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Abstract: In this paper, we modify various contractive conditions (C.C.)s such as Ciric type (C.C.),
Rhoades type (C.C.), Seghal type (C.C.), Bianchini type (C.C.), and Berinde type (C.C.) for two
self-mappings, considering that the contractive property plays a major role in establishing a fixed
circle (F.C.) on both metric spaces (M-s) and S-(M-s) where the symmetry condition is satisfied, and
we utilize them to establish a common (F.C.). We prove new (F.C.) results on both (M-s) and S-(M-s)
with illustrative examples. Finally, we provide an application to activation functions such as rectified
linear unit activation functions and parametric rectified linear unit activation functions.
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1. Introduction

Fixed point (F.P.) theory has been extensively studied under different aspects. One of
the most commonly studied areas of (F.P.) theory is metric (F.P.) theory. This theory began
with Banach’s theorem on (F.P.)s. The theorem is often known as the principle of Banach’s
contraction (Cn.). This theory has been extended in three mechanisms:

(1) To generalize the (C.C.) being employed.
(2) To extend the utilized (M-s).
(3) To examine the geometric characteristics of an (F.P.) set of a self-mapping.
Under the first approach, many (C.C.)s were defined in the literature. For example,

Ciric type (C.C.) [1,2], Rhoades type (C.C.) [3], Seghal type (C.C.) [4], Bianchini type
(C.C.) [5], and Berinde type (C.C.) [6,7] were introduced for this purpose.

Under the second approach, many generalizations of an (M-s) were defined [8–13]. For
instance, the concept of an S-(M-s) was created for this reason in [14] which is a new type
of symmetric metric spaces. Now, let us review some fundamental principles of S-(M-s)s.

Definition 1 ([14]). Let Q /∈ φ and consider the function S : Q× Q× Q → [0, ∞). If S meets
the requirements listed below for all j, n, p, t ∈ Q:

(S1) S(j, n, p) = 0⇐⇒ j = n = p,
(S2) S(j, n, p) ≤ S(j, j, t) + S(n, n, t) + S(p, p, t),

then S is termed an S-metric on Q; hence, the pair (Q,S) is said to be S-(M-s).

Lemma 1 ([14]). Consider (Q,S) to be an S-(M-s) and j, n ∈ Q. Hence, we obtain

S(j, j, n) = S(n, n, j).
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Refs. [15–17] examined the links among a metric and an S-(M-s). The following is a
formula for an S-(M-s) that is created by a metric δ.

Let (Q, δ) be an (M-s). Thus, the function Sδ : Q×Q×Q→ [0, ∞) specified by

Sδ(j, n, p) = δ(j, p) + δ(n, p),

for all j, n, p ∈ Q is an S-metric on Q. The S-metric Sδ is called the S-metric generated
by δ, and also a model of an S-metric that is not extended by any metric δ (for further
information, see [15]).

Under the third approach, recently, the geometric features of non-unique (F.P.)s have
been intensively explored in a variety of contexts, such as the (F.C.) problem, the fixed-disc
problem, and so on. Özgür and Taş [18] introduced the concept of an (F.C.) in an (M-s) as a
novel strategy for the generalization of (F.P.) theory. Several writers have elaborately refined
the notion of (F.C.)s and its applications for usage in topology and geometry. Significantly,
Refs. [19–23] have introduced the concepts of (F.C.)s in different generalized (M-s)s. In
addition, some open questions were provided in the literature related to the (F.C.) problem.
For instance, in [24], the below problem was provided for common (F.C.)s:

Open Problem: What condition(s) is(are) necessary for any circle Cx0,r to be the com-
mon (F.C.) for two or more self-mappings?

Now, we recall the following definition:
Let (Q, δ) be an (M-s), let Cj0,r = {j ∈ Q : δ(j, j0) = 0} be any circle on Q, and let f , h

be two self-mappings on Q. If f j = hj = j for all j ∈ Cj0,r, then Cj0,r is said to be a common
(F.C.) of the pair ( f , h) (as in [25]).

A few solutions have been proposed for this open problem (see [25–27]). In order to
obtain novel solutions, we specify some (Cn.)s for the pair ( f , h) and prove some common
(F.C.) results on (M-s)s. In fact, this study can be considered as a continuation of [26].

The present paper attempts to obtain common (F.C.) theorems for self-mappings under
various types of (C.C.)s. Inspired by Wardowski [28], in the context of F-(Cn.), we have
proven certain common (F.C.) theorems.

Let E represent the collection of all the mappings E : [0, ∞)→ (−∞, ∞) that hold for
the axioms listed below:

(E1) E is firmly increasing, then ∀, j, n ∈ (0, ∞), such that j < n, E(j) < E(n).
(E2) For every sequence {xn} in (0, ∞), the subsequent is true.

limn→∞ xn = 0 if and only if limn→∞ E(xn) = −∞.

(E3) ∃ l ∈ (0, 1) where limx→0+ xlE(x) = 0.

Many examples of the functions that belong to E are E1(x) = ln x, E2(x) = x + ln x,
E3(x) = − 1√

x , and E4(x) = ln
(

x2 + x
)
.

