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Abstract
This study aims to highlight the impact of low-volume (7.5%) continuous carbon fibre reinforcement
in three different polymermatrices and the effects of post-processing under hot pressing on the
mechanical properties of the structures. A fused depositionmodelling (FDM) printer’s print headwas
modified to directly extrude the polymermatrix and continuous carbonfibre tow together. Both pure
and carbonfibre-reinforced samples were cured under hot pressing at 100 °Cand 10 kNpressure for
15min. All samples underwent tensile and hardness tests, and themicrostructure of fractured samples
was analysed using a scanning electronmicroscope. The results indicate that continuous carbon fibre
reinforcement and hot pressing are crucial for enhancing themechanical performance of 3D-printed
objects.

1. Introduction

Additivemanufacturing (AM) is a process of bondingmaterials to fabricate objects layer by layer. Various
additivemanufacturing technologies have been developed since the 1980s. They arematerial extrusion, powder
bed fusion, binder jetting, resin-basedmaterial jetting, vat photo polymerization, sheet lamination, and direct
energy deposition [1]. Themost knownAMmethod is fused depositionmodelling (FDM), and FDM three-
dimensional (3D) printer costs are relatively low, and feedstock filaments are inexpensive. Today, 3DFDM
printers are still developing and penetratingmany industries, such as the automotive, aerospace,medical, food,
and construction sectors [2]. In the FDM3Dprinting process, a thermoplastic polymer filament ismelted in the
heated head unit and fed into the nozzle. The extrudedfilament is deposited on the building platform layer by
layer while the nozzlemoves around the x and y directions. Travelmovements of the nozzle are defined by slicer
software. One of the disadvantages of the FDM is theweakmechanical properties depending on the build
orientation. Nevertheless, the production of parts with 3Dprinting technologywill develop and shape the future
ofmaterial productionmethods and the plastic and composite industry very shortly. 3D printing technology
widely uses thermoplastic filaments aswell as their composites as a rawmaterial. The introduction of short
carbon fibre and continuous carbon fibre reinforced filaments formore than ten years opened a new era for the
3Dprinting of complex composite structures with high performance and low cost. Therefore, the studies on the
use of continuous carbon fibre-reinforced thermoplastics in the three-dimensional fabrications of composite
parts with the additivemanufacturingmethod and the improvement of themechanical properties of the final
product are constantly increasing [3, 4]. There aremany advantages of the production of parts with 3Dprinting,
such as no need for amould, the ability to produce complex parts, the use of hybridmaterials, and the
development of a variety type of differentmaterials [5, 6].

Carbonfibre-reinforced acrylonitrile butadiene styrene (CFRABS) is a compositematerial that combines
ABS plastic with carbon fibres. The addition of carbon fibres to thermoplastics, such as ABS, polylactic acid
(PLA), and thermoplastic polyurethane (TPU), improves their strength, stiffness, durability, andmechanical
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properties while also reducing their weight [7].When comparing the tensile strength-to-density ratio of ABS and
PLAwithmany other filaments, carbon fibre reinforcedABS and PLA composites have a higher strength-to-
weight ratio [8]. However, carbon fibre-reinforced ABS is typicallymore expensive than regular ABS plastic
because of the added cost of carbon fibres. Additionally, the production process for thismaterial ismore
complex than that of plain ABS,which can also contribute to its higher cost [9, 10].

