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Abstract: This paper focuses on fractional-order modeling and the design of a robust speed controller
for a nonlinear system. An induction motor (IM), widely used in Electrical Vehicles (EVs), is preferred
in this study as a well-known nonlinear system. The major challenge in designing a robust speed
controller for IM is the insufficiency of the machine model due to inherent machine dynamics.
Fractional calculus is employed to model the IM using the small-signal method, accounting for model
uncertainties. In this context, experimental data is approximated using a fractional-order small-signal
transfer function. Consequently, a mixed sensitivity problem is formulated with fractional-order
weighting functions. The primary advantage of these weighting functions is their greater flexibility
in solving the mixed sensitivity problem by involving more coefficients. Hereby, three robust speed
controllers are designed using the PID toolkit of the Matlab program and solving the H∞ mixed
sensitivity problem, respectively. The novelty and contribution of the proposed method lie in
maintaining the closed-loop response within a secure margin determined by fractional weighting
functions while addressing the controller design. After evaluating the robust speed controllers with
Bode diagrams, it is proven that all the designed controllers meet the desired nominal performance
and robustness criteria. Subsequently, real-time implementations of the designed controllers are
performed using the dsPIC microcontroller unit. Experimental results confirm that the designed
H∞-based fractional-order proportional-integral-derivative (FOPID) controller performs well in terms
of tracking dynamics, exhibits robustness against load disturbances, and effectively suppresses sensor
noise compared to the robust PID and fixed-structured H∞ controller.

Keywords: fractional calculus; weighted-mixed sensitivity; robust control; small-signal model;
induction motor

1. Introduction
1.1. The Contex of Research

The irrational exploitation of existing fossil resources leads to environmental pollution
and adversely affects the health of all living beings. Consequently, the depletion of fossil
resources and growing environmental concerns have driven researchers and decision-
makers to adopt EVs. Among the various drive systems used in EVs, the induction motor
system stands out as a highly employed option. It has demonstrated its attractiveness
in comparison to direct current (DC) motor systems due to several reasons, including
cost-effectiveness, robust structure, and lower maintenance requirements [1]. However,
ensuring the robustness of the speed control scheme is essential. This necessitates the
design of an appropriate system model and a suitable speed controller [2]. Addressing
these challenges constitutes the primary focus of most researchers engaged in the study of
induction motors for EV applications.

1.2. Literature Review

Recent times have witnessed a surge in modeling and the design of robust controllers
for induction motor (IM) systems, sparking a multitude of studies within the control
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community. Talla et al. proposed an adaptive speed controller for IM that leveraged
imprecise models containing compensators to address nonlinearity and uncertainty. Their
approach’s robustness was validated through the Lyapunov theorem [3]. Sung et al.
prioritized energy efficiency through the adoption of maximum torque per ampere control,
bolstered by compensatory measures for flux, temperature, and voltage variations, ensuring
robustness [4]. Lin and Wai explored a neural network-based uncertainty observer as an
integral part of a robust IM controller [5]. Alonge et al. introduced two linear extended state
observers for IM to counter both internal and external disturbances, incorporating a sliding
mode-based component to achieve complete robustness [6]. Pohl and Vesely applied the
H∞ technique to IM speed control, utilizing the d-q equivalent circuit of the IM for controller
design [7]. Qu and Zhao addressed denial-of-service attacks through an acknowledgment
mechanism, devising an H∞ controller for type-2 fuzzy systems under such attacks [8].
Given these aforementioned studies, it is evident that designing a speed controller for IM
is no straightforward task. Despite the manifold advantages of IMs, their control systems
remain intricate. Nevertheless, scalar control techniques offer a straightforward algorithm
and enhanced performance in steady states [9].

H∞ control, employed alongside scalar control methods, offers a promising approach
to mitigate the intricacies inherent in the IM speed control system. Its capacity for robust
stability and meeting nominal performance conditions is encapsulated within a weighted-
mixed sensitivity problem formulation. Within the H∞ framework, a robust controller
can be ascertained. A multitude of researchers have harnessed H∞-based robust control
techniques to govern the speed of IMs. Acevedo et al. utilized H∞ control in tandem
with a loop shaping procedure to govern both dynamic and steady-state responses of IMs.
They achieved linearity in the rotor flux-oriented model via Taylor’s series [10]. Mohamed,
considering model uncertainties and the suboptimal performance of IMs, proposed an H∞
loop shaping design procedure to formulate a speed controller. He represented nonlinear
dynamic equations in state-space form and synthesized a robust controller by selecting fre-
quency shaping functions. The results highlighted an acceptable trade-off between robust
stability and performance [11]. Allag et al. introduced robust H∞ control for the field-
oriented control of IMs. They transformed the nonlinear IM model into the Takagi-Sugeno
form and determined controller gains by solving linear matrix inequalities [12]. Among
the range of methods for synthesizing H∞ controllers, many scholars have gravitated
toward the automatic selection of weighted-mixed sensitivity problems. This approach
relies on well-chosen performance and stability weights, resulting in robust control and
superior tracking performance when dealing with well-modeled systems and parame-
ter values confined within specified bounds. Consequently, fixed integer weights have
found widespread application in robust controller designs across various industrial sectors.
Kaitwanidvilai et al. presented a Particle Swarm Optimization (PSO)-based approach for
automatically selecting weights in an interconnected power system. The effectiveness of the
method was verified, showing enhanced stability margins for the designed controller [13].
Kaur and Ohri showcased the application of PSO-based tuning for weighting functions,
resulting in improved tracking performance. The automatic selection method demonstrated
robustness against plant perturbations and disturbances [14].

