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Abstract: Recently, balanced Boolean functions with an even number n of variables achieving very
good autocorrelation properties have been obtained for 12 ≤ n ≤ 26. These functions attain the
maximum absolute value in the autocorrelation spectra (without considering the zero point) less
than 2

n
2 and are found by using a heuristic search algorithm that is based on the design method

of an infinite class of such functions for a higher number of variables. Here, we consider balanced
Boolean functions that are closest to the bent functions in terms of the Hamming distance and perform
a genetic algorithm efficiently aiming to optimize their cryptographic properties, which provides
better absolute indicator values for all of those values of n for the first time. We also observe that
among our results, the functions for 16 ≤ n ≤ 26 have nonlinearity greater than 2n−1 − 2

n
2 . In the

process, our search strategy produces balanced Boolean functions with the best-known nonlinearity
for 8 ≤ n ≤ 16.

Keywords: absolute indicator; Boolean function; genetic algorithm; nonlinearity

1. Introduction

In symmetric cryptography, Boolean functions used in a cryptosystem are essential
building blocks, and two of their most significant cryptographic properties are nonlinearity
and an absolute indicator. Nonlinearity should be high to resist the best affine approxi-
mation attacks [1] (in the case of stream ciphers) and linear cryptanalysis [2] (in the case
of block ciphers). On the other hand, it is important to achieve a low absolute indicator
that, while providing resistance against differential and fault attacks (e.g., [3,4]) on stream
ciphers, ensures good diffusion properties. For an even number of variables, optimal
Boolean functions in terms of these two properties exist, and such functions are called
bent [5,6]; however, since bent functions are not balanced, they cannot be directly used in a
cryptosystem. Therefore, it is important to construct balanced Boolean functions with high
nonlinearities and low absolute indicators.

Let us denote the maximum nonlinearity of a balanced n-variable Boolean function
by nlb(n). It has been conjectured [7] for an even n that nlb(n) can be at most 2n−1 −
2

n
2 + nlb( n

2 ), which is still unsettled. In [7], this nonlinearity was achieved by making
the all-zero block (of a length 2

n
2 ) of a normal bent function balanced, which indeed

provides the minimum number (2
n
2−1) of bit changes necessary to make a bent function

balanced. However, it is well-known that highly nonlinear Boolean functions exist with
better absolute indicator values than those of the construction in [7]. In this direction,
it was conjectured [8] for an even n that the maximum absolute indicator of a balanced
Boolean function cannot be less than 2

n
2 . This conjecture was first disproved in [9] for

n = 14 by utilizing a heuristic search method beginning with a randomly generated bent
function as its starting function. Shortly after that, by performing a steepest-descent-like
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search method within the class of 10-variable rotation-symmetric Boolean functions, it
was also disproved [10] for n = 10. Apart from these two search results, theoretical
constructions of balanced n-variable Boolean functions with an absolute indicator of less
than 2

n
2 were obtained recently in [11,12] for n ≥ 46 (n ≡ 2 mod 4) and for n ≥ 52

(n ≡ 0 mod 4), respectively. By suitably modifying the underlying Boolean functions of
the constructions in [11,12], specific examples for n = 18, 22, and 26 are demonstrated
in [11] and, subsequently, using the steepest-descent-like search method, these results
are further improved in [12], which provides additional examples for n = 12, 14, 16, 20,
and 24. Informally speaking, the Boolean functions obtained in [11,12] are constructed by
modifying two blocks (with a length of 2

n
2 +1 bits) of Dillon’s bent function [5].

Evident from the above discussion, balanced Boolean functions with an even number
of variables n achieving an absolute indicator of less than 2

n
2 are mostly generated by

modifying the bent functions. Here, we perform a genetic algorithm that also exploits a
bent function to generate such balanced Boolean functions; however, there are some subtle
differences, as follows:

• Our search is realized among the balanced Boolean functions that are at a distance
with a length of 2

n
2−1 from a bent function, and, hence, compared to, e.g., [9], we do

not need to seek to achieve the balancedness property during the search.
• Though the Boolean functions generated from the construction in [7] have the same

distance, our search strategy does not restrict the corresponding bit changes to a
specific block of a bent function.

• We do not impose the conditions of a theoretical construction (e.g., [11,12]); rather, our
search is more generic, and its search space is all the balanced Boolean functions that
are closest to a bent function in terms of the Hamming distance.