Continuous carbon fibre reinforced (CCFR) polymers are composed of at least two constituents, the
continuous fibre as reinforcement and the polymers as thematrix. They are lightweightmaterials with high
strength properties. They can be used in various applications such as aerospace, aviation, automotive, sports,
andmedical industries. Because of their high strength, stiffness, lightweight, wear, and excellent fatigue
properties, continuous carbon fibre-reinforced polymers can be used instead ofmetals [11, 12]. Peng et al [13]
studied the synergistic enhancement of themechanical properties of continuous and short carbon fibre-
reinforced polyamide (PA) based composites using the fused filament fabrication (FFF) technique. They found
that the tensile strength increased, but the elasticmodulus of short carbon fibre and continuous carbon fibre-
reinforced PAwas affected in a badmanner. Chacón et al [3] studied the effect of 3Dprinting parameters such as
build orientation, layer thickness, and fibre volume contents on themechanical properties of 3Dprinted
continuous carbon, Kevlar, and glassfibre-reinforced nylon thermoplastic composites. They showed that the
effects of layer thickness, build orientation, type of reinforcement, andfibre volume content on themechanical
performance of the reinforced nylon specimenswere significant. Dou et al [14] attempted to determine the
relationship between printing parameters and themechanical properties of continuous carbon fibre-reinforced
PLA composites using amodified FDM3Dprinter. They observed that increasing the printing layer height and
extrusionwidth decreased themechanical properties of the 3D-printed continuous carbon fibre-reinforced PLA
composites. They also showed that increasing the 3Dprinting temperature to 230 °Cand printing speed from50
to 400 mmmin−1 decreases the tensile strength of theCCFRPLA composite samples. Similarly,many
researchers have printed samples with continuous or discontinuous carbon fibre and carbon nanotube
reinforcement onmanymatrixmaterials such as ABS, PLA, polyetheretherketone (PEEK), polyamide (PA),
TPU, nylon, and polycaprolactone (PCL) and examined theirmechanical properties. In these studies, factors
such as the 3Dprinter brand and specifications, printing parameters, and fibre reinforcement percentage
influenced themechanical properties and cost of the obtained samples [15]. Tian et al [4] underscored the
significance of using 3Dprinting for carbon fibre reinforced polymer composites (CFRPCs) as a transformative
technology capable of overcoming disparities between cutting-edgematerials and inventive structures. The
current state of the art has beenmeticulously examined, focusing on the interrelationships amongmaterials,
structures, processes, performance, and functions in the 3Dprinting of CFRPCs. This study delineates typical
applications and prospects of 3Dprinting for CFRPCs to comprehend the opportunities and confront the
challenges in this domain. Addressing these aspects necessitates extensive interdisciplinary research that
encompasses advancedmaterials, processes, equipment, structural design, and the attainment of intelligent final
performance. Therefore, some expensive or relatively cheaper improvement studies have been conducted in the
literature to increase thefibre–matrix interface strength. For example, some researchers have reported that pre-
and post-processing techniques for compact printed composites improve theirmechanical properties, e.g., hot
pressing and heat treatment [16–20]. The tensile and bending strengths of 3Dprinted polymers with CCFwere
tested to analyse the effect of pressure. The results showed that pressure significantly affected theCCFRPLA
samples [21]. Luo et al [22] attempted plasma-laser treatment of carbon fibres to improve their interfacial
bondingwith PEEK. Jayswal andAdanur [23] andKanbur andTayfun [24] used different reinforcement
materials to improve themechanical properties of the TPUpolymer. They used nanoparticles, fibres (aramid,
carbon, and glass), and carbon nanotubes as reinforcementmaterials.Mei et al [25] studied the influence of hot
pressing andmixedfibre angles on themechanical behaviour of 3Dprinted polymer composites with varying
temperatures, pressures, and times.Hot pressing significantly improved themechanical properties of the carbon
fibre-reinforced 3Dprinted polymer composites. They also found that increasing pressure further lowered the
tensile strength andmodulus. Similar to laser and ultrasonic strengthening, heat treatmentmethods, such as hot
pressing and annealing, are also effectivemethods for improving themechanical performance of FFF printed
parts [26]. Jo et al [27] studied the effects of hot pressing on themechanical strength of PLAparts printed by the
FFF process. Although studies exist in the literature for classical polymers such as ABS and PLA, there has been
no study specifically on the application of hot pressing to improve themechanical properties of TPUpolymers
after 3Dprinting.

This study aims to compare themechanical behaviour of pure, and continuous carbon fibre reinforced (with
7.5% in volume)PLA, ABS, andTPU tensile test specimens fabricated by FDM3Dprinting technology.
Additionally, apply hot pressing to these samples to investigate the effect of the hot pressing on thefibre-matrix
interface strength,mechanical properties, and hardness changes. Furthermore, compare the results obtained
from the hot-pressed specimenswith those that were not subjected to hot pressing. The study also aims to
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analyse themicrostructure of fractured tensile test samples with scanning electronmicroscopy (SEM) and
identify and verify the internal structure of the continuous carbon fibre-reinforced polymer composites.

2.Materials andmethods

2.1.Materials and equipment
In this study, PLA, ABS, andTPU thermoplastic filaments, 1.75 mm in diameter, were used asmatrixmaterial.
3000 (3 K) continuous carbon fibre tows, each 7 μm in diameter, were used to prepare the compositematerials
(CCFR thermoplastics). The term ‘continuous’ refers to the carbon fibre thread, rather than thermoplastics such
as TPU, ABS, or PLA. Some thermoplastic filaments used in 3Dprinting aremade as composite filaments by
adding short (chopped) carbon fibres in specific proportions. However, pre-made short or chopped carbon fibre
composite filamentwas not used in this study. Thesefibres have highmechanical properties such as a tensile
strength of 3500MPa and 235 GPa amodulus of elasticity. The density of the carbon fibres is 1.8 g cm−3.

