates and results in 
responses (i.e., distance terms in our case) that are less steep 
compared to standard maximum- likelihood estimation (Heinze 
and Schemper 2002). Second, when occurrence data from mul-
tiple related taxa are available, species- specific distance terms 
of meta- learners might be replaced with ‘target- group’ dis-
tance terms, which can be calculated by fitting a meta- learner 
based on training points from multiple or all available species. 
In this case, the distance term characterises the uncertainty 
(probability of occurrences lying outside expert ranges) across 
all included taxa and does not vary between species, similar 
to applying the same decay curve across species when inte-
grating range maps as spatial offsets in point process models 
(Merow, Wilson, and Jetz 2017). We provide R code demonstrat-
ing the implementation of our stacked generalisation approach 
for building expert- informed ensembles (see data availability 
statement).

3   |   Method Application

3.1   |   Study Area and Bat Occurrence Data

Our study area covers 6.5 million km2 and intersects four global 
biodiversity hotspots (following Myers et  al.  2000): the east-
ern part of the Mediterranean hotspot, the Caucasus hotspot, 
the Irano- Anatolian hotspot as well as partially covering the 
Mountains of Centrals Asia hotspot (Figure 2). Our study area 
represents the contact zone between the Western and Eastern 
Palearctic species pools, where fine- scale information on the 
distribution of bats is lacking. Expert range maps for most bat 
species in the region are available but estimates of species' range 
limits are uncertain or outdated for many species. Thus, our 
study area provides an interesting case for illustrating how our 
approach can generate fine- scale distribution data for under- 
researched regions of global conservation importance while 
accounting for varying uncertainty in available expert range 
information.

To delineate our study area, we fully included all countries in 
which the sampling of our bat occurrence records was primar-
ily conducted (Afghanistan, Albania, Armenia, Azerbaijan, 
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Bulgaria, Georgia, Greece, Iran, Israel, Montenegro, Syria and 
Turkey). The borders of our study area were defined based on 
ecoregion boundaries (Olson et al. 2001).

We collected and harmonised bat occurrence datasets from 
various sources, including national databases, field records 
and literature data (see Appendix  S1 for an overview of all 
data sources). In total, we gathered 37,714 occurrence records 
from 61 taxa. To ensure the quality of records used for model 
training, we removed all instances in which a species- level 
identification was impossible or problematic (e.g., uncertain 
identification within complexes of morphologically highly 
similar species). In addition, we removed records collected be-
fore 1970 to avoid a temporal mismatch between occurrence 
records and predictor variables (Milanesi, Della Rocca, and 
Robinson 2020).

Where appropriate, we reclassified records to account for re-
cent genetic analyses that have led to a subdivision of species 
complexes into multiple cryptic species. This reclassification 
was done based on available information on the distribution of 

cryptic species (see Appendix S2 for details on taxonomic revi-
sions within species complexes as well as an overview of spe-
cies). To remove spatial duplicates and reduce sampling bias, 
we thinned occurrence records (Boria et al. 2014). As thinning 
records may reduce model performance for rare species (Steen 
et  al.  2021), we classified species according to the percentile 
values of sample prevalence (i.e., number of raster cells with 
presence records) into three classes (low, intermediate and high 
prevalence). We then thinned records with minimum distances 
of 1, 5 and 10 km for species with low, intermediate and high 
prevalence, respectively.

As expert information on species range limits, we compiled 
IUCN range maps for all species, using only those parts of 
ranges classified as ‘extant’. This led to four species being ex-
cluded from modelling since no range map was available. 
Finally, we selected species with a minimum of 30 remaining 
records since modelling rare species with very few records typi-
cally requires targeted approaches and can be highly uncertain 
(Breiner et al. 2015). This step resulted in 9650 presence records 
from 49 species.