In this sequel, we examine new solutions to the listed open problems under these
three approaches. In order to achieve this, we change several recognized (C.C.)s on (M-s),
and the defined conditions are generalized on S-(M-s). For this purpose, we introduce
the notions of a Ciric type E f h-(Cn.), a Rhoades type E f h-(Cn.), a Seghal type E f h-(Cn.), a
Bianchini type E f h-(Cn.), and a Berinde type E f h-(Cn.) on (M-s). In addition, these (Cn.)s
are generalized on S-(M-s), such as a Ciric type ES

f h-(Cn.), a Rhoades type ES
f h-(Cn.), a

Seghal type ES
f h-(Cn.), a Bianchini type ES

f h-(Cn.), and a Berinde type ES
f h-(Cn.). Utilizing

these new (Cn.)s, we prove some common (F.C.) results on both metric and S-(M-s) with
some illustrative examples. Finally, we give an application to the activation functions, such
as rectified linear unit activation functions (ReLU), as well as parametric rectified linear
unit activation functions (PReLU).

2. Some Common (F.C.) Results on (M-s)s

In this part, we demonstrate brand-new common (F.C.) theorem metric spaces. In
order to obtain some typical (F.C.) results on (M-s)s, we begin by introducing the new (Cn.)
type for two mappings.
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Let (Q, δ) be an (M-s), and let f , h be two self-mappings on a set Q. The number ω is
defined by

ω = inf{δ(j, f j) + δ(j, hj) : j 6= f j, j 6= hj, j ∈ Q}. (1)

Definition 2. Let (Q, δ) be an (M-s) and let f , h : Q→ Q be two self-mappings. It is defined that
the pair ( f , h) is a Ciric type E f h-(Cn.) on Q if ∃ Υ > 0, E ∈ E , and j0 ∈ Q, where for any j ∈ Q,
the following is true:

max{δ(j, f j), δ(j, hj)} > 0⇒ Υ + E(δ(j, f j) + δ(j, hj)) ≤ E(c(j, j0)),

where

c(j, n) = max
{

δ(j, n), δ(j, f j), δ(n, hn),
1
2
[δ(j, f n) + δ(j, hn)]

}
.

Proposition 1. Let (Q, δ) be an (M-s) and let f , h : Q → Q be two self-mappings. If the pair
( f , h) is a Ciric type E f h-(Cn.) with j0 ∈ Q, then we have f j0 = j0 = hj0.

Proof. On the contrary, suppose that j0 is not a common (F.P.) of f and h. Hence, we obtain
δ(j0, f j0) > 0 or δ(j0, hj0) > 0; that is,

max{δ(j0, f j0), δ(j0, hj0)} > 0.

Hence, we obtain

Υ + E(δ(j0, f j0) + δ(j0, hj0))

≤ E
(

max
{

δ(j0, j0), δ(j0, f j0), δ(j0, hj0),
1
2
[δ(j0, f j0) + δ(j0, hj0)]

})
= E

(
max

{
δ(j0, f j0), δ(j0, hj0),

1
2
[δ(j0, f j0) + δ(j0, hj0)]

})
< E(δ(j0, f j0) + δ(j0, hj0)).

However, this leads to a contradiction because Υ > 0 and E is a strict increase.
Consequently, we obtain

f j0 = j0 = hj0.

Theorem 1. Let (Q, δ) be an (M-s), let f , h : Q→ Q be two self-mappings, and let the pair ( f , h)
be a Ciric type E f h-(Cn.) with j0 ∈ Q and ω be defined as in (1). Then, Cj0,ω is a common (F.C.) of
the pair ( f , h). In particular, the pair ( f , h) fixes every circle Cj0,$ with $ < ω.

Two cases are identified.
Case 1: Assume that ω = 0. Obviously, Cj0,ω = {j0}, and along with Proposition 1, we

observe that Cj0,ω is a common (F.C.) of the pair ( f , h).
Case 2: Assume that ω > 0 and j ∈ Cj0,ω with max{δ(j, f j), δ(j, hj)} > 0. Using the

Ciric type E f h-(Cn.) property in addition to the fact that E is strictly rising, we obtain

E(ω) ≤ E(δ(j, f j) + δ(j, hj))

≤ E
(

max
{

δ(j, j0), δ(j, f j), δ(j0, hj0),
1
2
[δ(j, f j0) + δ(j, hj0)]

})
− Υ

< E(max{ω, δ(j, f j), 0, ω})
= E(max{ω, δ(j, f j)}) = E(ω).
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This creates a contradiction. Hence, max{δ(j, f j), δ(j, hj)} = 0, and so,

f j = j = hj.

Consequently, Cj0,ω is a common (F.C.) of the pair ( f , h).
Meanwhile, we prove that the pair ( f , h) fixes any circle Cj0,$ with $ < ω. Suppose that

j ∈ Cj0,$ with max{δ(j, f j), δ(j, hj)} > 0. According to the Ciric type E f h-(Cn.), it yields to

E($) ≤ E(δ(j, f j) + δ(j, hj))

≤ E
(

max
{

δ(j, j0), δ(j, f j), δ(j0, hj0),
1
2
[δ(j, f j0) + δ(j, hj0)]

})
− Υ

< E
(

max
{

δ(j, j0), δ(j, f j), δ(j0, hj0),
1
2
[δ(j, f j0) + δ(j, hj0)]

})
= E($),

which is a contradiction. So, we have max{δ(j, f j), δ(j, hj)} = 0, and so,

f j = j = hj.