2.2. Printing of CCFR thermoplastic specimenswith the FDMMethod
The simultaneous insertion of solid polymer filament and continuous carbon fibre into the extrusion nozzle of a
3DFDMprinter causes problems that need to be overcome [28, 29]. Therefore, the printing head of the
FlashForge Creator 3DFDMprinter wasmodified to print a polymermatrix with carbon fibre strands directly in
the printing head.Due to itsflexibility and limpnature comparedwith polymer filaments, carbon fibre roving
cannot be directly fed into the heating block. Themodified printing head unit for printing the carbon fibre
roving filamentwith the polymermatrix is shown infigure 1.

The carbon fibre roving is introduced into the heating unit through a nearby hole, which is drilled at an
approximate 40° angle just after the exit of the extruder. It is then dragged into the nozzle by the polymermatrix
filament. Polylactic acid, acrylonitrile butadiene styrene, and thermoplastic polyurethanewere used as the
polymermatrix. Themodified 3Dprinting head can process several polymers and various fibres tomix them in
the printing head.

Before initiating the 3Dprinting process, the continuous carbon fibre roving filamentwas coatedwith a TPU
based chemical solution.

To prepare the TPUbased chemical solution, 1 g of BayerDesmopanTPU192 plastic resin rawmaterial was
added to 4 g of tetrahydrofuran (THF,C4H8O)undermagnetic stirring at 50 °C. The chemical solution is
applied to the continuous carbon fibre towusing a spraying bottle and then spread along the continuous carbon
fibre tow. This application prevented the printing nozzle from cloggingwith carbon fibre strands. TPU-based
solution smeared onto the continuous carbon fibre threadwas used during the 3Dprinting of all ABS, PLA, and
TPU tensile test specimens. This ensured the seamless embedding of the continuous carbon fibre thread into the
polymerwithout breakage. A conical nozzle (1.4 mm in diameter)was employed during the printing process.
The polymermatrix and continuous carbon fibre towwere inserted into the heating block unit through the
driving gear of the extruder. As shown infigure 1, the 3Dprinter’s extruder is supplied simultaneously with
filaments such as ABS, PLA, or TPU, and continuous carbon fibre thread. This allows themolten filament and

Figure 1.Amodified version of the 3Dprinting head unit.
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continuous carbon fibre to combine in the nozzle and be printed on a temperature-controlled building plate,
resulting in a composite tensile testing sample.

TPU ismuchmoreflexible and tackier when compared to othermore rigid filaments. Thesemake 3D
printingwith TPU challenging for several reasons. Thefirst challengewith TPU is that the greater the distance
between the nozzle and the extruder drivemechanism, the harder it is to feed the flexible filament like TPU to the
nozzle without it buckling. Secondly, TPU’s lower viscosity compared to other filaments complicates 3D
printing. The printing parametersmust be carefully set to avoid issues such as spreading and sagging on the
building plate during the 3Dprinting process.

Infigure 2(a), the tensile test specimenswere prepared according to the ISO-527-4: Type1-A standard [30]. A
STereoLithography (STL), also referred to as ‘Standard Triangle Language’, or ‘Standard Tessellation Language’,
file is used to slice the test specimens by the open-sourceMakerWare slicing software [31]. Infigure 2(b), it can
be seen that the 3Dprinted test sample consisted of 5 layers, with each layer being 0.8 mm thick. The build
platform temperature was set at 100 °C, and the printing speedwas 1 mm s−1. Detailed 3Dprinting parameters
can be found in table 1.

Travelmovements of the printing nozzle are highly critical during 3Dprinting. The nozzlemust continue its
movementwithout interruption on the same layer. Of course, after theworking layer is completed, the building
platformmust be lowered by the layer thickness. Even in this case, the nozzlemust not bemoved further away
from the previous layer’s finishing position.Otherwise, the carbon fibre threadwill be broken, and the
continuity effect will be lost while the nozzlemoves to a new position. Because of this, the path followed by the
nozzlemust be a continuous line, and theworking layermust be completed without lifting the nozzle or
lowering the building platform, both in the shelling and infilling stages of the 3Dprinting of the test sample. As a
result of the specially designed infilling and shelling path structure, as depicted infigure 2(a), the 3Dprinter’s
nozzle does not need to be lifted, nor does the building platformneed to be lowered during the shelling and
infilling stages of the test sample’s 3Dprinting process. Some literature underscores that the development of

Figure 2. (a) Infill structure of the test specimens, (b)macroscopic image and (c) fracture surface of transverse direction of theCCFR-
PLA sample.

Table 1.Parameters of 3Dprinting.