On the other hand, the robustness margin of H∞ controllers can be further expanded
through the incorporation of fractional-order Laplace operators. This approach introduces
more adaptable weighting functions with a variety of adjustable parameters for mixed
sensitivity problems, thereby offering increased flexibility [15]. Fractional-order Laplace op-
erators are a term of fractional calculus which has gained substantial popularity within the
control community [16–21]. In this context, this operator has been used in H∞ controllers,
either in design step or in controller structure. Sedraoui et al. implemented adjustable
fractional weights within the mixed sensitivity weighting problem, aiming to enhance both
nominal performance and robust stability margins for an induction generator [22]. Notably,
they employed an extracted continuous-time linear state space model centered around an
operational point, utilizing the Matlab/Simulink program. Amieur et al. sought to enhance
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the trade-off between nominal performance and robust stability within closed-loop systems.
Their approach involved the utilization of a min-max optimization algorithm to fine-tune
the robust controller [23]. While Reference [22] employs controllers with integer orders,
Reference [23] utilizes controllers with fractional orders and fractional weights in the H∞
method. Menak and Tan introduced a novel fitness function that combines constraints
related to H∞ robust performance and Bode’s ideal transfer function. They employed the
PSO algorithm to minimize this fitness function, effectively tuning the parameters of the
FOPID controller [24]. Yaghi and Efe presented a method for enhancing the stability and
tracking performance of the FOPID controller, combining a neural tuning technique with
H2/H∞ optimization [25]. Majid et al. put forth an innovative approach for designing
an H∞-optimal FOPID controller capable of managing transient, steady-state responses,
and stability margins. They applied this method to a phase-locked-loop motor speed
system and an electromagnetic suspension system, providing examples that demonstrate
the design process and validate the performance of the proposed controller. The results
indicate that the proposed approach enhances system responses compared to the traditional
H∞-optimal controller while still preserving H∞ optimality [26]. References [24–26] adopt
fractional-order controllers with integer-order weights within the H∞ method.

1.3. Research Gaps

It is worth noting that, especially within IM speed control schemes, there has been
a lack of experimental exploration into the application of fractional operators within H∞
control design methodologies. Brief literature review shows that fractional-order weighting
functions have not been implemented experimentally in mixed sensitivity problems for a
nonlinear system. Moreover, all the designed robust controllers are viable when the model
of the system (IM in this study) or its dynamic equations are already known. However, in
many industrial implementations, an accurate model is often lacking due to the presence
of inherent system dynamics, such as unexpected nonlinear behaviors or unmodeled
dynamics. This situation is particularly pronounced in the drive systems of IMs, leading to
a scarcity of sufficient mathematical models. Furthermore, the complexity of designing a
speed controller is increased without an adequate machine model.

Compared to previous studies, the application of fractional-order modeling and the
design of a robust controller based on fractional-order weights within the mixed sensi-
tivity problem for IM systems has not been attempted before. However, the lack of prior
knowledge concerning the inherent dynamics of IM and the unknown parameters of the
equivalent circuit present significant challenges. When these challenges are compounded
by the limitations of the dsPIC microcontroller’s performance during real-time implemen-
tation, the stages of modeling and controller design become considerably more intricate.

1.4. Authors’ Contribution

In this study, we propose a closed-loop modeling approach for the actual IM behav-
ior based on the fractional-order small signal method to address model uncertainties. A
primary advantage of small signal modeling lies in its simplicity while maintaining accu-
racy [27]. Notably, the utilization of more adaptable fractional-order small signal models
based on non-integer order Laplace operators can enable precise design. This technique
offers a linear model for the speed control scheme, encompassing the nonlinear IM behavior
around its operational point. The modeling step employs the FOMCON toolbox, a Matlab
software (R2022a) designed by Tepljakov [28]. It is crucial that the overall state of the IM
system remains stable after the transient response during the modeling process. Essentially,
small perturbations can be introduced to diversify the input-output dataset. As a result,
this technique finds widespread application in the modeling of nonlinear systems. Subse-
quently, the study focuses on the design of a robust controller based on fractional-order
weights within the mixed sensitivity problem for IM systems. Based on these explanations,
the main contributions can be highlighted as follows:
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• Fractional-order small signal modeling for IM is undertaken for the first time, achieved
through the approximation of experimental data.