Consequently, Cj0,$ is a common (F.C.) of the pair ( f , h).

Definition 3. Let (Q, δ) be an (M-s) and let f , h : Q → Q be two self-mappings. If ∃ Υ > 0,
E ∈ E and j0 ∈ Q, where ∀ j ∈ Q, if it fulfills the following:

max{δ(j, f j), δ(j, hj)} > 0 =⇒ Υ + E(δ(j, f j) + δ(j, hj)) ≤ E(r(j, j0)),

where
r(j, n) = max{δ(j, n), δ(j, f j), δ(n, hn), δ(j, hn), δ(n, f j)};

hence, the pair ( f , h) is called a Rhoades type E f h-(Cn.).

Proposition 2. Consider (Q, δ) to be an (M-s) and let f , h : Q → Q be two self-mappings. We
have f j0 = j0 = hj0 if the pair ( f , h) is a Rhoades type E f h-(Cn.) with j0 ∈ Q.

Proof. The similar justifications offered in Proposition 1 make it simple to demonstrate.

Theorem 2. Let (Q, δ) be an (M-s), and f , h : Q → Q be two self-mappings; let the pair ( f , h)
be a Rhoades type E f h-(Cn.) with j0 ∈ Q and ω is defined as follows (1). If δ(j0, f j) ≤ ω, then
Cj0,ω is a common (F.C.) of the pair ( f , h). Furthermore, the pair ( f , h) fixes every circle Cj0,$ with
$ < ω.

Proof. We differentiate two situations.
Case 1: Let ω = 0. It is obvious that Cj0,ω = {j0}, and Proposition 2 demonstrates that

Cj0,ω is a common (F.C.) of the pair ( f , h).
Case 2: Let ω > 0 and j ∈ Cj0,ω with max{δ(j, f j), δ(j, hj)} > 0. According to the

Rhoades type E f h-(Cn.) property, as well as the fact that E is strictly rising, it yields to

E(ω) ≤ E(δ(j, f j) + δ(j, hj))
≤ E(r(j, j0))− Υ

≤ E(max{δ(j, j0), δ(j, f j), δ(j0, hj0), δ(j, hj0), δ(j0, f j)})− Υ

< E(max{ω, δ(j, f j), 0, ω, ω})
≤ E(max{ω, δ( f j, j)})
= E(ω).
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It is contradictory in this way, due to the fact that max{δ(j, f j), δ(j, hj)} = 0, that is,

f j = j = hj.

As a result, Cj0,ω is a common (F.C.) of the pair ( f , h). The pair ( f , h) also fixes any
circle Cj0,$ with $ < ω, using the same justifications as in the proof of Theorem 1.

Definition 4. Let (Q, δ) be an (M-s) and let f , h : Q→ Q be two self-mappings. It is defined that
the pair ( f , h) is a Seghal type E f h-(Cn.) on Q, if ∃ exists, Υ > 0, E ∈ E , as well as j0 ∈ Q, such
that for any j ∈ Q, the following holds:

max{δ(j, f j), δ(j, hj)} > 0 =⇒ Υ + E(δ(j, f j) + δ(j, hj)) ≤ E(s(j, j0)),

where
s(j, n) = max{δ(j, n), δ(j, f j), δ(n, hn)}.

Remark 1. If the pair ( f , h) is a Seghal type E f h-(Cn.) with j0 ∈ Q, then the pair ( f , h) is a
Rhoades type E f h-(Cn.) with j0 ∈ Q. Indeed, we have

Υ + E(δ(j, f j) + δ(j, hj))
≤ E(s(j, j0))
= E(max{δ(j, j0), δ(j, f j), δ(j0, hj0)})
≤ E(max{δ(j, j0), δ(j, f j), δ(j0, hj0), δ(j, hj0), δ(j, f j0)})
= E(r(j, j0)),

when max{δ(j, f j), δ(j, hj)} > 0.

The converse statement is not always true.

Example 1. Suppose that Q = R is a usual (M-s) and that the self-mappings f , h : R → R are
characterized as

f j =
{

1, if j = 2
j, otherwise

and

hj =


−2, if j = 0
1, if j = 2
j, otherwise

,

for all j ∈ R. For j = 2, the pair ( f , h) satisfies the condition of Rhoades type E f h-(Cn.) with
j0 = 0, E(j) = ln j, and Υ = ln 2. Indeed, we have

max{δ(j, f j), δ(j, hj)} = max{1, 1} = 1 > 0

, and

Υ + E(δ(j, f j) + δ(j, hj))
= Υ + E(2) = ln 2 + ln 2 = ln 4

= E(max{δ(j, j0), δ(j, f j), δ(j0, hj0), δ(j, hj0), δ(j, f j0)})
= E(r(j, j0)).