Here, we point out that for the balanced n-variable Boolean functions that we consider,
a modified hill-climbing method was applied previously in [13] for n = 8, 10, and 12.
In addition, for these numbers of variables, the bent functions were used in [14] to form
the initial population of a hybrid genetic algorithm, which was exploited to construct
balanced Boolean functions without restricting their distance to the bent functions. Our
approach basically applies a global optimization algorithm to the search space used in [13]
for even n ∈ [8, 26], which yields better cryptographic properties than those obtained in the
related literature. More specifically, the absolute indicators that we find improve the best-
known values for n ≥ 12, and the Boolean functions with these absolute indicators achieve
nonlinearity of greater than 2n−1 − 2

n
2 for n ≥ 16. Further, the best-known nonlinearities

are obtained for n ≤ 16.
Over the years, researchers have explored different metaheuristic techniques (such as

local search, simulated annealing, particle swarm optimization, genetic algorithm, genetic
programming, etc.) to design Boolean functions in various dimensions that satisfy multiple
cryptographic properties. In the related literature, most of the works consider Boolean
functions with numbers of the variables of up to at most 16, and the most commonly sought
cryptographic properties to be optimized are balancedness, nonlinearity, and absolute
indicator. We refer the reader to [15] and the references therein for a recent survey of meta-
heuristic algorithms for the design of cryptographic Boolean functions. In the following
section, we give a brief background on the cryptographic properties of Boolean functions.
For a comprehensive survey and discussion of Boolean functions, we like to refer the reader
to [16,17]. Next, in Section 3, we describe the traditional genetic algorithm and present
our search strategy, keeping the distance to a bent function unchanged during the search.
The details of our search effort are given in Section 4, and then we draw our conclusions in
Section 5.

2. Preliminaries

Let f : GF(2)n → GF(2) be an n-variable Boolean function, which is usually de-
fined by its truth table f = [ f (0, · · · , 0, 0), f (0, · · · , 0, 1), . . . , f (1, · · · , 1, 1)] of a length 2n.
The Hamming weight wt( f ) of a Boolean function f is the number of ones in its truth
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table, and the Hamming distance d( f1, f2) between two Boolean functions f1 and f2, both
with the same number of input variables, is the number of places for which f1 and f2
differ in their truth tables, i.e., d( f1, f2) = wt( f1 ⊕ f2). If wt( f ) = 2n−1 for an n-variable
Boolean function f , then f is said to be balanced. A Boolean function f with input variables
(x0, x1, . . . , xn−1) ∈ GF(2)n can be considered as a sum of the products (with all distinct
orders) of the variables, i.e., it can be written as a multivariate polynomial over GF(2):

⊕
u∈GF(2)n

au

n−1

∏
i=0

xui
i , (1)

where the coefficients au ∈ GF(2). This representation is unique and called the algebraic
normal form (ANF). The largest number of variables in the product terms with nonzero
coefficients is called the algebraic degree of f and is denoted by d f . The Boolean functions
in the form of g(x) = ω · x ⊕ c, i.e., those with an algebraic degree of at most one, are
referred to as affine functions, where c ∈ GF(2), ω · x = ω0x0 ⊕ . . .⊕ ωnxn is the inner
product of x = (x0, . . . , xn−1) and ω = (ω0, . . . , ωn−1) ∈ GF(2)n. We denote the set of
all n-variable affine functions by An. An affine function is called a linear function if its
constant term is equal to zero, and a Boolean function is called nonlinear if it is not affine.

The Walsh–Hadamard coefficients of an n-variable Boolean function f are the values
of the integer-valued function over GF(2)n given by

W f (ω) = ∑
x∈GF(2)n

(−1) f (x)⊕x·ω for all ω ∈ GF(2)n (2)

and the multi-set {W f (ω) | ω ∈ GF(2)n}, where ω runs through GF(2)n in lexico-
graphic order, is called the Walsh–Hadamard spectrum of f . The nonlinearity NL f of
f is defined as the minimum Hamming distance from all n-variable affine functions,
i.e., NL f = ming∈An d( f , g). As the distance between f and the affine function g can be
computed by using the corresponding Walsh–Hadamard coefficient W f (ω), NL f can be
expressed in terms of the maximum value in the absolute Walsh–Hadamard spectrum
as follows:

NL f = 2n−1 − 1
2

max
ω∈GF(2)n

|W f (ω) | . (3)

The autocorrelation properties of a Boolean function are cryptographically impor-
tant [8,18]. Let f be an n-variable Boolean function and d ∈ GF(2)n. The autocorrelation
value of f with respect to d is given by r f (d) = ∑x∈GF(2)n(−1) f (x)⊕ f (x⊕d). The maximum
absolute autocorrelation value, excluding r f (0, . . . , 0), is known as the absolute indicator of
f and denoted as

∆ f = max
d∈GF(2)n ,d 6=(0,...,0)

| r f (d) |, (4)

which should be small to provide good diffusion properties.