FIGURE 1    |    Schematic overview of stacked generalisation for combining SDM algorithms with expert range maps. Predictions of multiple SDM 
algorithms are used together with the distance of occurrence data to the expert range as predictor variables in a logistic regression meta- learner, 
which then is used to predict the species' distribution. Maps show examples of one bat species in our dataset (Nyctalus noctula). Map panel for expert 
range shows IUCN range in grey with presence records coloured according to their distance to the IUCN range. Shown maps are in Albers equal area 
projection. IUCN, International Union for the Conservation of Nature; SDM, species distribution model.
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3.2   |   Species Distribution Modelling

We used presence- background SDMs (Elith and Leathwick 2009) 
to characterise the distributions of bats in our study area. For 
modelling, we compiled a set of 40 candidate predictor variables, 
indicating four key dimensions of habitat suitability for bats: cli-
mate, land cover and vegetation productivity, topography and 
geology and human pressure and modification (Table 1). While 
target resolution of our SDMs was 1 km2, we derived all predic-
tor variables at three spatial scales (1, 5 and 10 km2), resulting 
in 120 candidate variables. Including coarser scales derived 
through moving window averaging allows better characterising 
habitat conditions at the scale of bat home ranges (e.g., available 
forest cover within the surrounding area of a bat roost).

We sampled background points using two approaches: first, a 
target group bias grid, created from kernel density estimation 
based on all presence records in our dataset. Using the density 
of bat occurrence records as sampling weights for background 
points allows characterising sampling effort and helps to mit-
igate the influence of sampling bias in presence- background 
SDMs (Barber et  al.  2022; Inman et  al.  2021; Syfert, Smith, 
and Coomes  2013). Second, we used simple random sampling 
across the entire study area. For each species, we sampled back-
ground points equal to 10 times the number of available pres-
ence records.

We used three SDM algorithms: Maxent (R- package dismo; 
Hijmans, Phillips, and Elith 2020), random forests (R- package 
randomForest; Breiman et al. 2022) and boosted generalised ad-
ditive models (GAMs, R- package mboost; Hothorn et al. 2022). 
Following recommendations by Valavi, Elith, et al.  (2021), we 
used downsampled random forests, in which subsamples of the 

background points are used within each individual tree in order 
to correct class imbalances. In the first modelling step, we per-
formed variable selection by fitting univariate models (with de-
fault parameters) for all 120 candidate variables and evaluating 
their predictive performance using the area under the receiver 
operating characteristic curve (AUC) and Pearson correlation 
between the predicted and observed presence (COR) in a five-
fold cross- validation (Valavi, Guillera- Arroita, et al. 2021). For 
selecting the best- performing model, we combined AUC and 
COR into a single performance score by rescaling their values 
across all tested models to a 0–1 scale and calculating the mean 
of rescaled AUC and COR values. Based on this combined per-
formance score, for each species, we selected the set of vari-
ables offering the best predictive performance while having 
correlation coefficients |r| < 0.7 (Dormann et  al.  2013). Using 
the selected variables in a second fivefold cross- validation, we 
tuned algorithm parameters for all species (selecting regularisa-
tion multipliers for Maxent, mtry and maxnodes parameters in 
random forest and the number of boosting iterations in boosted 
GAMs; see Appendix S4 for details).

3.3   |   Stacked Generalisations

We implemented stacked generalisations in two ways. First, we 
created pure algorithm ensembles (hereafter SDM ensembles) 
solely relying on the predictions of the three SDM algorithms as 
predictors in the meta- learner. Second, we created expert- informed 
ensembles additionally including information from IUCN range 
maps. Additionally, we compared two approaches for adding dis-
tance terms to the meta- learner. First, we used species- specific 
distance terms, using the distance of species- level training points 
to the species' IUCN range as a predictor in the meta- learner. 

FIGURE 2    |    Extent of the study area shown as black polygon and intersecting global biodiversity hotspots shown as coloured polygons. Map is in 
Albers equal area projection.
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Second, we calculated a target- group distance term, which we 
derived by fitting a logistic regression to the distances of all bat 
occurrence records in our dataset (i.e., all 49 species). To deal with 
(quasi- )complete separation in species- specific distance terms, 
we used bias- reduced logistic regression implemented in the R- 
package brglm2 (Kosmidis et al. 2023) for fitting meta- learners.

A critical consideration when using stacked generalisations is 
the risk of overfitting the meta- learner. A widely adopted strat-
egy for this purpose, referred to as Super Learner (Naimi and 
Balzer 2018; van der Laan, Polley, and Hubbard 2007), uses out- 
of- sample predictions (i.e., from cross- validation) for training 
the meta- learner. Using out- of- sample predictions for training 
the meta- learner provides a more honest measure of the perfor-
mance of input algorithms, enabling the meta- learner to learn 
how to optimally combine input algorithms for achieving good 
out- of- sample performance. To assess the effect of the Super 
Learner strategy on predictive performance, we compared meta- 
learners trained on out- of- sample versus in- sample predictions.