However, the pair ( f , h) does not satisfy the condition of the Seghal type E f h-(Cn.) with
j0 = 0, E ∈ E , and Υ > 0.
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Definition 5. Let (Q, δ) be an (M-s) and let f , h : Q → Q be two self-mappings. If ∃ Υ > 0,
E ∈ E , as well as j0 ∈ Q, where ∀ j ∈ Q, it fulfills the following:

max{δ(j, f j), δ(j, hj)} > 0 =⇒ Υ + E(δ(j, f j) + δ(j, hj)) ≤ E(b1(j, j0)),

where
b1(j, n) = h max{δ(j, f j), δ(n, hn)}

with h ∈ (0, 1); hence, the pair ( f , h) is called a Bianchini type E f h-(Cn.).

Proposition 3. Suppose that (Q, δ) is an (M-s) along with f ; leth : Q→ Q be two self-mappings.
We have f j0 = j0 = hj0, if the pair ( f , h) is a Bianchini type E f h-(Cn.) with j0 ∈ Q.

Proof. If j0 is not a common (F.P.) of f and h, it yields to δ(j0, f j0) > 0 or δ(j0, hj0) > 0,
that is,

max{δ(j0, f j0), δ(j0, hj0)} > 0.

Hence, we obtain

Υ + E(δ(j0, f j0) + δ(j0, hj0)) ≤ E(b1(j, j0))
≤ E(h max{δ(j0, f j0), δ(j0, hj0)})
< E(δ(j0, f j0) + δ(j0, hj0)).

where h ∈ (0, 1). However, this creates a contradiction since E is strictly increased. Conse-
quently, we obtain

f j0 = j0 = hj0.

Theorem 3. Let (Q, δ) be an (M-s), and let f , h : Q→ Q be two self-mappings; the pair ( f , h) is
a Bianchini type E f h-(Cn.) with j0 ∈ Q and ω is defined as in (1). Then, Cj0,ω is a common (F.C.)
of the pair ( f , h). Especially, the pair ( f , h) fixes every circle Cj0,$ with $ < ω.

Proof. We differentiate two situations:
Case 1. Assume that ω = 0. It is obvious that Cj0,ω = {j0}, and Proposition 3

demonstrates that Cj0,ω is a common (F.C.) of the pair ( f , h).
Case 2: Assume that ω > 0 and j ∈ Cj0,ω with max{δ(j, f j), δ(j, hj)} > 0. Using the

Bianchini type E f h-(Cn.) and Proposition 3, along with the fact that E is increasing, we have

E(ω) ≤ E(δ(j, f j) + δ(j, hj))
≤ E(h max{δ(j, f j), δ(j0, hj0)})− Υ

< E(hδ(j, f j))
< E(ω).

This creates a contradiction. Thus, max{δ(j, f j), δ(j, hj)} = 0, that is,

f j = j = hj.

Consequently, Cj0,ω is a common (F.C.) of the pair ( f , h). By using similar considera-
tions in the proof of Theorem 1, f and h also fix any circle Cj0,$ with $ < ω.

Definition 6. Let (Q, δ) be an (M-s) and let f , h : Q → Q be two self-mappings. If ∃ Υ > 0,
E ∈ E and j0 ∈ Q, such that where ∀ j ∈ Q, it yields to the following:

max{δ(j, f j), δ(j, hj)} > 0 =⇒ Υ + E(δ(j, f j) + δ(j, hj)) ≤ E(b2(j, j0)),
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where
b2(j, n) = φδ(j, n) + L min{δ(j, f j), δ(n, hn), δ(j, f n), δ(j, hn)},

with φ ∈ (0, 1] and L ≥ 0, then the pair ( f , h) is called a Berinde type E f h-(Cn.).

Proposition 4. Let (Q, δ) be an (M-s) and let f , h : Q → Q be two self-mappings. If the pair
( f , h) is a Berinde type E f h-(Cn.) with j0 ∈ Q, then we have f j0 = j0 = hj0.

Proof. The proof is simple because of the similar justifications offered in Proposition 1.

Theorem 4. Let (Q, δ) be an (M-s) and let f , h : Q→ Q be two self-mappings; the pair ( f , h) is a
Berinde type E f h-(Cn.) with j0 ∈ Q and ω is defined as in (1). Then, Cj0,ω is a common (F.C.) of
the pair ( f , h). Particularly, the pair ( f , h) fixes every circle Cj0,$ with $ < ω.

Proof. We differentiate two cases:
Case 1. Let ω = 0. It is obvious that Cj0,ω = {j0}, and Proposition 4 demonstrates that

Cj0,ω is a common (F.C.) of the pair ( f , h).
Case 2: Let ω > 0 and j ∈ Cj0,ω with max{δ(j, f j), δ(j, hj)} > 0. Using the Berinde

type E f h-(Cn.), Proposition 4, and the fact that E is strictly increasing, we obtain

E(ω) ≤ E(δ(j, f j) + δ(j, hj))
≤ E(b2(j, j0))
≤ E(φδ(j, j0) + L min{δ(j, f j), δ(j0, hj0), δ(j, f j0), δ(j, hj0)})− Υ

< E(φδ(j, j0) + L min{δ(j, f j), 0, ω, ω})
= E(φω + 0)

< E(ω).

This creates a contradiction since E is a strictly increasing. So, max{δ(j, f j), δ(j, hj)} = 0,
that is,

f j = j = hj.