3. Genetic Algorithm

The genetic algorithm (GA) [19], which is based on Darwin’s survival of the fittest
principle, is the most widely applied evolutionary algorithm in optimization and search
problems. The GA is based on the evolutionary process known as natural selection in which
any parent, i.e., a pair of individuals, selected from a population produces an offspring.
Mutations can occur in this process; however, after mutation, only the fittest individuals
survive for the next generation. The general structure of the genetic algorithm used in our
study is shown in Figure 1. The initial population in Figure 1 is composed of randomly
generated balanced Boolean functions at the closest distance to a fixed bent function.
The selection operation (using the elitism approach and the k-tournament mechanism) is
applied to the initial population to create the parent population from which the offspring
are generated using our crossover strategy given by Algorithm 1. In the elitism approach,
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the fittest individuals in a population, i.e., the balanced Boolean functions with the best
fitness values, survive. In contrast, in the k-tournament method, the fittest one among
randomly selected k individuals survives. For a Boolean function f , we use the cost function
given in [10,20] as our fitness function here:

f itness f = ∑
ω∈GF(2)n

(
W f (ω)2 − 2n

)2
, (5)

which can be considered as a measure proportional to the sum of the squared spectrum
deviations from that of a bent function.

Start

Initial Population

Selection

Parent Population

Crossover

Mutation

New Population

Selection

Parent Population

Resetting Initial Population

The fittest
individual

Parent Population

Selection

Stopping
Criterion

Stop

Yes

No

Yes

No

Figure 1. Genetic algorithm structure.

Though any bent function can be used, we randomly select a Maiorana–McFarland
(MM)-type bent function [21] from which the balanced Boolean functions are generated to
form the initial population whose size is set to 1000 in our search. In our experiments, any
bent function that we generate has a Hamming weight of 2n−1 − 2

n
2−1, i.e., the number of

zeros is 2
n
2 more than the number of ones in its truth table. Next, we compute the fitness

value of each individual within the initial population and then apply the elitism approach
by selecting 100 of those with the best fitness values. Subsequently, out of the selected
individuals, 40 are chosen as the parent population using the k-tournament method, where
we take k = 3.

After generating the parent population, the algorithm enters the generation loop,
which begins with a crossover operation. There are various crossover methods, such as
one-point, two-point, uniform, and partial fit, which are used to obtain the offspring from
the parent population. Here, we utilize the uniform crossover as given by Algorithm 1 in



Computers 2023, 12, 159 5 of 14

which the offspring produced from the mating of any two individuals (belonging to the
parent population) that are at a distance of 2

n
2−1 from an n-variable bent function keeps the

same distance to that bent function. In Algorithm 1, the functions f , g, p1, and p2 represent
the bent function, the offspring, the first individual, and the second individual, respectively.
The algorithm starts by checking each pair of the bits (belonging to the same position) of
p1 and p2 and assigns their value to the offspring if both are equal. Then, as given by the
next two steps, any position at which the bent function f is zero and the first individual
p1 (the second individual p2) is one is assigned to I1 (resp., I2). The crossover operation is
completed by assigning 0 to the randomly selected half of the positions in J1 ∪ J2, and 1 to
the other half, where J1 and J2 are the sets formed by removing the positions belonging
to both I1 and I2 from I1 and I2, respectively. In the GA that we perform, the offspring is
generated by using Algorithm 1 from each possible pair of individuals within the parent
population. In other words, we take the crossover probability as one. It is to be noted that
the offspring g is balanced and has the distance 2

n
2−1 to the bent function f .

Algorithm 1 Uniform crossover operation

Input: f , p1, p2
Output: g

1: g(x) = p1(x) for all GF(2)n such that p1(x) = p2(x)
2: I1 = {x ∈ GF(2)n : f (x) = 0 & p1(x) = 1}
3: I2 = {x ∈ GF(2)n : f (x) = 0 & p2(x) = 1}
4: J1 = I1\(I1 ∩ I2)
5: J2 = I2\(I1 ∩ I2)
6: g(x) = 1 for all x ∈ J1 ∪ J2
7: g(x) = 0 for a randomly selected half of the positions x ∈ J1 ∪ J2

The mutation is applied to the offspring obtained from the crossover in order to ensure
diversity. It is realized by flipping a randomly chosen pair of 0 and 1 in the truth table
of an offspring such that the bent function is 0 at the corresponding positions of these
two bits, which implies that the distance (to the bent function) remains the same after the
mutation operation. Since the search space grows super-exponentially as the value n of the
variables increases, high mutation probabilities may hinder exploration near the parents.
Therefore, in our search, the probability of any offspring being mutated is taken as 2/2n,
which decreases as n increases. The offspring obtained after the mutation operation are
added to the parent population (selected previously from the initial population). Then,
a new parent population is formed by applying the selection operation mentioned earlier
to the current population.

As the last stage of the loop, to provide additional diversity to the parent population,
we apply a resetting step that is a slightly modified version of the one suggested in [22].
An optional resetting step is applied in [22], which keeps the fittest individual and randomly
generates the remainder of the parent population if there is no improvement in the best
fitness value for a number of generations. Here, we apply the resetting step by considering
the fitness values of all individuals in the parent population of each generation. More
specifically, if those values are the same for a generation, then one of them is kept, and the
other 39 individuals are generated by forming a new population of size 1000 randomly
and then applying the selection operation to them. Moreover, in this step, the GA outputs
the fittest individual within the parent population of the current generation. The loop
continues until the stopping criterion is met, which is the maximum number of generations,
and, throughout our experiments, it varies between 100 and 20,000.