Parameters Units

Printing speed 0.6 mm s−1

Nozzle diameter 1.4 mm

Layer thickness 0.8 mm

Number of shells 2

Feedstockmultiplier 0.88

Environment temperature 23 °C
Infill percentage 82%

Infill extrusionwidth 1.4 mm

Nozzle temperature 260 °C
Feed diameter 1.77

Infill pattern linear
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additivemanufacturingmethods is an ongoing process. There is a recognized need for novel designmethods and
tools in this evolving field to surmount challenges and generate effective solutions [32–34]. Infigure 2(a), the
depicted path illustrates the trajectory that the printing head unit will follow. As depicted infigure 2(b), the
overlapping lines wereminimized, allowing the printing head to transition from the external shell toward the
interior. The infill raster angle is configured to be 0°.

During the layer change, the nozzle can continue tomovewithout lifting. Themacroscopic images of the
CCFRPLA and its fracture surface are shown infigures 2(b) and (c), respectively.

These imageswere captured from the tensile samples derived from theCCFRPLA filament (figures 2(a)
and (b)).

2.3. Fibre volume fraction
Thefibre volume fraction can be calculated usingmathematical equations according to the diameters of the fibre
and nozzle. For this, equations (1)–(3)were used. For eachCCFR thermoplastic (TP)filament, thefibre volume
fraction is constant (because of the 3 K fibre bundle) [35].

Total Fiber Area 3000
Singular Fiber Diameter

4
1

2

= ´
p ´ ( ) ( )

Nozzle Area
Nozzle Diameter

4
2

2

=
p ´ ( ) ( )

Fiber Volume Fraction %
Total Fiber Area

Nozzle Area
100 3= ´( ) ( )

When calculations were performed using the above formulas, the fibre volume fractionwas calculated as
7.5% for a nozzle diameter of 1.4 mm.

2.4.Hot pressing treatment
Tensile test samples were prepared to compare themechanical properties of carbon fibre-reinforced polymers
with those of pure PLA, ABS, andTPU.Moreover, both pure and carbon fibre-reinforced tensile specimens
underwent hot press post-processing, as illustrated infigure 3, to investigate the potential impact of curing on
the polymers.

The curing process was performed at 100 °C and 10 kNpressure for 15 min. The compressive pressure
applied to the sample was 4.0 MPa.

3. Experimental part

3.1. Tensile tests
Following the 3D fabrication of continuous carbon fibre-reinforced test specimenswith various polymer
matrices, tensile tests were conducted to ascertain their tensile strength. Dog bone-shaped tensile test samples
were employed to investigate themechanical behaviours of continuous carbon fibre-reinforced polymermatrix
composites. The Zwick/Roell uniaxial testingmachinewas utilized for the tensile testing, with an extensometer
measuring the extension and strain of the specimens under a constant tensile load. The loading rate was set at
1 mmmin−1.

Figure 3. (A)High pressure hot pressing device, (B) Specimen compressed by pressure plates.
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3.2.Hardness tests
Hardness tests were conducted following the procedure outlined inASTMD2240. A standard handheld digital
Shore-Dhardness tester (HT-6510D)was used for the hardness tests. Fifteen tests were performed on both the
top and bottom surfaces of the samples, with great care taken to avoid indentation points on the edges of the
samples, as well as frompreviousmeasurements and surface roughness of the samples. The upper surfaces of the
samples, which did not undergo hot pressing, exhibited significant roughness, surpassing that of the lower
surfaces [36]. Both hot pressing and the surface flatness of the 3Dprinter’s base plate resulted in smoother
bottom surfaces. Therefore, the hardness test results obtained from the bottom surface aremore reliable and
consistent [37].

Although there is notmuch difference between them, the hardness results for the bottom surface have been
included in the evaluation. To reduce the scatter of the data and obtainmore accurate results, themaximumand
minimumhardnessmeasurements are not included in the average hardness.

4. Results and discussion

The average results of the tensile tests for the printed polymermatrixmaterials obtainedwith the 3Dprinter are
summarized in table 2.

4.1. Effects offibre addition and hot-pressing
The stress– strain curves obtained from the tensile tests are presented infigure 4. Changes in both the strength
and strain values of the samples were observed after 7.5% volume carbon fibre reinforcement and hot pressing
under high pressure for pure ABS, PLA, andTPU samples, as shown infigures 4(a)–(c). As shown infigures 4(a)
and (d), the average strength of the pure ABS samples was 42.8 MPa, whereas the average strength of theCCFR-
ABS samples with carbon fibre reinforcement increased by 11.9% to 47.9 MPa. In addition, the average strength
of the hot-pressedCCFR-ABS samples increased by 2.3% from47.9 MPa to 49.0 MPa. The strain of the pure
ABS samples decreased by an average of 3% and 25%after carbon fibre reinforcement and hot pressing,
respectively. As shown infigures 4(b) and (d), the average strength of the pure PLA samples was 59.8 MPa,
whereas the average strength of theCCFR-PLA sampleswith carbon fibre reinforcement increased by 20.9% to
72.3 MPa.