• The fractional Laplace operator is incorporated in weighting functions, following to
the general guidelines of mixed sensitivity.

• Optimal parameters are determined to enhance the robust stability and nominal
performance of the closed-loop system with the designed controller.

• Three distinct robust controllers (Robust PID Controller, FOPID Based H∞ Controller
and Fixed-structure H∞ controller) are designed and compared in terms of robustness
and tracking performances.

The design of robust controllers and weighting functions is indeed carried out con-
currently. PSO is employed to determine the parameters of the weighting functions, in
conjunction with the fractional Laplace operator, as well as the controller parameters.
Initially, a robust PID controller is formulated using the Matlab software toolbox. Subse-
quently, utilizing the robust control toolbox within Matlab, a structured reduced-order H∞
controller is designed. The rationale for reducing the order of this controller is based on the
performance limitations of the dSPIC microcontroller board. Finally, a FOPID controller
is synthesized by solving the weighted mixed sensitivity problem. Experimental tests are
executed under conditions of load disturbances and sensor noises to validate whether
the proposed controllers meet the specified criteria for nominal performance and robust
stability margins. Hence, the novelty of this paper lies in the integration of fractional order
small signal modeling with fractional order weights, which are used in the synthesis of a
robust speed controller.

1.5. Chapter Organization

This paper is organized into five sections. Section 2 provides a brief description of the
IM system, including mathematical expressions, the experimental setup, and fractional-
order small signal modeling. In Section 3, detailed explanations of the H∞ mixed sensitivity
method and the design of robust controllers are presented. The design subsections also
include in-dept analysis and comparisons. Section 4 encompasses the experimental studies
along with results and discussions. Finally, Section 5 serves as the conclusion.

2. Modeling of Induction Motor System

For rotor flux λ (Wb), α-β axis stator current (A) equations of an induction motor [29]
can be written as follows:

diα
dt

= k1
(
ηλα + ωλβ

)
− k2iα + k3uα (1)

diβ

dt
= k1

(
ηλβ + ωλα

)
− k2iβ + k3uβ (2)

In Equations (1) and (2), k1 = Lm
σLs Lr

, k2 = Rs L2
r+Rr L2

m
σLs L2

r
, k3 = 1

σLs
, σ = 1− L2

m
Ls Lr

, η = Rr
Lr

,
uα (V) and uβ (V) are stator voltages, Rs (Ω) and Rr (Ω) are resistances of the stator and
rotor, Ls (H) and Lr (H) are inductances of stator and rotor. Lm (H) denotes the mutual
inductance and ω (rad/s) represents the angular speed. α-β axis rotor flux equations are
defined as below:

dλα

dt
= −ηλα −ωλβ + ηLmiα (3)

dλβ

dt
= −ηλβ −ωλα + ηLmiβ (4)

Equation of angular speed ωr is given as follows:

dωr

dt
=

p
J

Lm

Lr

(
λαiβ − λβiα

)
− B

J
ω− 1

J
TL (5)
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B (N·m·s) is friction factor, J (kg·m2) is rotor inertia, TL (Nm) is load torque and p
is pole pairs in Equation (5). Block diagram of IM system is represented in Figure 1. In
this scheme, IM angular speed is measured with an encoder and motor is loaded with
electromagnetic brake. IM is powered by a 3-phase inverter and the brake is supplied wtih
DC power supply. The measurement of IM’s angular speed, the operation of the speed
control algorithm, the switching of the load and/or noise on/off, and the data transfer to
the PC are all achieved with a digital signal processor (DSP).

Fractal Fract. 2023, 7, 769 5 of 25 
 

 

m
d L i
dt

α
α β α

λ ηλ ωλ η= − − +  (3)

m

d
L i

dt
β

β α β

λ
ηλ ωλ η= − − +  (4)

Equation of angular speed ωr is given as follows: 

( ) 1mr
L

r

Ld p Bi i T
dt J L J Jα β β α
ω λ λ ω= − − −  (5)

B (N.m.s) is friction factor, J (kg·m2) is rotor inertia, TL (Nm) is load torque and p is 
pole pairs in Equation (5). Block diagram of IM system is represented in Figure 1. In this 
scheme, IM angular speed is measured with an encoder and motor is loaded with electro-
magnetic brake. IM is powered by a 3-phase inverter and the brake is supplied wtih DC 
power supply. The measurement of IM’s angular speed, the operation of the speed control 
algorithm, the switching of the load and/or noise on/off, and the data transfer to the PC 
are all achieved with a digital signal processor (DSP). 

 
Figure 1. Block diagram of IM system. 