3.1. Tuning Phase

The performance of the GA depends upon fine-tuning parameters, such as the size
of the initial population, the size of the parent population, and the number of individ-
uals selected from the initial population. We conduct a parameter-tuning phase for 8-,
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10-, and 12-variable Boolean functions to determine the values (aforementioned in Sec-
tion 3) of these parameters by performing a large number of experiments. More precisely,
for each number of variables, we experiment with initial population sizes of 500, 1000, 1500,
and 2000; parent population sizes of 20, 40, 60, and 80; and selection sizes of 50, 100, 150,
and 200. After omitting the combinations for which the parent population size is greater
than the selection size, there are 56 combinations left, and the parameter-tuning phase has
a stopping criteria of 20,000 iterations for each combination. The set of the best-obtained
parameters is used for all Boolean functions considered in this paper.

Since our aim is to optimize the nonlinearity of balanced Boolean functions, the com-
binations have been evaluated in terms of their corresponding nonlinearity results. Clearly,
when a combination is evaluated in terms of the average value obtained, a bad solution
can lead to the neglect of good solutions. Therefore, instead of average values, we consider
the best values found to compare the combinations. For eight-variable Boolean functions,
we observe that every combination of parameters reaches the best-known nonlinearity
value of 116. For 10- and 12-variable cases, 11 and 4 combinations obtain the best-known
nonlinearities of 492 and 2010, respectively. These combinations are given in Table 1, where
a combination is represented by a triplet (initial population size, selection size, parent
population size). As can be seen, the best nonlinearity value is achieved for all initial
populations with sizes 500, 1000, 1500, and 2000 in the case of 10 variables and for initial
populations with sizes 1000 and 2000 in the case of 12 variables. Since the population sizes
of 1000 and 2000 provide the best nonlinearity value for both cases, we opted for the size of
1000. Looking at the parent population sizes, it is seen that the best nonlinearity value of
492 is obtained for 10-variable Boolean functions with parent population sizes 20 and 40,
while for 12-variable Boolean functions, the best nonlinearity value of 2010 is obtained with
a parent population size of 40. Hence, we chose the parent population size of 40, which
yields the best nonlinearity value for both the 10- and 12-variable cases. Finally, since the
best nonlinearity value is achieved with a selection size of 100 for both 10- and 12-variable
scenarios, we chose the selection size to be 100.

Table 1. The combinations yielding the best-known nonlinearities for 10- and 12-variable Boolean
functions, where a combination is represented by the triplet (initial population size, selection size,
parent population size).

# of Variables Combinations

10

(500,100,20) (500,100,60)
(1000,50,20) (1000,100,40) (1000,200,40)

(1500,100,20) (1500,150,80) (1500,200,40)
(2000,50,20) (2000,100,20) (2000,100,40)

12 (1000,100,40) (1000,150,40)
(2000,100,60) (2000,200,40)

3.2. Performance Evaluation

The choice of the fitness function, along with the tuning of the parameters, plays
a crucial role in the performance of the GA and the quality of solutions. In literature,
Clark’s cost/fitness function [23] is one of the most widely used ones for evolving Boolean
functions; however, it has parameters that need to be tuned experimentally. As our fitness
function ( f itness f given by Equation (5)) does not require any experimental parameter,
here, we evaluate the performance of our algorithm using two different fitness functions
(given below) that do not involve experimental parameters.

f itness1
f = NL f (6)

f itness2
f =

1
24n ∑

ω∈GF(2)n
W f (ω)4 (7)
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While the fitness function f itness1
f is simply the nonlinearity of f , the other fitness

function f itness2
f is Gowers second-order norm of f which, by comparing it with Clark’s

fitness function, has been shown in [14] to be efficient for reaching the optimal solu-
tions. In Figure 2, for the 8-, 10-, and 12-variable cases, the comparison results of the
mentioned three fitness functions are presented in boxplot form. The boxplots shown in
Figure 2a–c (Figure 2d–f) represent the nonlinearity (resp. the absolute indicator) distri-
bution of 400,000 balanced Boolean functions generated by running the GA 20 times with
20,000 iterations each.
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Figure 2. Boxplot distributions produced by different cost functions for 8-, 10, and 12-variable Boolean
functions, where (a–c) [(d–f)] show nonlinearity (resp. absolute indicator) distributions, respectively.

From Figure 2a, it is seen that, when f itness f or f itness2
f is used, the boxplot dis-

tributions are the same, and the GA obtains nonlinearity values of 112, 114, and 116.
Additionally, we observe that the GA with f itness1

f does not produce the lowest nonlin-

earity (112) among them. Figure 2b shows that the GA with f itness f or f itness2
f reaches

the nonlinearity value of 492 (with the former one producing this nonlinearity more fre-
quently), and the best-achieved nonlinearity by the GA with f itness1

f is 488. In the case of
12 variables, as can be seen from Figure 2c, the boxplot distributions indicating that the
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highest achieved nonlinearity value is 2010 are the same for f itness f and f itness2
f ; however,

the best-achieved nonlinearity value is 2004 for f itness1
f .