We compared the predictive performance of all three tested 
modelling approaches using fivefold cross- validation: (1) single- 
algorithm SDMs (i.e., Maxent, random forest and boosted 
GAMs), (2) SDM ensembles and (3) expert- informed ensembles. 
In addition to AUC and COR values, we calculated the area 
under the precision–recall curve (PRAUC) as a further perfor-
mance metric, which specifically targets the prediction of pres-
ences and is particularly useful when evaluating models for rare 
species (Sofaer, Hoeting, and Jarnevich 2019).

To create distribution maps for all species, we predicted all 
models for the most recent time step (target year for prediction: 

2020). To compare mapped distribution patterns between SDM 
ensembles and expert- informed ensembles, we calculated two 
metrics: first, species- wise niche breadth using Levins' B2 met-
ric, describing the uniformity of predicted suitability in geo-
graphic space (Warren et al. 2021), and second, range overlaps 
calculated using Schoener's D metric, describing the similarity 
of predicted suitability between species pairs (Warren, Glor, 
and Turelli  2008). Integrating information on species' range 
limits should correct for the overprediction of species' realised 
ranges by SDMs due to missing information on the effect of dis-
persal limitations and biotic interactions (Merow, Wilson, and 
Jetz  2017). We thus hypothesise that expert- informed ensem-
bles should result in narrower estimates of niche breadth and 
smaller range overlaps between modelled species.

4   |   Results

The accuracy of IUCN range maps varied considerably across 
bat species. On average, 73% of presence records fell inside 
expert- defined ranges (interquartile range: 22%), with re-
cords lying at an average distance of 50 km beyond expert- 
defined range boundaries (interquartile range: 30 km). These 
differences in the accuracy of expert range maps translated 
into considerable variation in species- specific distance terms 
and thus clear differences in how predicted suitability values 
declined outside expert ranges when using expert- informed 
ensembles. In the case of accurate expert ranges, suitability 
sharply declined outside expert ranges, leading to the exclu-
sion of (often large) areas identified as environmentally suit-
able by SDMs but lying outside species' ranges (e.g., Myotis 
myotis in Figure  3). Conversely, when occurrence records 

TABLE 1    |    Overview of environmental predictor variables used in species distribution models.

Category Predictor Available time steps Data source

Climate 19 bioclimatic variables 1981–2010 (average) CHELSA climate data 
(Karger et al. 2017)

Land cover and vegetation 
productivity

Six land- cover proportions 
(agriculture, forest, shrubs, 

herbaceous vegetation, bare and 
sparse vegetation and water)

1992–2020 (annual) ESA CCI land cover

Nine Landsat- based spectral- 
temporal metrics (cumulative, 

minimum and seasonality metrics 
for Tasselled Cap greenness, 

brightness and wetness indices)

1990, 1995, 2000, 
2005, 2010, 2015

Landsat satellite imagery 
(Oeser et al. 2020)

Topography and geology Terrain ruggedness index — (Amatulli et al. 2018)

Presence of karstifiable rocks — World Karst Aquifer Map 
(Chen et al. 2017)

Human pressure and 
modification

Human modification index 1990, 2000, 2010, 
2015, 2017

(Theobald et al. 2020)

Accessibility (travel time to cities) 2015 (Weiss et al. 2018)

Nighttime lights 1992–2018 (Zhao et al. 2022)

Forest landscape integrity index 2019 (Grantham et al. 2020)

 14668238, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13911 by B

alikesir U
niversity, W

iley O
nline L

ibrary on [15/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7 of 13

indicated that expert range maps were inaccurate, SDMs 
clearly dominated the predictions of expert- informed ensem-
bles, making it possible to identify areas outside IUCN ranges 
as likely occupied by species (e.g., Taphozous nudiventris in 
Figure 3). When using target- group instead of species- specific 
distance terms, suitability values declined at similar rates out-
side expert ranges across species (Appendix S4).