Consequently, Cj0,ω is a common (F.C.) of the pair ( f , h).By using similar considerations
in the proof of Theorem 1, the pair ( f , h) also fixes any circle Cj0,$ with $ < ω.

This is an example to illustrate our argument.

Example 2. Let Q =
{

1, 2, e3, e3 − 2, e3 + 2
}

be the (M-s) with the usual metric. We define the
self-mapping f , h : Q→ Q as

f j =
{

2, if j = 1
j, otherwise

and

hj =
{

2, if j = 1
j, otherwise

for all j ∈ Q.
The pair ( f , h) is a Ciric type E f h-(Cn.) (resp. Rhoades type E f h-(Cn.) and Seghal type

E f h-(Cn.)) with E(j) = j + ln j, Υ = e3 − 3, and j0 = e3. Indeed, we get

max{δ(j, f j), δ(j, hj)} = max{δ(1, 2), δ(1, 2)} = 1 > 0
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for j = 1, and we obtain

c(j, j0) = max
{

δ(j, j0), δ(j, f j), δ(j0, hj0),
1
2
[δ(j, f j0) + δ(j, hj0)]

}
= max

{
δ
(

1, e3
)

, δ(1, 2), δ
(

e3, e3
)

,
1
2

[
δ
(

1, e3
)
+ δ
(

1, e3
)]}

= max
{

e3 − 1, 1, 0, e3 − 1
}

= e3 − 1.

Then, we have

Υ + E(δ(j, f j) + δ(j, hj)) = e3 − 3 + 2 + ln 2

≤ E
(

e3 − 1
)

= e3 − 1 + ln
(

e3 − 1
)

.

Similarly, we can easily see that the pair ( f , h) is a Rhoades type E f h-(Cn.) and a Seghal type
E f h-(Cn.). In addition, the pair ( f , h) is a Berinde type E f h-(Cn.) with E(j) = j + ln j, Υ = 1,
φ = 1

2 , and j0 = e3. Indeed, we obtain

max{δ(j, f j), δ(j, hj)} = max{δ(1, 2), δ(1, 2)} = 1 > 0

for j = 1, and we have

b2(j, j0) = φδ(j, j0) + L min{δ(j, f j), δ(j0, hj0), δ(j, f j0), δ(j, hj0)}

=
1
2

δ
(

1, e3
)
+ L min

{
δ(1, 2), δ

(
e3, e3

)
, δ
(

1, e3
)

, δ
(

1, e3
)}

=
e3 − 1

2
+ L min

{
1, 0, e3 − 1, e3 − 1

}
=

e3 − 1
2

.

Then, we have

Υ + E(δ(j, f j) + δ(j, hj)) = 1 + 2 + ln 2

≤ E
(

e3 − 1
2

)
=

e3 − 1
2

+ ln
(

e3 − 1
2

)
.

Consequently, the pair ( f , h) fixes the circle Ce3,2.

3. Some Common (F.C.) Results on S-(M-s)s

In this section, we explore some common (F.C.) theorems on S-(M-s)s. To achieve
this, we generalize the proven results in the previous section. Some basic notions were
presented that were related to the (F.C.) problem on S-(M-s)s in [14,29,30].

Let (Q,S) be an S-(M-s), and let CS
j0,r = {j ∈ Q : S(j, j, j0) = r} be any circle on Q and

f ; let h be two self-mappings on a set Q. If f j = hj = j for all j ∈ CS
j0,r, then CS

j0,r is called a
common (F.C.) of the pair ( f , h).
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Definition 7. Let (Q,S) be an S-(M-s) and let f , h : Q→ Q be two self-mappings. It is defined
that the pair ( f , h) is a Ciric type ES

f h-(Cn.) on Q if ∃ Υ > 0, E ∈ E , along with j0 ∈ Q, such that
for any j ∈ Q, the following affirms:

max{S(j, j, f j),S(j, j, hj)} > 0⇒ Υ + E(S(j, j, f j) + S(j, j, hj)) ≤ E(cS(j, j0)),

where

cS(j, n) = max
{
S(j, j, n),S(j, j, f j),S(n, n, hn),

1
2
[S(j, j, f n) + S(j, j, hn)]

}
.

Proposition 5. Let (Q,S) be an S-(M-s) and let f , h : Q→ Q be two self-mappings. If the pair
( f , h) is a Ciric type ES

f h-(Cn.) with j0 ∈ Q, then we have f j0 = j0 = hj0.

Proof. On the contrary, suppose that j0 is not a common (F.P.) of f and h. Hence, we obtain
S(j0, j0, f j0) > 0 or S(j0, j0, hj0) > 0, that is,

max{S(j0, j0, f j0),S(j0, j0, hj0)} > 0.

Hence, we obtain

Υ + E(S(j0, j0, f j0) + S(j0, j0, hj0))

≤ E
(

max
{

S(j0, j0, j0),S(j0, j0, f j0),S(j0, j0, hj0),
1
2 [S(j0, j0, f j0) + S(j0, j0, hj0)]

})
= E

(
max

{
S(j0, j0, f j0),S(j0, j0, hj0),

1
2 [S(j0, j0, f j0) + S(j0, j0, hj0)]

})
< E(S(j0, j0, f j0) + S(j0, j0, hj0)).