In Figure 1, u represents the speed controller output signal, n is the actual speed, n  
is the artificial measurement noise, nr is the measured speed with noise, nref denotes the 
reference speed, e is the speed error between nref and n. u and n data are stored on the PC 
for generating system and controller models. The original part in block diagram is the 
method used in the speed controller block. Artificial noise is introduced to the system for 
a specific duration to assess the controllers’ performance against sensor noise. 

2.1. Description of Experimental Setup 
The IM speed control system is designed to test various controller methods and to 

compare their performance. In the experimental studies, dsPIC33FJ128MC804 microcon-
troller serves as the DSP unit to measure the motor speed from the encoder and operate 

Figure 1. Block diagram of IM system.

In Figure 1, u represents the speed controller output signal, n is the actual speed,
ñ is the artificial measurement noise, nr is the measured speed with noise, nref denotes the
reference speed, e is the speed error between nref and n. u and n data are stored on the
PC for generating system and controller models. The original part in block diagram is the
method used in the speed controller block. Artificial noise is introduced to the system for a
specific duration to assess the controllers’ performance against sensor noise.

2.1. Description of Experimental Setup

The IM speed control system is designed to test various controller methods and to
compare their performance. In the experimental studies, dsPIC33FJ128MC804 microcon-
troller serves as the DSP unit to measure the motor speed from the encoder and operate
the speed control methods. Furthermore, the actual motor speed and controller output
signal are transmitted to the PC for data logging and monitoring. The experimental setup
is depicted in Figure 2.

In Figure 2, the setup comprises a 3-phase induction motor, an electromagnetic brake,
an optical 1024 pulses per revolution (PPR) encoder, a 3-phase 3 kW inverter, a regulated
DC power supply with an output of 0–30 V 6 A, controller cards (dsPIC, PIC programmer,
UART-USB converter, 5 V DC power supply, 3.3 V DC power supply) and a PC. The
machine parameters of the IM are listed in Table 1.
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Table 1. IM parameters.

Parameter Value

Rated Voltage (VL-N) 220 V
Rated Current 2.7 A
Rated Power 1.1 kW
Frequency 50 Hz
Cosine (ϕ) 0.80
Rated Speed 1380 rpm
Pole pairs (p) 2
Stator Resistance (Rs) 7.8 Ω
Stator Inductance (Ls) 55 mH
Friction Factor (B) 0.072 N·m·s
Rotor Inertia (J) 0.0088 kg·m2

2.2. Fractional Order Small Signal Modeling of IM

This paper employs the small signal transfer function of an IM to facilitate frequency
domain control design. The transfer function is derived from the small signal model, which
linearizes the actual behavior of the IM around its operational point. Drawing on insights
from previously published papers, small signal modeling has the advantage of mitigating
the impact of unmodeled dynamics and nonlinear behaviors [27,30]. Consequently, the
modeling step does not necessitate the inclusion of all equivalent circuit parameters or
intricate details of the IM. As a result, the process of implementing small signal modeling
comprises three steps: constructing the large signals of the input-output measurement
dataset, processing the large signal by subtracting average values, and deriving the small-
signal transfer function for the angular speed of the induction motor. In a departure from
studies in existing literature, this research not only focuses on devising a convenient small
signal model for the induction motor but also incorporates the fractional Laplace operator
to achieve a more flexible model. The innovation presented here lies in the determination
of an accurate fractional order small signal model, offering greater flexibility for user-
adjustable coefficients. This approach allows for the capture of a more sensitive transfer
function while disregarding numerous unmodeled dynamics.

This section focuses on the design of a fractional-order small signal model for the
IM using the measured input-output dataset. As explained in the description of the
experimental setup, the IM control system is driven by a pulse width modulation signal
(PWM) with a 0–100% duty cycle. Simultaneously, the speed response is monitored by
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an encoder, producing values ranging from 0 to 1500 rpm. During the modeling phase,
the system is subject to random triggering, and the outcomes are documented as shown
in Figure 3a and Figure 3b, respectively. This process results in the creation of a large
signal input-output dataset. Subsequently, calculations reveal that the mean values of the
triggering command and speed are 73.6% and 988.779 rpm, respectively. Using the average
variable method, these mean values are extracted from the large signals, leading to the
generation of the processed triggering command (u) and measured speed (n), as illustrated
in Figure 3c and Figure 3d, respectively.
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Figure 3. Measured and processed data set used for modeling. (a) random triggering input, (b) speed
output, (c) small-signal input, (d) small-signal output.

The δu and δy values in Figure 3c,d are small-signal input and output values, respec-
tively. The primary objective is to design the intended fractional-order small-signal model
using the FOMCON toolbox within the Matlab software (R2022a) [28]. In the case of a
black-box model, an input-output dataset is required, and the model output error is mini-
mized through the least squares approach. Fractional calculus serves as a generalization of
traditional calculus. Thus, to achieve a more precise representation of the system dynamics,
the Grünwald–Letnikov definition-based numeric solver is adopted, eschewing classical
differential equations. The identification problem is formulated as an estimation of a set of
parameters, including zeros, poles, and coefficients.