Unlike ABS, the average strength of the hot-pressed CCFR-PLA samples decreased by 2.6% from72.3 MPa
to 70.4 MPa. The strain of pure PLA samples decreased by 48.8% after continuous carbon fibre reinforcement,
whereas it increased by approximately 5.47 times after hot pressing. As shown infigures 4(c) and (d), the average
strength of the pure TPU sampleswas 20MPa, whereas the average strength of theCCFR-TPU samples with
continuous carbon fibre reinforcement increased by 41.5% to 28.3 MPa.

In contrast to CCFR-PLA, the average strength of the hot-pressedCCFR-TPU samples increased by 59.7%
from28.3 MPa to 45.2 MPa. Themost notable change in strainwas observed in the TPU, as shown infigure 4(c).

While continuous carbon fibre reinforcement caused a decrease in strain by approximately 36.79 times
(from440% to 22.89%) for pure TPU samples, hot pressing resulted in an increase of approximately 1.91 times
for CCFR-TPU samples.

4.2. Effects of hot pressing on 3D-printed pureABS, PLA andTPU
As shown infigure 4(d), hot pressing did not cause a significant change in the average strength of pure ABS and
PLA (5%and 4.7% respectively), but it led to a 23.5% increase in the average strength of pure TPU samples. As
seen infigures 4(a)–(c), hot pressing resulted in a decrease in the strain value of pure ABS by approximately
7.2%,whereas pure PLA andTPU exhibited an increase in strain by approximately 3.46 and 1.06 times,
respectively.

Table 2.Tensile properties of the printed polymermatrices.

Polymer

matrix

Tensile

strength

(MPa)
Elongation at

break(%)
Elasticmod-

ulus (MPa)

ABS 42.8 4.85 1413

PLA 59.8 1.18 1530

TPU 20.0 440 48
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Figure 4. Stress–strain graph of (a)ABS, (b)PLA and (c)TPUpolymermatrices, and (d) comparison of tensile stress values of all
polymermatrix samples.
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Upon careful observation offigure 4(b), it is evident that, unlike ABS andTPU samples, the tensilemodulus
and strain values of CCFR-PLA-hot pressed samples have significantly decreased compared to those of CCFR-
PLA (figure 4(b)). This is believed to stem from the following reasons:

a) As seen in figure 5(a), before hot pressing if attention is given to the cross-section of the sample, it can be
observed thatfibres (shownwith light blue ellipses) are arranged regularly compared to their post-hot
pressing state (figure 5(b)). However, after the high-pressure hot pressing of 10 kN, irregular fibres (crimp
patterned fibres) in the x, y, and z directions are apparent (figure 5(b)). Therefore, the angleØ>0° between
thefibres and the x-axis is due to these irregularities, directly affecting the sample’s tensilemodulus. Hence, it
is thought that these irregularities lead tofibre breakage, wrinkling, andwaviness. Despite this, infigure 5(b),
the total volume offibres and the totalfibre section that carries the applied load have not changed significantly
compared tofigure 5(a), resulting in the obtained tensile stress being the same.However, after hot pressing,
the tensilemodulus has decreased, and the strain has increased.

b) Before starting the 3D printing process, carbon fibres were coated with a TPU-based chemical solution. Since
the relaxation temperature of TPU is higher than PLA’s, aflexible TPU layer remained on the carbon fibre-
PLA interface during the 100 °Chot pressing process. The presence of thisflexible interface reduced the
tensilemodulus and increased strain.

c) Since the pressing temperature (100 °C) is above the softening temperature of PLA (61.7–67.9 °C) and a high
pressure of 10 kNwas applied, PLA samplesmay behave as if they have undergone a stress-relaxation process,
leading to a decrease in tensilemodulus and an increase in strain.

The results of the tensile tests are given as one sample infigure 6 for all groups. As shown infigures 6(b), (d),
(f), (h), and (j), an improvement in surface roughness is observed under hot-pressed samples, whereas expansion
is naturally observed in other directions.

Pure TPUobtained a considerably high average strain of 400–440%comparedwith other samples. As shown
infigures 6(l) and (m), pure TPUand hot-pressed TPU showed continuous elongationwithout breaking in
several tensile tests. Pure TPU sampleswere not broken in the tensile tests because of their very high strain.

4.3. Relationship between tensile strength andhardness
The average hardness results for both surfaces are shown in table 3. It is observed that both the hardness and
strength of the pure ABS, PLA, andTPU samples increased after carbon fibre reinforcement and hot pressing.
There is a notable correlation between the tensile strength and hardness of both hot-pressed and non-hot-
pressed samples [38]. Additionally, the hardness results are consistent with the tensile results and thefindings of
Harikrishnan and Soundarapandian [37].