However, this creates a contradiction because of Υ > 0, and E is a strict increase.
Consequently, we obtain

f j0 = j0 = hj0.

Theorem 5. Let (Q,S) be an S-(M-s); let f , h : Q→ Q be two self-mappings and the pair ( f , h)
be a Ciric type ES

f h-(Cn.) with j0 ∈ Q, and let µ be defined as

µ = inf{S(j, j, f j) + S(j, j, hj) : j 6= f j, j 6= hj, j ∈ Q}. (2)

Then, CS
j0,µ is a common (F.C.) of the pair ( f , h). Particularly, the pair ( f , h) fixes every circle

CS
j0,$ with $ < µ.

Proof. Let us examine the following cases:
Case 1: Take µ = 0. Clearly, CS

j0,µ = {j0}. Moreover, according to Proposition 5, we

observe that CS
j0,µ is a common (F.C.) of the pair ( f , h).

Case 2: Let µ > 0 and j ∈ CS
j0,µ, with max{S(j, j, f j),S(j, j, hj)} > 0. Using the Ciric

type ES
f h-(Cn.) property, along with the fact that E is strictly rising, it yields to

E(µ) ≤ E(S(j, j, f j) + S(j, j, hj))

≤ E
(

max
{

S(j, j, j0),S(j, j, f j),S(j0, j0, hj0),
1
2 [S(j, j, f j0) + S(j, j, hj0)]

})
− Υ

< E(max{µ,S(j, j, f j), 0, µ})
= E(max{µ,S(j, j, f j)}) = E(µ).
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This creates a contradiction. Hence, max{S(j, j, f j),S(j, j, hj)} = 0, and so,

f j = j = hj.

Consequently, CS
j0,µ is a common (F.C.) of the pair ( f , h).

Now, we prove that the pair ( f , h) fixes any circle Cj0,$ with $ < µ. Let j ∈ CS
j0,$ with

max{S(j, j, f j),S(j, j, hj)} > 0. According to the Ciric type ES
f h-(Cn.), we obtain

E($) ≤ E(S(j, j, f j) + S(j, j, hj))

≤ E
(

max
{

S(j, j, j0),S(j, j, f j),S(j0, j0, hj0),
1
2 [S(j, j, f j0) + S(j, j, hj0)]

})
− Υ

< E
(

max
{

S(j, j, j0),S(j, j, f j),S(j0, j0, hj0),
1
2 [S(j, j, f j0) + S(j, j, hj0)]

})
= E($),

which is a contradiction. So, we have max{S(j, j, f j),S(j, j, hj)} = 0 and so,

f j = j = hj.

Consequently, CS
j0,$ is a common (F.C.) of the pair ( f , h).

Definition 8. Let (Q,S) be an S-(M-s) and f , h : Q → Q be two self-mappings. If ∃ Υ > 0,
E ∈ E , as well as j0 ∈ Q, where ∀ j ∈ Q, and it fulfills the following:

max{S(j, j, f j),S(j, j, hj)} > 0 =⇒ Υ + E(S(j, j, f j) + S(j, j, hj)) ≤ E(rS(j, j0)),

where
rS(j, n) = max{S(j, j, n),S(j, j, f j),S(n, n, hn),S(j, j, hn),S(n, n, f j)};

hence, the pair ( f , h) is called a Rhoades type ES
f h-(Cn.).

Proposition 6. Consider (Q,S) to be an S-(M-s) and let f , h : Q→ Q be two self-mappings. We
have f j0 = j0 = hj0, if the pair ( f , h) is a Rhoades type ES

f h-(Cn.) with j0 ∈ Q.

Proof. We apply similar reasons to those presented in Proposition 5, which is plainly visible.

Theorem 6. Consider (Q,S) to be an S-(M-s), and let f , h : Q → Q be two self-mappings; let
the pair ( f , h) be a Rhoades type ES

f h-(Cn.) with j0 ∈ Q, and let µ be defined as follows (2). If

S(j0, j0, f j) ≤ µ, then CS
j0,µ is a common (F.C.) of the pair ( f , h). Furthermore, the pair ( f , h) fixes

every circle CS
j0,$ with $ < µ.

Proof. This is straightforward to prove by using the same methods as in Theorem 5.

Definition 9. Let (Q,S) be an S-(M-s) and let f , h : Q→ Q be two self-mappings. It is defined
that the pair ( f , h) is a Seghal type ES

f h-(Cn.) on Q if ∃ Υ > 0, E ∈ E , as well as j0 ∈ Q, such that
for any j ∈ Q, the following holds:

max{S(j, j, f j),S(j, j, hj)} > 0 =⇒ Υ + E(S(j, j, f j) + S(j, j, hj)) ≤ E(sS(j, j0)),

where
sS(j, n) = max{S(j, j, n),S(j, j, f j),S(n, n, hn)}.