Based on preliminary investigations, it has been determined that the system is char-
acterized by six poles and two zeros, a specification incorporated into the toolbox. No-
tably, a trial-and-error approach is utilized to identify the optimal zero-pole combination.
To perform the nonlinear least-squares estimation of model parameters, the Levenberg–
Marquardt algorithm is employed. Subsequently, applying the ‘fid’ command yields the
desired fractional-order small-signal model for speed, achieving an impressive 95.69%
model accuracy. The resultant transfer function is expressed as Equation (6).
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Gs =
1e−5s1.9980 + 9300.2s 0.9769 + 0.1606

0.0073s5.9567+2.2133s4.0961 + 10s3.0156 + 6.2218s2.0473 + 5.3874s1.5051 + 5.4717s 0.9998 + 1e−5 (6)

In continuous-time systems, stability is indicated when all poles are located in the
open left half of the complex plane. The ‘isstable(Gs)’ function in Matlab provides a
logical value of 1 (true) as an indicator of dynamic system stability. However, the transfer
function designed here incorporates fractional-order Laplace operators. To use the ‘isstable’
function in this context, we employ an approximate transfer function obtained using the
‘fid’ function. The resulting value of 1 serves as confirmation of the stability of Gs’s. Figure 4
displays the validation of the designed small-signal model where the red line is the actual
speed of IM and the blue line is the model output. The δn value in Figure 4 is the small-
signal speed value. It is evident from the figure that the obtained fractional-order small
signal model is capable of matching the actual behavior of the IM. This demonstrates that
the designed model can be effectively used in the controller design step.
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3. Weighting Mixed-Sensitivity-Based H∞ Controller Design

The primary advantage of H∞ control is its capability to manage both model uncer-
tainties and external disturbances simultaneously. In the standard H∞ control problem,
as illustrated in Figure 5, external disturbance, measurable output and control signal are
defined as d, y and u, respectively. The robust controller K(s) is designed to stabilize the
closed-loop plant P and minimize the norm from d to z at any frequency.
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Weighted mixed-based H∞ control is a specific case of the standard H∞ optimization
problem. In this study, the weighted mixed sensitivity problem is tackled to design the
optimal control system that ensures the desired performance criteria by adjusting the
various sensitivity functions. Thus, the performance requirements for the closed-loop
system are transformed into a H∞ optimization framework with the aid of weighting
functions. Based on the selected weights and performance criteria, three distinct robust
controllers are designed in this section.

3.1. Main Concepts of H∞ Control Based on Weighted Mixed Sensitivity

In the process of designing a robust H∞ controller, a weighted mixed sensitivity-based
approach primarily focuses on the combination of disturbance attenuation with stability
margin specifications [31]. Along with other criteria, the controller design problem is
formulated based on three sensitivity functions: sensitivity (S), control sensitivity (KS) and
complementary sensitivity (T). The sensitivity functions are determined as follows:

S = (1 + GK)–1

KS = K(I + GK)−1

T = GK(I + GK)−1
(7)

Here, G represents the transfer function of P and K is the transfer function of the robust
controller. During the controller design step, the following specifications are considered:
good disturbance rejection is ensured by keeping the ‖S‖∞ minimum at low frequencies;
effective rejection of sensor noise is achieved by minimizing the ‖T‖∞ at high frequencies;
and good tracking dynamics are obtained by maintaining ‖T‖∞ as unity [32]. Based on
these sensitivity functions and a given plant P, a single infinity norm function is determined
as follows:

P =

∥∥∥∥∥∥
WsS

WksKS
WtT

∥∥∥∥∥∥
∞

(8)

Here, Ws, Wks and Wt are considered as the three weighting functions used in the
design of K. Hereby, the design of the H∞ controller can be represented as an augmented
plant model with respect to the given weighting functions as depicted in Figure 6. Proper se-
lection of Ws, Wks and Wt is essential to meet the specified performance requirements. Good
disturbance rejection can be ensured by choosing Ws within desired control bandwidth.
Control effort is limited by adjusting Wks to prevent oscillations and sudden fluctuations in
the control signal. Wt is generally chosen as a high-pass filter to suppress model uncertain-
ties or sensor noises.
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The infinity norm function (Equation (8)) is minimized to design the mixed sensitivity
problem-based controller (K). Consequently, a performance criterion, denoted as γ, is
established to maintain the infinity norm below a specific threshold. This transformation
results in Equation (9), which achieves a balance between nominal performance and
robust stability. ∥∥∥∥∥∥

WsS
WksKS

WtT

∥∥∥∥∥∥
∞

≤ γ < 1 (9)