Considering the boxplot distributions in Figure 2d–f, we see that both f itness f and
f itness2

f provide the same boxplots with lowest absolute indicator values of 16 and 32 for
the cases of 8- and 10-variable Boolean functions, respectively. In addition, we observe that
f itness f and f itness2

f outperforms f itness1
f for the 10- and 12-variable cases by producing

better absolute indicator values of 32 and 56, respectively. However, for the 8-variable case,
the GA with f itness1

f produces an absolute indicator value of 16 more frequently compared

to the GA with f itness f or f itness2
f , and, similarly, for the 12-variable case, the GA with

f itness f produces an absolute indicator value of 56 more frequently compared to the GA
with f itness2

f .
From the boxplot distributions in Figure 2, one can infer that though the GA with

f itness f provides more frequent generations of the nonlinearity value of 492 for the 10-
variable case and the absolute indicator value of 56 for the 12-variable case, it exhibits a
similar performance to the GA with f itness2

f when we consider only the best-achieved
results. Further, both of these generate better nonlinearity and absolute indicator values
than the GA with f itness1

f for the 10- and 12-variable cases.
The averages and standard deviations of the distributions of nonlinearity and absolute

indicator values, which are represented with boxplots in Figure 2, are given in Table 2.
As can be seen, for the cases of 10 and 12 variables, the average nonlinearity (absolute
indicator) value obtained for f itness f is greater (resp. less) than that obtained for f itness2

f .

Additionally, compared to f itness2
f , f itness f gives larger standard deviations for the non-

linearity and absolute indicator distributions. Therefore, for these cases, the statistical
parameters provided by f itness f seem to be better than those provided by f itness2

f . In the
eight-variable case, for both nonlinearity and absolute indicator values, though the stan-
dard deviations corresponding to f itness f are larger than those corresponding to f itness2

f ,

f itness f gives worse average values than f itness2
f . When we consider the average nonlin-

earity (absolute indicator) values found for f itness1
f , we observe that they are better (resp.

worse) than the other averages of the nonlinearity (resp. absolute indicator) distributions.
It should be noticed that since f itness1

f gives very small standard deviations (with the
exception of the distribution of the absolute indicator values in the eight-variable case),
the nonlinearity and absolute indicator values reached by f itness f or f itness2

f can be seen

as less likely to be achieved with f itness1
f .

Table 2. The averages (µ) and standard deviations (σ) of the boxplot distributions (given in in
Figure 2) of (a) nonlinearity values and (b) absolute indicator values for n-variable Boolean functions,
where n = 8, 10, and 12.

(a)

n = 8 n = 10 n = 12

f itness f
µ 115.2670 483.4514 1987.4868

σ 1.4142 4.8963 7.0278

f itness1
f

µ 115.9977 487.8096 2000.1845

σ 0.0684 0.5870 0.5789

f itness2
f

µ 115.3356 482.5152 1986.9790

σ 1.3560 4.3490 6.1503
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Table 2. Cont.

(b)

n = 8 n = 10 n = 12

f itness f
µ 24.6387 43.6811 76.0864

σ 2.1718 5.2957 12.6712

f itness1
f

µ 27.8896 49.7244 81.5849

σ 3.9986 4.3848 6.3888

f itness2
f

µ 24.6021 43.6920 76.1885

σ 2.1139 4.9239 11.1301

4. Search Effort

The GA explained in the section above is performed by setting the experimental
parameter values as summarized in Table 3. The computer system that we utilize has
the following specifications: Intel® Core™ i5-9400F CPU (2.9 GHz, 9 MB cache, 6 cores),
16 GB RAM, and Windows 10 Pro 64-bit operating system. The GA is implemented in C
programming language, and the typical consumed times for 100 generations are given in
Table 4 for all the values of n of the variables we consider. We used 20 computers (each
with the given specification) that work with all of the cores for about six months to obtain
our results. All truth tables of our best-achived results can be found in [24]. Among them,
we have provided the truth tables of the Boolean functions with numbers of the variables 8,
10, and 12 in Appendix A.

Table 3. Experimental parameter values.