Remark 2. If the pair ( f , h) is a Seghal type ES
f h-(Cn.) with j0 ∈ Q, then the pair ( f , h) is a

Rhoades type ES
f h-(Cn.) with j0 ∈ Q. Nevertheless, the converse might not be constantly correct.
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Definition 10. Consider (Q,S) to be an S-(M-s) and f , h : Q→ Q to be two self-mappings. If ∃
Υ > 0, E ∈ E as well as j0 ∈ Q where ∀ j ∈ Q, it fulfills the following:

max{S(j, j, f j),S(j, j, hj)} > 0 =⇒ Υ + E(S(j, j, f j) + S(j, j, hj)) ≤ E
(

bS1 (j, j0)
)

,

where
bS1 (j, n) = h max{S(j, j, f j),S(n, n, hn)}

with h ∈ (0, 1); thus, the pair ( f , h) is called a Bianchini type ES
f h-(Cn.).

Proposition 7. Let (Q,S) be an S-(M-s) and let f , h : Q → Q be two self-mappings. We have
f j0 = j0 = hj0, if the pair ( f , h) is a Bianchini type ES

f h-(Cn.) with j0 ∈ Q.

Proof. This can be easily checked.

Theorem 7. Let (Q,S) be an S-(M-s) and let f , h : Q→ Q be two self-mappings; the pair ( f , h)
is a Bianchini type ES

f h-(Cn.) with j0 ∈ Q, and let µ be defined as in (2). Then, CS
j0,µ is a common

(F.C.) of the pair ( f , h). Particularly, the pair ( f , h) fixes every circle CS
j0,$ with $ < µ.

Proof. This is straightforward to prove by using the same methods as in Theorem 5.

Definition 11. Consider (Q,S) to be an S-(M-s) and f , h : Q→ Q to be two self-mappings. If ∃
Υ > 0, E ∈ E , as well as j0 ∈ Q, where ∀ j ∈ Q, it fulfills the following:

max{S(j, j, f j),S(j, j, hj)} > 0 =⇒ Υ + E(S(j, j, f j) + S(j, j, hj)) ≤ E
(

bS2 (j, j0)
)

,

where

bS2 (j, n) = δS(j, j, n) + L min{S(j, j, f j),S(n, n, hn),S(j, j, f n),S(j, j, hn)},

with δ ∈ (0, 1], and L ≥ 0, then the pair ( f , h) is called a Berinde type ES
f h-(Cn.).

Proposition 8. Consider (Q,S) to be an S-(M-s) and f , h : Q → Q to be two self-mappings. If
the pair ( f , h) is a Berinde type ES

f h-(Cn.) with j0 ∈ Q, then we have f j0 = j0 = hj0.

Proof. On the contrary, suppose that j0 is not a common (F.P.) of f and h. Thus, we obtain
S(j0, j0, f j0) > 0 or S(j0, j0, hj0) > 0, that is,

max{S(j0, j0, f j0),S(j0, j0, hj0)} > 0.

Hence, we obtain

Υ + E(S(j0, j0, f j0) + S(j0, j0, hj0))

≤ E
(

δS(j0, j0, j0) + L min
{

S(j0, j0, f j0),S(j0, j0, hj0),
S(j0, j0, f j0),S(j0, j0, hj0)

})
= E(L min{S(j0, j0, f j0),S(j0, j0, hj0)})
< E(S(j0, j0, f j0) + S(j0, j0, hj0)).

However, this creates a contradiction because of Υ > 0 and because E is strictly
increasing. Consequently, we obtain

f j0 = j0 = hj0.



Symmetry 2023, 15, 971 12 of 16

Theorem 8. Let (Q,S) be an S-(M-s), and let f , h : Q→ Q be two self-mappings; the pair ( f , h)
is a Berinde type ES

f h-(Cn.) with j0 ∈ Q, and let µ be defined as in (2). Then, CS
j0,µ is a common

(F.C.) of the pair ( f , h). Especially, the pair ( f , h) fixes every circle CS
j0,$ with $ < µ.

Proof. Under the above cases, we prove:
Case 1. Let µ = 0. It is obvious that CS

j0,µ = {j0}, and Proposition 8 demonstrates that

CS
j0,µ is a common (F.C.) of the pair ( f , h).

Case 2: Take µ > 0 and j ∈ CS
j0,µ with max{S(j, j, f j),S(j, j, hj)} > 0. Using the Berinde

type ES
f h-(Cn.), Proposition 8, and the fact that E is strictly increasing, we have

E(µ) ≤ E(S(j, j, f j) + S(j, j, hj))

≤ E
(

δS(j, j, j0) + L min
{

S(j, j, f j),S(j0, j0, hj0),
S(j, j, f j0),S(j, j, hj0)

})
− Υ

< E(δS(j, j, j0) + L min{S(j, j, f j), 0, µ, µ})
= E(δµ + 0)

< E(µ).

This creates a contradiction since E is strictly increasing. So, max{S(j, j, f j),S(j, j, hj)} = 0,
that is,

f j = j = hj.

Consequently, CS
j0,µ is a common (F.C.) of the pair ( f , h).By using the same reasoning

in the proof of Theorem 5, the pair ( f , h) also fixes any circle CS
j0,$ with $ < µ.

We present a model which demonstrates the effectiveness of the proven common
fixed-circle theorems on S-(M-s)s.