SDM ensembles built via stacked generalisation showed a 
slightly higher mean predictive performance than single- 
algorithm SDMs. However, training on out- of- sample predic-
tions was necessary to achieve optimal predictive performance 
in all stacked generalisations (i.e., using the Super Learner 
approach; see Appendix S5). Expert- informed ensembles built 
with species- specific distance terms achieved the highest mean 
predictive performance according to AUC, COR and PRAUC 

values (Figure 4). However, absolute values of the performance 
metrics and their relative differences between approaches de-
pended on the background sampling strategy. Models built 
with random background points showed higher AUC, COR and 
PRAUC values and clearer differences between the approaches. 
Among models built with target- group background points, im-
provements of expert- informed ensembles with species- specific 
distance terms over single- algorithm SDMs were statistically 
significant at a 5% level only for COR values, while improve-
ments were significant for all three performance metrics in 
models built with random background points (see Appendix S6).

Performance improvements of expert- informed ensembles com-
pared to SDM ensembles generally decreased with the mean 
distance of presence records to expert ranges (i.e., increasing per-
formance gains with higher expert map accuracy; Figure 5). In 

FIGURE 3    |    Comparison of distribution maps (A and B) and decline in predicted occurrence probabilities outside expert ranges (C and D) for 
two example species with high (Myotis myotis) and low expert map accuracy (Taphozous nudiventris). Distribution maps based on IUCN ranges 
(including available presence records), SDM ensembles and expert- informed ensembles are shown. Expert- informed ensembles correspond to 
models built with species- specific distance terms. Plots of decline in predicted occurrence probabilities outside expert ranges (C and D) are based 
on loess smooth to the data. Maps are in Albers’ equal area projection. IUCN, International Union for the Conservation of Nature; SDM, species 
distribution model.
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addition, performance improvements tended to be higher for spe-
cies with fewer available occurrence records as well as for species 
with smaller range extents (see Appendix S6), but these relation-
ships were considerably weaker than for expert map accuracy.

Considering mapped distribution patterns, expert- informed 
ensembles resulted in lower niche breadths (i.e., less uniform 
distribution of predicted suitability in geographic space) for 
83% of species compared to SDM ensembles. On average, 
species- wise niche breadths obtained from expert- informed 
ensembles were 21% lower compared to niche breadths de-
rived from SDM ensembles (Figure  6A; p = 0.038). Range 

overlaps between species pairs (i.e., similarity of predicted 
suitability) derived from expert- informed ensembles were 
lower than overlaps predicted by SDM ensembles in 90% of 
the cases. On average, overlaps were 30% lower in expert- 
informed ensembles compared to those obtained from SDM 
ensembles (Figure 6B; p < 0.0001).

5   |   Discussion

Addressing the Wallacean shortfall is critical to biogeographi-
cal research and conservation planning, yet accurately mapping 

FIGURE 4    |    Predictive performance of modelling approaches for 49 bat species in Eastern Mediterranean, Western Asia and Central Asia 
according to three performance metrics (AUC, COR and precision–recall AUC), evaluating models built with target- group background points. p- 
values <0.05 of pairwise comparisons with Wilcoxon tests are shown on top of boxplots. Performance of models built with random background points 
is shown in Appendix S6.
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species' realised distributions through species distribution mod-
elling presents a significant challenge. Here, we developed a new 
approach for integrating expert information on range limits in 
species distribution models by making use of stacked generali-
sation, an ensemble method widely applied in machine learning 
but still underexplored in the context of SDMs. Testing our ap-
proach with a dataset covering 49 bat species demonstrated its 
flexibility and promise for improving species distribution map-
ping helping to combine the key strength of SDMs (characterising 
environmentally suitable habitats) with that of expert range maps 
(characterising range limits) without requiring prior knowledge 
about expert range maps or having to rely on specific modelling 
algorithms. In a broader context, we add to the growing toolbox 
of integrated SDM approaches, providing an important step to-
wards more accurate assessments of species' distributions.

The application of our approach showed that it effectively 
enables the exclusion of areas lying outside species' real-
ised range limits while preserving fine- scale predictions of 

habitat suitability, which offers a key strength of SDM ap-
proaches (Mainali et al. 2020). At the same time, when enough 
presence records are recorded outside expert- defined ranges, 
expert range maps exert minimal influence on mapped distri-
butions, demonstrating the flexibility of our approach towards 
varying levels of expert map accuracy. As an alternative to 
using expert range maps, range extents could also be incorpo-
rated into SDMs by using occurrence data directly (Burgman 
and Fox 2003; Palacio et al. 2021). However, occurrence- based 
range extents often show low overlap with expert- defined ranges 
(Aronsson et  al.  2024) or require absence of information that 
is commonly not available (Palacio et al. 2021). More generally, 
like other integrated SDM approaches, our approach takes ad-
vantage of expert- defined ranges as independently derived data 
on species ranges (Merow, Wilson, and Jetz 2017).