Although there is notmuch difference between them, the hardness results for the bottom surface have been
included in the evaluation. In order to reduce the scatter of the data and obtainmore accurate results, the
maximumandminimumhardnessmeasurements are not included in the average hardness.

In some sources in the literature, the relationship between the hardness and strength of compositematerials
has been investigated [39, 40], and the formula S= k.H has beenmentioned [41].Where S represents strength, k
is the coefficient, andH is the hardness value. In this study, the relationships for ABS samples can be expressed
approximately as S= 0.65H, for PLA samples as S= 0.93H, and for TPU samples (excluding hot-pressedCCFR-

Figure 5.The continuous carbon fibres in PLA samples, (a) before hot pressing and (b) after hot pressing.
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TPU) as S= 0.64H. However, for hot-pressed CCFR-TPU samples, this formula should be given as S= 1.04H.
This is because, as shown in table 3, the hardnesses and strengths of the hot-pressedCCFR-TPU samples are
almost equal.

4.4.Microstructural observations of the fractured surfaces
Scanning electronmicroscopy (SEM)was used to analyse the fracture behaviour of the fractured samples. SEM
analysis was performed to identify and verify the internal structure of the polymer composite and examine the
fracturemechanism [42].

To better understand the effect of carbon fibre reinforcement and high-pressure hot pressing on the
composites,microstructure evaluationwas performed on the cross-section of the samples. The interface
between the fibre andmatrix plays a pivotal role in influencing themechanical properties of composites due to
its impact on load transition [4].

The strength offibre-reinforced composites is highly dependent on the interfacial adhesion strength
between thematrix, and the fibres which have in the longitudinal direction of the force, particularly [43, 44]. The
composite having the strongerfibrematrix adhesion yields higher strength [45].

As depicted infigures 7(a) and (b), thefibres that have detached from thematrix appear exceptionally clean,
with no residualmatrixmaterial adhering to them.

Additionally, the void created byfibre-matrix interfacial separation is quite large, as seen infigure 7(b). This
phenomenon occurs because ABS inherently possesses low adhesion capability tofibres. During high-pressure
hot pressing, the fibre-matrix interface undergoes elliptical expansion, leading tofibre peeling and breakage.
Although the tensile strength of the hot-pressed CCFR-PLAwas decreased (2.6%)much less than that of the
non-pressed, both hot-pressed and non-pressed, is seen asmore optimistic than the result described for CCFR-
ABS above.

Figure 6.Tensile tested specimens; (a) pure ABS, (b) hot-pressed ABS, (c)CCFR-ABS, (d) hot-pressedCCFR-ABS, (e) pure PLA, (f)
hot-pressed PLA, (g)CCFR-PLA, (h) hot-pressedCCFRPLA, (i)CCFR-TPU, (j) hot-pressedCCFR-TPU, (k) pure TPUbefore, (l)
pure TPU after testing, (m) pure TPU after hot pressing and testing (400% strain).

Table 3.Tensile strength andhardness.