Example 3. Let Q =
{

1, 2, e3, e3 − 2, e3 + 2
}

be the S-(M-s), with the S-metric defined as

S(j, n, p) = |j− p|+ |j + p− 2v|,

for all j, n, p ∈ Q [15]. This S-metric is not generated by any metric. Therefore, this example is
important for showing the validity of our obtained results. To achieve this, take the self-mapping
f , h : Q→ Q, defined as in Example 2.

The pair ( f , h) is a Ciric type ES
f h-(Cn.), with E(j) = j + ln j, Υ = 2

(
e3 − 3

)
and j0 = e3.

Indeed, we obtain

max{S(j, j, f j),S(j, j, hj)} = max{S(1, 1, 2),S(1, 1, 2)} = 2 > 0

for j = 1, and we obtain

cS(j, j0) = max
{

S(j, j, j0),S(j, j, f j),S(j0, j0, hj0),
1
2 [S(j, j, f j0) + S(j, j, hj0)]

}
= max

{
S
(
1, 1, e3),S(1, 1, 2),S

(
e3, e3, e3),

1
2
[
S
(
1, 1, e3)+ S

(
1, 1, e3)] }

= max
{

2
(

e3 − 1
)

, 2, 0, 2
(

e3 − 1
)}

= 2
(

e3 − 1
)

.
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Then, we have

Υ + E(S(j, j, f j) + S(j, j, hj)) = 2
(

e3 − 3
)
+ 4 + ln 4

≤ E
(

2
(

e3 − 1
))

= 2
(

e3 − 1
)
+ ln

(
2
(

e3 − 1
))

.

Similarly, we can easily see that the pair ( f , h) is a Rhoades type ES
f h-(Cn.) and Seghal type

ES
f h-(Cn.). In addition, the pair ( f , h) is a Berinde type ES

f h-(Cn.) with E(j) = j + ln j, Υ = 2,

δ = 1
2 , and j0 = e3. Indeed, we obtain

max{S(j, j, f j),S(j, j, hj)} = max{S(1, 1, 2),S(1, 1, 2)} = 2 > 0

for j = 1, and we have

bS2 (j, j0) = δS(j, j, j0) + L min
{

S(j, j, f j),S(j0, j0, hj0),
S(j, j, f j0),S(j, j, hj0)

}
=

1
2
S
(

1, 1, e3
)
+ L min

{
S(1, 1, 2),S

(
e3, e3, e3),

S
(
1, 1, e3),S(1, 1, e3) }

= e3 − 1 + L min
{

2, 0, 2
(

e3 − 1
)

, 2
(

e3 − 1
)}

= e3 − 1.

Then, we have

Υ + E(S(j, j, f j) + S(j, j, hj)) = 2 + 4 + ln 4

≤ E
(

e3 − 1
)

= e3 − 1 + ln
(

e3 − 1
)

.

Consequently, the pair ( f , h) fixes the circle CS
e3,4 =

{
e3 − 2, e3 + 2

}
.

4. An Application to Activation Functions

In neural networks, activation functions have already been broadly applied. There
are many examples of activation functions in the literature. In this section, we focus on
both rectified linear unit activation functions and parametric rectified linear unit activation
functions (for more details, see [31,32] and the citations within these).

The rectified linear unit activation function (ReLU) see Figure 1, was defined as

ReLU(j) =
{

0 , j < 0
j , j ≥ 0

and the parametric rectified linear unit activation function (PReLU) see Figure 2, was
defined as

PReLU(j) =
{

αj , j < 0
j , j ≥ 0

,

where α is the coefficient.
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ReLU

-2 -1 1 2

0.5

1.0

1.5

2.0

Figure 1. The graph of the function ReLU.

Let us consider these activation functions on Q = R+ ∪ {−1, 0} with the usual metric.
If we take α = 2, then we have

PReLU(j) =
{

2j , j < 0
j , j ≥ 0

.

PReLU

-2 -1 1 2

-4

-3

-2

-1

1

2

Figure 2. The graph of the function PReLU.

The pair (PReLU, ReLU) is a Ciric type E f h-(Cn.) with E(j) = ln j, Υ = ln 2, and
j0 = π. Indeed, for j = −1, we obtain

max{δ(j, PReLU(j)), δ(j, ReLU(j))} = max{δ(−1,−2), δ(−1, 0)} = 1 > 0

, and we obtain

c(j, j0) = max
{

δ(j, j0), δ(j, PReLU(j)), δ(j0, ReLU(j0)),
1
2 [δ(j, PReLU(j0)) + δ(j, ReLU(j0))]

}
= max

{
δ(−1, π), δ(−1,−2), δ(π, π),

1
2
[δ(−1, π) + δ(−1, π)]

}
= max{π + 1, 1, 0, π + 1}
= π + 1.

Then, we have

Υ + E(δ(j, f j) + δ(j, hj)) = ln 2 + ln 2 = ln 4

≤ ln(π + 1)

= E(π + 1).

In addition, we obtain

σ = inf
{

δ(j, PReLU(j)) + δ(j, ReLU(j))
: j 6= PReLU(j), j 6= ReLU(j), j ∈ Q

}
= 2

, and so Cπ,2 is a common (F.C.) of the pair (PReLU, ReLU).
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