The desired controller must satisfy all the specified conditions outlined in Equation (9).
Therefore, the singular value plots of conditions (σ(WsS), σ(WksKS), σ(WtT)) are consid-
ered as thresholds, and the desired controller must attenuate the worst case of these thresh-
olds within the predetermined frequency range. This process transforms the previous H∞
optimal control problem into a suboptimal min-max problem, as follows:

Min

Max

σ

 WsS
WksKS

WtT

 (10)

3.2. Fractional Order Weighted Mixed Sensitivity Problem

It is important to note that the weights play a significant role in the mixed sensi-
tivity problem. The closed-loop transfer functions S, R and T are influenced by weight
adjustments. As there are no specific rules to follow, certain criteria must be employed
to ensure an appropriate synthesis of the H∞ controller. Ws and Wt are related to the
magnitude of transfer functions S and T, respectively. Their determination is provided in
Equation (11) [33]

Ws(s) =

(
s

M1/n
p

+ωBP

)
(s+ωB A1/n

S )
n

WT(s) =
(sM1/n

T +ωBT)
n

(sA1/n
T +MTωBT)

n

(11)

where Mp and MT are the upper bounds of S and T within the bandwidth ωBP and ωBT,
respectively. As is the lower limit of S at low frequencies, while AT is the upper limit of T
at high frequencies. The variable n represents the order of weights and is set to ‘1′ in this
study. By choosing appropriate gains, Ws exhibits low-pass characteristics, guaranteeing
good tracking dynamics with disturbance rejection. Wt possesses high-pass characteristics
and ensures robust stability against all possible uncertainties. Additionally, WKS can be
chosen as a first or second-order low-pass filter to penalize the control signal. Based on
Equations (9) and (10), both W−1

S and W−1
T must meet the following conditions in all

frequency domains.
σ[S] < σ

[
W−1

S

]
σ[T] < σ

[
W−1

T

] (12)

General guidelines for weights selection can be explained as follows [34]:

1. It is recommended to have As � MP and AT � MT to ensure that the frequency re-
sponses of weighting functions are maximally flat in the high and low frequency ranges.

2. High-performance tracking dynamics with acceptable noise levels are achieved with
ωBP < ωBT .

3. Effective disturbance attenuation is achieved by increasing ωBP as much as possible
until it no longer causes a peak in the sensitivity curve.

4. When considering measurement noise, it becomes necessary to decrease ωBT until it
starts affecting tracking performance.
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In this study, a fractional Laplace operator is utilized in weighting functions (Equation (11))
to enhance the trade-off between robust stability and nominal performance [22]. Thus, the
goal is to improve controller performance in cases of load disturbance and sensor noises,
regardless of restrictions in tracking dynamics. By substituting the fractional Laplace operator
into Equation (11), the following fractional weighting functions are derived.

W f s(s) =

(
sλ1

M1/n
p

+ωBP

)
(sλ1+ωB A1/n

S )
n

W f T(s) =
(sλ2 M1/n

T +ωBT)
n

(sλ2 A1/n
T +MTωBT)

n

(13)

Here, λ1,2 denotes the order of the Laplace operator, and it is chosen within the range
of 0 < λ1,2 < 1. It is evident that the robustness and performance of the designed controllers
are adjusted by accurately determining the order of the weightings. Given the frequency
response constraints of the sensitivity functions, the selection of appropriate weighting
functions becomes more crucial during the stage of designing robust controllers.

3.3. Selecting of Weighting Functions

In the controller design step, the proposed fractional weights, as given in Equation (13),
are substituted in Equation (10), transforming the min-max optimization problem into
Equation (14).

Min
{

Max
(

σ

(
W f sS
W f tT

))}
(14)

Consequently, the design parameters vector can be defined as dp = [Mp, λ1, ωBP, MT ,
λ2, ωBT ]. According to the detailed guidelines provided in [34], Mp and MT represent the
desired minimum H∞ peak values that fulfill the conditions ‖S‖∞ ≤ Mp and ‖T‖∞ ≤ MT ,
respectively. Additionally, the bandwidth ωBP is chosen to be larger than the crossover
frequency of the system (ωBP < ωc). The desired tracking error can be adjusted by defining
As. On the other hand, the desired steady state error can be kept in a bandwidth by specify-
ing AT [27]. So, decreasing Mp as much as possible enhances nominal performance (WsS),
however, it may violate robust stability (WtT). On the contrary, minimizing MT as much as
possible improves robust stability until it violates nominal performance. Therefore, upper
and lower bounds of both parameters need to be determined through preliminary experi-
ments. Since the control aim is to suppress measurement noises, ωBT should be assigned
meticulously. Moreover, to improve the nominal performance, ωBP should be defined
precisely. Hence, constrains of the dp are kept within the range as given in Equation (15).