Parameter Value

Initial population size 1000

Number of individuals left after the elitisim approach 100

Number of individuals participating in the tournament (k) 3

Parent population size 40

Crossover probability 1

Mutation probability (n is the number of input variables) 2/2n

Maximum number of generations 100 to 20,000

Table 4. Consumed times for 100 generations and # of balanced functions.

n Consumed Time Nbalanced(n)

8 3 s 241

10 5 s 2100

12 10 s 2234

14 32 s 2536

16 1 min 52 s 21204

18 7 min 33 s 22668

20 34 min 56 s 25853

22 2 h 37 min 52 s 212,735

24 14 h 18 min 10 s 227,524

26 1 d 18 h 50 min 36 s 259,150
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Clearly, the number Nbalanced(n) of the balanced n-variable Boolean functions gen-

erated by flipping 2
n
2−1 bits of a single bent function is (

2n−1+2
n
2 −1

2
n
2 −1 ), which is computed

as given in Table 4. Let Nbent(n) be the number of n-variable bent functions. We know
from [25] that Nbent(8) = 99, 270, 589, 265, 934, 370, 305, 785, 861, 242, 880 (≈ 2106), and it is

unknown for n > 8. Then, the search space is of the size Nbent(n)× (
2n−1+2

n
2 −1

2
n
2 −1 ), which

gives ≈ 2147 in the case of n = 8.
To better understand the efficiency of our search strategy, let us consider in particular

the case of eight-variable Boolean functions. Using an exhaustive search, we enumer-
ate all balanced Boolean functions with the best possible nonlinearity obtained from a
randomly selected MM-type bent function f whose truth table is given as follows using
hexadecimal notation:

3C3C5A5A33CC669900000FF066665AA5 0F0F3CC3696933336996555555AA00FF

As a result, we find that the number of those balanced functions is 6,346,334,872, and
their classification is given in Table 5, where the cryptographic properties are denoted by
the triplet (nonlinearity; absolute indicator; algebraic degree). As can be seen from Table 5,
the best possible profile is (116; 16; 7), and there are 34,336 balanced Boolean functions
with that profile. Noting that limz→∞(1− 1/z)z = 1/e, one may obtain such a function
in approximately (136

8 )/34, 336 (> 226) trials in a random search with a probability of
1− 1/e (> 1/2). We then perform the GA by using the bent function f (to form the initial
population) and setting the maximum number of generations to 20,000. In 50 runs, we
observe that 4 of the 106 (=20,000×50 < 220) generation outputs have the best profile, which
shows the superiority of our method over a random search.

Table 5. Classification of balanced Boolean functions with nonlinearity 116 in the neighborhood of
the bent function f .

(NL f ; ∆ f ; d f ) #

(116, 16, 6) 22,720

(116; 16; 7) 34,336

(116; 24; 6) 1,006,138,800

(116; 24; 7) 1,906,929,536

(116; 32; 6) 2,090,955,784

(116; 32; 7) 1,342,253,696

We now construct, as an example, a balanced eight-variable Boolean function with
nonlinearity 116, absolute indicator 16, and algebraic degree 7. Let `ω(x) = ω · x, for all
x ∈ GF(2)4, be a linear function determined by ω ∈ GF(2)4, and let f = [`ω(1) `ω(2) . . . `ω(16) ]
be an MM-type bent function that can be seen as a concatenation of the distinct linear func-
tions determined by ω(1), ω(2), . . . , ω(16). Consider the bent function f formed by the linear
functions `ω(i) corresponding to the ω(i) vectors, i = 1, 2, . . . , 16, given in Table 6. Flipping
the eight bits `ω(5)(1, 0, 1, 0), `ω(5)(1, 1, 1, 1), `ω(6)(0, 0, 0, 0), `ω(6)(1, 1, 0, 0), `ω(16)(0, 1, 0, 0),
`ω(16)(0, 1, 0, 1), `ω(16)(0, 1, 1, 0), and `ω(16)(0, 1, 1, 1) of the bent function f yields the bal-
anced eight-variable Boolean function with the profile (116; 16; 7).
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Table 6. The ω(i) vectors to generate the bent function f .

ω(1) = (0, 1, 1, 0) ω(5) = (0, 0, 0, 0) ω(9) = (0, 1, 0, 0) ω(13) = (1, 1, 1, 1)

ω(2) = (0, 1, 0, 1) ω(6) = (1, 1, 0, 0) ω(10) = (1, 1, 1, 0) ω(14) = (0, 0, 0, 1)

ω(3) = (1, 0, 1, 0) ω(7) = (0, 0, 1, 1) ω(11) = (0, 1, 1, 1) ω(15) = (1, 0, 0, 1)

ω(4) = (1, 0, 1, 1) ω(8) = (1, 1, 0, 1) ω(12) = (0, 0, 1, 0) ω(16) = (1, 0, 0, 0)