Material Tensile strength (S) (MPa) Hardness (H) (shore-D) k

PureABS 42.8± 1.44 69.60± 1.02 0.61

Hot-pressedABS 45.0± 0.60 71.28± 0.83 0.63

CCFR-ABS 47.9± 7.07 71.42± 0.92 0.67

Hot-pressedCCFR-ABS 49.0± 2.09 72.15± 1.00 0.68

Pure PLA 59.8± 3.21 69.02± 0.96 0.87

Hot-pressed PLA 62.6± 0.53 69.25± 0.90 0.90

CCFR-PLA 72.3± 8.73 72.52± 1.03 1.00

Hot-pressedCCFR-PLA 70.4± 6.82 72.48± 0.66 0.97

Pure TPU 20.0± 0.27 30.98± 0.71 0.65

Hot-pressed TPU 24.7± 1.52 40.37± 0.73 0.61

CCFR-TPU 28.3± 2.53 43.25± 0.86 0.65

Hot-pressedCCFR-TPU 45.2± 4.26 43.42± 0.50 1.04
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Figure 7. (a) SEM image of CCFR-ABS, (b) SEM image hot-pressedCCFR-ABS, (c) SEM image of CCFR-PLA, (d) SEM image of hot-
pressedCCFR-PLA, (e) SEM image of hot-pressedCCFR-TPU, (f) SEM image of hot-pressedCCFR-TPU.
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In the SEM image of CCFR-PLA shown infigure 7(c), thefibres that have separated from thematrix exhibit
some impurities, with attachedmatrix residues visible on the fibres. It seems that thefibres have experienced
some strain during the process of detachment from thematrix. However, the abundance of fibre voids separated
from thematrix by breaking or strippingwithout breaking is still notable. The voids observed in the separated
fibres from thematrix infigures 7(c) and (d) serve as a significant indicator of inadequate fibre-matrix interfacial
strength. Infigure 7(d), the void created byfibre-matrix interfacial separation in hot-pressedCCFR-PLA is seen
to be of smaller diameter than in hot-pressed CCFR-ABS. Additionally, the fibres aremuch cleaner, and they
appear to separatemore easily from thematrix compared to non-pressedCCFR-PLA. As seen infigures 7(e) and
(f), carbon fibre residues are still attached to the damagedCCFR-TPU specimens. The latest findings show that
the presence offibre voids, observed inCCFR-ABS andCCFR-PLA, is uncommon in this case. These
observations indicate that thematerial surrounding the fibres has a strong bond to them, suggesting a higher
level of interfacial adhesion compared to other samples.

In general, hot pressing has been observed to enhance themechanical properties, including hardness, of
both pure and carbon fibre-reinforced samples. The results of this study indicate that the tensile strength of
carbon fibre-reinforced ABS andTPUcomposites increases with hot pressure treatment. On the contrary, the
tensile strength of carbon fibre-reinforced PLA composites exhibited a 3% reduction (table 3).

The printing and softening temperatures of TPU are approximately 210 °C–235 °C and 61 °C, respectively.
The printing temperature of ABS is between 230 °Cand 250 °C,with a softening temperature between 110 °C
and 125 °C.The printing temperature of PLA ranges from190 °C to 220 °C,with a softening temperature
between 61.7 °Cand 67.9 °C. In this study, to eliminate the effect of temperature variation, all test samples were
printed at a nozzle temperature of 260 °C.The hot pressing process was conducted at 100 °C.The softening
temperatures of the PLA andTPUwere lower than the hot-pressing temperature. Therefore, further studies
should explore different temperature and pressure ranges in future research.

However, as the pressure increases, the thickness of the sample decreases, leading to a decrease in shape
accuracy, a change in surface quality, and even a slight decrease in strength, such as inCCFR-PLA samples, by
2.6% [19, 21].With increasing pressure, the surface quality of all samples visibly improved, while the thickness
decreased. Considering that the thickness of the final part obtained in applications will decrease and its
dimensionswill change, the dimensions of the initial part obtained from the 3Dprinter need to be calculated
within tolerances.

As shown in table 4, literature reports provide coefficients of variation inmechanical properties resulting
fromparameters such asfibre volume fractions of 9.1–50%, low pressing pressures of 0.1–0.4 MPa, pressing
temperatures of 160–370 °C, and pressing times of 10–80 min. In contrast to existing literature, this study
achieved notably favourable results by employing a pressing pressure ten times higher than themaximum
pressure reported in the literature. The achievement of these favourable results is noteworthy, especially
considering the utilization of a low carbon fibre content of 7.5% in volume and a relativelymodest pressing
temperature of 100 °C.There have been no studies in the literature regarding hardness, and some studies have
not evaluated strain andmodulus of elasticity.

Significant differences of this study, compared to the literature, are the 1.6-fold increase in strength
accompanied by a 1.91-fold decrease in strain and a 1.51-fold increase inmodulus of elasticity in hot-pressed
CCFR-TPU, and the 1.03-fold decrease in strength accompanied by a 5.47-fold increase in strain and a 4.64-fold
decrease inmodulus of elasticity inCCFR-PLA.

As shown in table 3, the tensile strength of ABS andTPU samples reaches approximately 64%–65%of the
hardness valuemeasured in Shore-Dunits, while in PLA samples, the strength is around 93%of the hardness
value.However, in hot-pressedCCFR-TPU samples, the strength and hardness values are almost equal. Even if it
is a relatively small amount, such as 7.5 percent in volume, the use of a continuous carbon fibre-reinforced
polymermatrix significantly increased the strength of the tensile specimens comparedwith conventional pure
polymer specimens.

As a result of the high-pressure hot pressing of ABS and PLA samples, the easier separation offibre-matrix
interfaces with increasing pressing pressure has caused a decrease in strength to some extent.