MP_min < MP < MP_max
λ1_min < λ1 < λ1_max

ωBP_min < ωBP < ωBP_max
MT_min < MT < MT_max

λ2_min < λ2 < λ2_max
ωBT_min < ωBT < ωBT_max

(15)

3.4. Design of Proposed Robust Controllers

Two distinct H∞ controllers based on fractional order weighting functions are devel-
oped in this study. Furthermore, for the purpose of comparison, a robust PID controller is
synthesized using the Matlab function pidtool. The control framework includes the measure-
ment of rotor speed and the generation of triggering commands, utilizing small signals and
average values to produce the actual control signal. The fractional-order small-signal-based
control scheme is illustrated in Figure 7. Considering the limited performance of the dsPIC
interface, which is a main drawback of the system during implementation stage, the de-
signed controller must adopt a low-order system. Simultaneously, the proposed controller
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is expected to provide good performance within the determined weighting constraints. The
design procedures for these controllers are provided in this section, ensuring the resolution
of the mixed sensitivity problem. This addresses all unpredictable system dynamics such
as modeling uncertainties or noises.
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Figure 7. The used feedback speed control system for IM.

3.4.1. Robust PID Controller

A classical PID structure is handled as the speed controller to facilitate comparison with
the proposed H∞ controllers. Consequently, by incorporating the specified fractional-order
small-signal model into the pidtool of the Matlab program, a balance between robustness and
nominal performance is achieved. Note that, the step response of the specified fractional-
order small-signal model may appear slower than the real-time results. However, achieving
the desired trade-off is the primary objective. Based on numerous preliminary experiments,
it is deduced that the desired balance between the two frequency-domain requirements
should be satisfied in the following manner:

• The suitable bandwidth ωol = 0.1676 rad/s;
• The appropriate phase margin ∆φ = 70.2◦.

These requirements are translated into time-domain equivalents, providing a response
time of tr = 8.84 s and a settling time of 35.2 s. The resulting PID speed controller is
calculated by the following transfer function.

Kc1 = 1.364e−4 +
1.137e−4

s
− 7.576e−4 s

5.965s
(16)

By applying the designed PID controller to the specified system, a step response is
obtained as shown in Figure 8a. Figure 8b,c depict the maximum singular value plots of
sensitivity functions for the robust PID controller, illustrating nominal performance and
robust stability, respectively.
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Figure 8. Reference tracking performance of designed robust PID controller.

3.4.2. FOPID Based H∞ Controller

Recent studies have highlighted the superiority of the FOPID controller over the tra-
ditional PID controller [2]. The inherent flexibility of the FOPID controller has garnered
increased attention from researchers for its application in various industrial systems. There-
fore, this study employs a FOPID controller, which is characterized by the transfer function
described by the following equation.

Kc2 = Kp +
Ki

sλc
+ Kdsµc (17)

where Kp, Ki, Kd, λ and µ represent the proportional, integral, derivative gains, as well
as the order of integrator and derivation, respectively. The parameters of the fractional
order weighting function (Equation (15)) and the controller parameters (Equation (17))
must be determined simultaneously to achieve a robust FOPID-based H∞ controller. There-
fore, the design vector, aimed at adjusting the trade-off between robustness and nominal
performance, is defined as follows:

dp1 = [Kp, Ki, Kd, λc, µc︸ ︷︷ ︸
FOPID

, Mp, λ1, ωBP, MT , λ2, ωBT︸ ︷︷ ︸
dp

] (18)

By incorporating the fitness function given in Equation (14) and the specified search
space outlined in Equation (15), the design process is transformed into an optimization
problem, as presented in Equation (19). This optimization problem can be tackled using
the classical PSO algorithm. Employing the small signal method, the average input value
(u) is subtracted from the measured value, resulting in a highly constrained control signal.
Therefore, the constraints on the controller parameters are set to be as minimal as possible.
Furthermore, As and AT are held as constants throughout the optimization process, with
fixed values of as 5 × 10−2 and 1 × 10−3, respectively.

Min
{

Max
(

σ

(
W f sS
W f tT

))}

subject to dp1



(0.01 = MP_min) < MP < (MP_max = 3)
(0.9 = λ1_min) < λ1 < (λ1_max = 1)

(0.1 = ωBP_min) < ωBP < (ωBP_max = 20)
(0.01 = MT_min) < MT < (MT_max = 3)
(0.9 = λ2_min) < λ2 < (λ2_max = 1)

(0.1 = ωBT_min) < ωBT < (ωBT_max = 20)
(1e−7 = Kp_min) < Kp < (Kp_max = 1e−3)

(1e−7 = Ki_min) < Ki < Ki_max1e−3)
(−1e−6) = Kd_min < Kd < (Kd_max = 1e−6)

(0.8 = λc_min) < λc < (λc_max = 1)
(0.8 = µc_min) < µc < (µc_max = 1)

(19)
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It is evident from Equation (19) that when all the provided guidelines are adhered
to, 11 variables will be optimized using the PSO algorithm, with specifications set by the
designer. In this paper, to address the challenges associated with complex computations,
a high-performance computer is employed for the optimization process. The parameters
for configuring the PSO can be found in Table A1 in the Appendix A. It is assumed that
the parameters, aside from those in Equation (19), remain constant. Based on preliminary
studies and guideline principles, the desired optimal solution for dp1 is determined with
regard to the following constraints.