5. Conclusions

In Table 7, denoting the cryptographic properties by the triplet (nonlinearity; absolute
indicator; algebraic degree), we summarize and compare our best-achieved results with the
present best results in [9–12] for even n ∈ [8, 26]. As can be seen, by applying the GA to the
balanced n-variable Boolean functions produced by flipping the minimum number (2

n
2−1)

of bits of a bent function, we can achieve better absolute indicators (less than 2
n
2 ), which

were unknown before, for all n = 12, 14, . . . , 26. In addition, we find that the corresponding
nonlinearity values exceed 2n−1 − 2

n
2 for n = 16, 18, . . . , 26. The results also demonstrate

examples of balanced Boolean functions with the best-known nonlinearity that are at the
closest distance to a bent function for n = 8, 10, . . . , 16. To the best of our knowledge,
there is no nontrivial lower bound on the absolute indicator values, and we only know
that the absolute indicator of a balanced Boolean function can be as low as eight. Hence,
though the results given in Table 7 improve the absolute indicator values in [12], it is quite
possible that one can achieve further improvements with sufficient computational power,
especially for a large number of variables. On the other hand, as a long-standing open
problem, it is still unknown whether there exists a balanced Boolean function with an even
number n of variables that achieves nonlinearity of greater than 2n−1 − 2

n
2 + nlb( n

2 ) for
n ≥ 8, and, hence, it seems elusive to achieve this nonlinearity. For instance, it is unknown
whether there exists a balanced eight-variable Boolean function with nonlinearity of 118.

Table 7. Comparison of our best-achieved profiles with those in the literature, where the profile of f
is defined as the triplet (NL f ; ∆ f ; d f ).

Reference n = 8 n = 10 n = 12 n = 14

[9] (116; 16; 7) (488; 40; 9) (2002; 64; 11) (8102; 104; 13)
(8104; 112; 13)

[10] – (488; 24; 9) – –

[12] – – (1996; 56; 11) (8106; 96; 13)

[13] (116; 24; 7) (488; 40; 9) (2002; 72; 11) –

[14] (116; 24;−) (488; 40;−) (2002; 72;−) –

Our results (116; 16; 7) (480; 24; 6)
(492; 40; 9)

(1984; 40; 7) (8064; 88; 13)
(1984; 48; 11) (8064; 88; 13)
(2010; 80; 11) (8120; 144; 12)

Reference n = 16 n = 18 n = 20

[11] - (130,664; 480; 17) -

[12] (32,604; 160; 15) (130,762; 312; 17) (523,688; 600; 19)

Our results (32,516; 152; 15) (130,752; 256; 17) (523,676; 400; 19)(32,628; 288; 14)

Reference n = 22 n = 24 n = 26

[11] (2,095,484; 1880; 21) - (33,547,436; 7856; 25)

[12] (2,096,020; 1224; 21) (8,386,392; 2360; 23) (33,550,064; 4584; 25)

Our results (2,095,958; 592; 21) (8,386,318; 904; 23) (33,549,996; 1360; 25)
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Here, we mainly consider two of the most important cryptographic properties of
balanced Boolean functions, which are nonlinearity and the absolute indicator. It should be
noted that in order for a Boolean function to be used in a cryptosystem, one should also
consider the other cryptographic properties, such as resiliency, algebraic immunity, and fast
algebraic immunity. We think that it is possible to exploit our search strategy to optimize
these properties as well by increasing the distance to the bent functions and designing the
fitness function accordingly. However, since there is a trade-off among those cryptographic
properties and improving one property may lead to the deterioration of another property,
it seems quite probable to deterioriate our best-found cryptographic properties in Table 7
while optimizing the other cryptographic properties. For instance, when compared to [26],
where two classes of one-resilient Boolean functions with the best-known absolute indicator
values are constructed, one can see that the absolute indicator values presented in Table 7
are better.
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Appendix A

For 8, 10, and 12 variables, we provide the truth tables of the balanced Boolean
functions with the cryptographic properties in Table 7. All truth tables for our results given
in this paper are available at [24].

(116; 16; 7):

3C3C5A5A33CC669900218FF866665AA50F0F3CC3696933336996555555AA0FFF

(480; 24; 6):

3C3C3C3C79699696555555555AB5A55A333333330F0F0F1F5A5A5A5A33CCDC33
4F0FF0F0669966993373CCCC00FF00FF0FF0F04F55AA55AA3CC37CC30FF00FF0
696969696E6666660000FFFF699E69965AA55AA555AAAA5D00FFFF0069969E69
020000003C3CC3C35557AAAA666699995A5AA5A73CC3C33C66999B6633CC33CC

(492; 40; 9):

0000FFFF55AA55AA00FF00FF0F0F0F0F33333333555555555AA55AA566996699
00FFFF00060080003333CCCC0FF00FF055AAAA5566E6F9995555AAAA66999966
3CC33CC32FF4F99F696969693CC3C33C3C3C3C3C79976BD65A5AA5A533CCCC33
696996960F0FF0F06996966933CC33CC5A5A5A5A3C3CC3C3666666665AA5A55A

(1984; 40; 7):