Asmentioned in the study byMei et al [25], an increase in pressure was observed to push (spread) thematrix
material to both sides, causing a decrease in stress by leaving the fibres unattached to thematrix. It was observed
that therewas aweaker interface bondwithmore gaps between thefibre andmatrix in non-hot-pressed samples
(figure 7). Fibre breakage orfibrematrix separation is themain cause of sample failure [42]. As seen in table 3, the
addition of carbon fibre and high pressuremade the pure CCFR-ABS andCCFR-PLA samples slightly harder.
Essentially, a portion of the fibres experience breakage, while others are pulled out from thematrix. The high-
pressurematrix exerts force fromboth sides, leaving the fibres unbound, leading to a reduction in tensile
strength and an increase inmodulus [25]. Despite pure TPUhaving a strain value of 400–440%, thefibre-matrix
interface strengthwith carbon fibre reinforcement is significantly higher than other CCFR-ABS andCCFR-PLA
samples, evenwith the interface strength increasing further with hot pressing. These improvements have
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Table 4.Mechanical properties of 3Dprinted carbon fibre-reinforced composites after hot pressing.

Matrix Fibre volume fraction (%) Pressure (MPa) Temperature (°C) Time (min) Strength (times) Strain (times) Emodulus (times) Hard-ness (times) Study

Nylon 50 0.2 270 10 2.00 N/A 1.68 N/A [16]
Nylon 9.1–10.9 0.2–0.4 160 10 1.25 1.73–2.16 1.14–1.21 N/A [25]
PEEK 59 0.15 370 80 1.25 1.04 1.17 N/A [18]
Nylon 35 0.1 230 10 1.63 N/A 1.33 N/A [17]
PLA 10.3 1.0 180 15 2.65 N/A N/A N/A [21]
ABS 7.5 4.0 100 15 1.02 1.38 2.95 1.01 This study

PLA 7.5 4.0 100 15 1.03 5.47 4.64 1.01 This study

TPU 7.5 4.0 100 15 1.60 1.91 1.51 1.01 This study
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increased the tensile strength of CCFRTPU from an average of 20 MPa to 45.2 MPa, an increase of 126%.
Following hot pressing, the TPUmatrix exhibited the strongest interfacial bondwith the fibrematerial, with all
fibres completely enveloped by thematrixmaterial. Therefore, as evidenced by both the test results infigure 4
and the SEM images infigures 7(e) and (d), the strong interfacial adhesion and formation ofmatrix residues in
TPU could increase the surface roughness of the fibre and increasemechanical interlocking.

5. Conclusion

In this study, themechanical behaviour of pure and continuous carbon fibre reinforced (with 7.5% in volume)
PLA, ABS, andTPU tensile test specimens, whichwere fabricated by FDM3Dprinting technology, were
investigated. Additionally, hot pressingwas applied to these samples to investigate the effect of the hot pressing
on the tensile test samples. The results of the hot-pressed and non-hot-pressed specimenswere compared. The
fractured surfaces of the continuous carbon fibre-reinforced polymer composites were analysed using scanning
electronmicroscopy, and the internal structure of those composites was assessed. The Shore-D hardness values
of all tensile samples were identified by the ASTMD2240 standard, and they are evaluated and comparedwith
each other.Hot-pressed continuous carbon fibre reinforced TPU samples exhibited strong interfacial bonding
with carbon fibre strands, and this significantly increased the tensile strength of CCFRTPU samples from
20MPa to 45.2 MPawhich is a nearly126% increase in strength. This remarkable change in themechanical
properties of TPUwith carbon fibre reinforcement and hot pressing could lead tomany potential applications.

Many 3Dprinting parameters were considered during the fabrication of CCFR composite test samples. The
ideal printing speed of thematrices with continuous carbon fibre threadwas 0.6 mm s−1, and all samples were
printed at the same printing speed to ensure fair comparisons. The shrinkage and elongation that occur after hot
pressingwith TPU filament can pose challenges for some practical applications, but the hot pressing process can
tolerate these shape changes.

The challenges overcome in the study can be listed as follows:

• making severalmodifications to the printer’s printing head and nozzle,

• determining the optimal parameters after numerous printing and hot pressing sessions,

• coating the continuous carbon fibre threadwith a special chemical solution prepared for this study. (1 g of
BayerDesmopanTPU192 plastic resin rawmaterial was added to 4 g of tetrahydrofuran (THF, C4H8O) under
magnetic stirring at 50 °C).

In future studies, 3D-printed continuous carbon fibre-reinforced ABS, PLA, andTPU samples should be
testedwith different hot-pressing temperatures and pressures based on the intended use and purpose of thefinal
product to identify optimumparameters.While there are few problemswith carbon fibre reinforcement in 3D
printing of ABS and PLA, it was concluded that 3Dprinting of continuous carbon fibre reinforced TPU is
challenging due to its extreme flexibility, viscosity, adhesive behaviour, and the tensile forces that occur after hot
pressing. Nonetheless, the reinforcement of TPUwith continuous carbon fibre in 3Dprinting and hot pressing
at high pressure appears to be a promisingmaterial for various industrial applications.
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