Using expert- informed ensembles did not lead to statistically sig-
nificant performance gains compared to pure SDM ensembles 
in our performance assessment, yet the predicted distribution 
patterns changed significantly by incorporating expert range 
maps (i.e., in terms of predicted niche breadth and overlap). 
However, we caution that differences in performance might be 
underestimated as we did not have an independent validation 
dataset on species distributions available, limiting us to cross- 
validations on datasets containing background points instead 
of true absence information. Our approach primarily addresses 
the issue of overprediction by SDMs in environmentally suitable 
regions not inhabited by a species, which should mainly be re-
flected in an improved prediction of absences (model specificity) 
but cannot be properly characterised when evaluating models 
using background points (Sofaer, Hoeting, and Jarnevich 2019). 
This is likely why our cross- validation suggests only a small per-
formance gain, even though range predictions for many species 
changed strongly by removing suitable habitats outside their 
ranges. In addition, our results confirm that the choice of back-
ground sampling strategy has a strong impact on performance 
assessments of presence- only SDM approaches (Jarnevich 
et al. 2017; VanDerWal et al. 2009). Regarding the integration of 
expert range maps with SDMs, we found that potential gains in 
predictive performance depend on the accuracy of expert range 
maps. Moreover, varying distance terms across species (i.e., 
using species- specific instead of target- group distance terms) 
improved predictive performance in our assessment.

FIGURE 5    |    Improvement in predictive performance of expert- 
informed ensembles compared to SDM ensembles in relationship to 
expert map accuracy (mean distance of presence records to expert 
range, including points inside the range with distance = 0). Data for 
expert- informed ensembles with species- specific distance terms and 
target- group background points are shown, with linear trend plotted on 
top. SDM, species distribution model.

FIGURE 6    |    Distribution of (A) niche breadths and (B) range overlaps of bat species according to SDM ensembles versus expert- informed 
ensembles. p- values of pairwise comparisons (Wilcoxon test) are shown on top of the boxplots. SDM, species distribution model.
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Our approach offers an alternative to applying user- defined 
spatial offsets in point- process models as proposed by Merow, 
Wilson, and Jetz  (2017). Choosing between stacked generalisa-
tion and spatial offsets as ways to integrate expert range maps 
boils down to selecting different styles of modelling approaches: 
relying either on prior knowledge when using spatial offsets or on 
available occurrence datasets when using stacked generalisations 
for characterising expert map accuracy. The appropriateness of 
using stacked generalisations thus hinges on whether available 
occurrence records can accurately capture expert map accuracy. 
The accuracy of the distance terms, and hence the usefulness 
of our approach will likely be considerably reduced when mod-
elling rare species with very few available records, or if records 
are biased towards expert ranges (e.g., expert range maps affect 
sampling intensity or species identification; Merow, Wilson, and 
Jetz 2017). However, in many cases, occurrence records provide 
a more comprehensive and up- to- date picture of species distri-
butions compared to expert range maps. Moreover, occurrence 
records will often be the best available (or only) type of data for 
evaluating expert range maps, as other a priori information on 
their accuracy is difficult to obtain. As exemplified by our data-
set, expert map accuracies typically vary strongly across species. 
Stacked generalisation provides a simple yet effective data- driven 
approach allowing one to account for this variation when assess-
ing many species at once. If occurrence datasets for individual 
species are deemed too incomplete or biased for characterising 
expert map accuracy, target- group distance terms can be used 
as an alternative. Both these options are conceptually similar to 
manually defining spatial offsets in point process models based 
on available evidence on expert map accuracies (Merow, Wilson, 
and Jetz 2017), yet eliminate the need for subjective decisions po-
tentially biasing results. In sum, our approach provides a widely 
applicable data- driven alternative for integrating expert range 
information in SDMs, proving particularly useful when accurate 
and comprehensive occurrence datasets are available.