6666666666766666555555555555755555AAAA55AA5555AA6969696969696969
5555AAAA5555AAAA0F0FF0F0F0F00F0F55AAAA5555AABA550FF00FF0F02FF00F
666799999999666633CCCE3333CCCC333333CCCC3333CCCC00FF00FFFF00FF00
00FFFF00FF0000FF33CC33CC33CC33CC3333CDCCCCCC33330002000000000000
0FF0F00F0FF0F08F3C3CC3C37C3CC3C35AA55AA5A55AA55A5A5AA5A5A5A55A5A
69699696969669693C3C3C3C3C3C3C3C69969669E996966900FFFF0000FFFF40
6699996E996666996D9669966996699600000000FFFFFFFF0F0F0F0FF0F0F0F0
3CC3C33C3CC3C33C69966996966996695D555555AAAAAAAA5555AAAEAAAA5555
3CC33CC33CC33CD35A5A5A5A7A5A5A5A3CC33CC3C33CC33C6666666699999999
699696699669699633333333CCCCCCCC0FF00FF01FF00FF069699696696996B6
5AA5A55BA55A5AA56B696969969696963C3C3C3CC3C3C3C30000FFFF0000FFFF

https://github.com/Selcuk-kripto/imp_AC
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5A5AA5A55A5AA5A566996699996699660100FFFFFFFF00006699669B66996699
0F0F0F0F0F8F0F0F33CCCC33CC3373CC3C3CC3C3C3C33C3C55AA55AA55AA55AA
66669999666699990F0FF0F00F0FF0F000FF00FF00FF80FF3333333333733333
5AAD5AA55AA55AA566999D66669999660FF0F00FF00F0FF03CC3C33CC33C3CC3
33CC33CCCC33CC335A5A5A5AA5A5A5A55AA5AD5A5AA5A55A55AE55AAAA55AA55

(1984; 48; 11):

0F0FF0F0F0F02F0F696969696969696933CCCC33CC3337CC0FF0F00FF00F0FF0
3CC3C33CCB3C3CC30F0FF0F00F0FF0F055555555BAAAAAAA0FF00FF00FF00FF0
666699B99999666600FF00FF00FF00FF5555AAAE5555AAAA3C3C3C3CC3C3C3C3
0008FFFF0000FFFF3333CCCCCCCC33335AB5A55A5AA5A55A00FF00FFFF00FF00
01FFFF00FF0000FF0FF0F00F0FF0F00FDAA55AA5A55AA55A6996966969969669
6699D9669966669933CC33CC33CC33CC5AA5A75AA55A5AA55A5A5A5A5A5A5A5A
66666666666766663CC3C33C3CC3C33C3CC33CC3C3BCC33C3C3CC3C33C3CC3C3
66669999666699D90FF00FF0F00FF00F5555AAAAAAAA555700FFFF0000FFFF00
55AAAA55AA5555AA7C3C3C3C3C3C3C3C66996699669966996B69969696966969
5A5A5A5AA5A5A5A55AA55BA55AA55AA533CC33CCCC33CC333333333333333333
0F0F0F0FF0F0F0F06666666699D9999955555555555555555B5AA5A5A5A75A5A
699669969669966969699696696996975A5AA5A55A5AA5A566999966669999E6
6996966996696996000000000000080033CCCC3333CCCC330000FFFFFFFF1000
55AA55AAAA55AA5566996699B966996633333333CCCCCCCC699669966D966996
00000000FFFFFFFF55AAAA5D55AAAA553333CCCC3333CCCC3C3CC3D3C3C33C3C
69696969969696960F2F0F0F0F0F0F0F3CC33CC33CC33CC355AE55AA55AA55AA

(2010; 80; 11):

0F0FF0F00F0FF0F000000000FFFFFFFF33333333CCCCCCCC5AA55AA5A55AA55A
33F7CCFE3733FDCC333333333333333333FCCC7BEC33FBCC3C3CC3C33C3CC3C3
0FF0F00FF00F0FF00F0F0F0FF0F0F0F069699696696996966996966996696996
33CCCC3333CCCC333C3C3C3CC3C3C3C30F0FF0F0F0F00F0F00FFFF0000FFFF00
55555555AAAAAAAA5AA55AA55AA55AA55A5A5A5A5A5A5A5A6996699696699669
0FF0F00F0FF0F00F3C3C3C3C3C3C3C3C5555AAAAAAAA555500FF00FF00FF00FF
666666669999999955AAAA55AA5555AA5A5AA5A5A5A55A5A3CC3C33CC33C3CC3
6996966969969669666666666666666655AA55AAAA55AA555A5A5A5AA5A5A5A5
5AA5A55A5AA5A55A0FF00FF0F00FF00F00FFFF00FF0000FF3C3CC3C3C3C33C3C
69699696969669690000FFFF0000FFFF69696969969696965A5AA5A55A5AA5A5
33CC33CC33CC33CC666699996666999966999966996666993CC3C33C3CC3C33C
66999966669999665555AAAA5555AAAA3333CCCCCCCC333333CC33CCCC33CC33
5AA5A55AA55A5AA566996699996699660000FFFFFFFF00005555555555555555
8CFF21FFFF00FF2355AAAA5555AAAA5520000800003100806666999999996666
69696969696969690F0F0F0F0F0F0F0F3CC33CC33CC33CC355AA55AA55AA55AA
3CC33CC3C33CC33C66996699669966990FF00FF00FF00FF06996699669966996
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