An additional key advantage of our approach lies in its flexibility 
to combine expert range maps with any combination of modelling 
algorithms, thereby facilitating the use of algorithm ensembles. 
In contrast to the use of spatial offsets in point process models, 
stacked generalisations can be easily combined with machine 
learning algorithms that do not include offset terms. This enables 
the use of algorithms such as random forest, often found to be 
one of the best- performing algorithms in comparisons of SDM ap-
proaches (Valavi, Guillera- Arroita, et al. 2021). With SDM ensem-
bles performing better than any individual modelling algorithm 
in our dataset, our results also point towards the potential of 
stacked generalisations as a method for combining modelling al-
gorithms more generally. Illustrating the advantages of the Super 
Learner approach (Naimi and Balzer 2018; van der Laan, Polley, 
and Hubbard  2007), we achieved improved performance when 
using out- of- sample predictions for training the meta- learner. 
Studies on the performance of SDM ensembles have highlighted 
that they do not necessarily improve predictive performance over 
single algorithms, particularly when using default parameter set-
tings (Hao et al. 2020). To optimise the predictive performance 
of SDM ensembles built using stacked generalisation, we recom-
mend combining a diverse set of algorithms (e.g., combining para-
metric and tree- based models; Naimi and Balzer  2018; Phillips 
et  al.  2023) and carefully tuning the parameters of all input 

models (Valavi, Guillera- Arroita, et al. 2021). It has been shown 
that in large samples, the Super Learner approach performs at 
least as well as the best- performing individual algorithm (van der 
Laan, Polley, and Hubbard 2007; van der Laan and Dudoit 2003). 
Yet, despite its potential, stacked generalisation has remained ne-
glected in the context of species distribution modelling (El Alaoui 
and Idri 2023), with studies typically relying on unweighted or 
weighted model averaging for combining algorithms and stacked 
generalisation not being considered in systematic assessments of 
SDM ensemble methods (Hao et al. 2019, 2020). We recommend 
stacked generalisation as a versatile approach for combining SDM 
algorithms, which should be included in future comparisons of 
SDM ensemble methods.

In most cases, the integration of expert range maps resulted 
in considerably less uniform occurrence predictions and de-
creased range overlap between species, likely reflecting more 
realistic predictions of bat distributions in our study area. Both 
SDMs and expert range maps tend to overpredict the occur-
rence of species since they are missing information on factors 
limiting species' ranges (dispersal and competition in the case 
of SDMs, and habitat suitability in the case of expert ranges). 
Integrating both data sources can therefore improve estimates 
of individual species' distributions as well as species richness 
(Ellis- Soto et  al.  2021). By separating environmental con-
straints from other limiting factors, the combination of SDMs 
and expert ranges can help to better understand the influence 
of nonenvironmental factors affecting range limits (i.e., biotic 
interactions and dispersal). For example, contrasting potential 
range overlaps derived from SDMs with realised range overlaps 
derived from expert- informed models can provide a window 
into the potential role of interspecific competition in shaping 
species' ranges (Novella- Fernandez et al. 2021). For some spe-
cies, such as migratory or invasive species, integrating expert 
range maps might only be practical if sufficient auxiliary in-
formation is available (e.g., seasonal ranges or introduced vs. 
native ranges). Overall, our approach has broad applicability 
in ecological research and conservation planning, making it 
possible to update species' conservation status, better identify 
conservation priorities through more accurate species richness 
mapping and provide new ecological insights into factors deter-
mining species' range limits.

Our approach adds to the growing toolbox of integrated species 
distribution modelling approaches by providing a flexible and 
easily applicable approach for integrating SDMs with readily 
available information on species' range limits. As SDMs have 
become one of the most widely used tools in ecological and bio-
geographical research, an increasing recognition of their short-
comings has developed (Franklin 2010; Lee- Yaw, McCune, and 
Pironon 2022). Recently, integrated modelling approaches have 
been proposed that try to enhance SDMs by combining them 
with additional sources of information (Fletcher Jr. et al. 2019; 
Miller et al. 2019). Integrated SDM approaches already offer key 
innovations for improving the mapping of species' realised dis-
tributions (Jung 2023; Miller et al. 2019). The broader adoption 
of these methods combined with a rapid growth in the availabil-
ity of biodiversity data will be critical for filling knowledge gaps 
about the distribution of species and overcoming the Wallacean 
shortfall.
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