MP_min < (MP = 2.99) < MP_max
λ1_min < (λ1 = 0.90) < λ1_max

ωBP_min < (ωBP = 0.101) < ωBP_max
MT_min < (MT = 2.97) < MT_max

λ2_min < (λ2 = 0.99) < λ2_max
ωBT_min < (ωBT = 17.22) < ωBT_max
Kp_min < (Kp = 1.73e−4) < Kp_max
Ki_min < (Ki = 1.59e−4) < Ki_max

Kd_min < (Kd = 9.49e−5) < Kd_max
λc_min < (λc = 0.9815) < λc_max
µc_min < (µc = 0.8181) < µc_max

(20)

where the frequency range is considered as ωr ∈ [10−4, 103] rad/s. The optimization
process concludes with γ = 0.523, representing the optimal minimization result. As a
result, a satisfactory performance level that fulfills the conditions for weighted mixed
sensitivity within the specified frequency range is achieved. The optimization results yield
the following weighting functions.

Ws =
(s 0.9039+0.101)/(2.99)

s0.9039+(5e−2·0.101)

WT = (s 0.99 /17.22)+(1/2.97)
1+s0.99(1e−3 /17.220)

where



MP_min < MP < MP_max
λ1_min < λ1 < λ1_max

ωBP_min < ωBP < ωBP_max
MT_min < MT < MT_max

λ2_min < λ2 < λ2_max
ωBT_min < ωBT < ωBT_max

(21)

Equation (21) demonstrates that the optimized parameters fall within the specified
limits. The fractional-order weighting functions are obtained in this manner. In addition
to the weighting functions, the optimization process yields the optimal parameters of the
robust FOPID controller, as shown in Equation (22). The main advantage of the proposed
method is that it allows for the simultaneous determination of weighting functions, and
controller parameters are conducted regardless of violating the guideline rules. Thus, a
trade-off between nominal performance and robustness is guaranteed.

Kc2 = 1.73e−4 +
1.59e−4

s0.9815 + 9.49e−5s0.8181 (22)

Referring to Equations (21) and (22), a frequency domain analysis is conducted. It is
evident from Figure 9 that maximum singular value (in dB) plots show that the σ(WS

−1)
curve exhibits a smooth response at low frequencies (ωr < 10−2), while the σ(WT

−1) curve
remains flat at high frequencies (ωr > 101). These curves suggest that the obtained WS

−1

provides excellent tracking dynamics at low frequencies, while the achieved WT
−1 enhances

robustness against noise and uncertainties at high frequencies. Furthermore, the maximum
singular value plots of sensitivity functions derived from the FOPID controller lie below
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the specified weighting functions. As shown in Figure 9, the robust FOPID controller is
effectively synthesized without violating the constraints of WS

−1 and WT
−1. The maximum

singular values plot for S-T comparison is depicted in Figure 10. This plot illustrates that
the trade-off between sensitivity functions remains below −5.5, confirming that the safety
margin, ensuring the identity function S + T = I, has been achieved [35].
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Figure 9. Maximal singular value plots of the sensitivity functions with FOPID controller.
(a) Sensitivity of FOPID controller, (b) Complementary sensitivity of FOPID controller.
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Figure 10. Trade-off between S-T.

3.4.3. Fixed-Structure H∞ Controller

In this section, a fixed structure H∞ controller that ensures nominal performance and
robust stability is designed using the previously obtained optimal weighting functions. The
‘hinfstruct’ command within the Matlab program is employed to synthesize the proposed
controller. This command tunes the parametric control block ‘K’ depicted in Figure 5.
The tuning process aims to minimize the H∞ norm of the closed loop transfer function,
which includes fractional order small-signal model (Equation (6)). While ‘hinfsyn’ can
provide a smaller H∞ norm, it results in high-order controllers that are not suitable for
microcontrollers. Therefore, this study defines the boundaries of the robust controller
using ‘hinfstruct’.

The configuration options for the optimization algorithm in ‘hinfstruct’ are as follows:

1. ‘Targetgain = 0′ stops the optimization once the target H∞ is achieved.
2. ‘Randomstart = 10′ prevents local minima.
3. ‘Display final’ indicates the optimization results at each iteration.
4. ‘tunableSS (‘Hstr’,5,1,1)’ selects controller ‘Hstr’ with a single input-single output.
5. Construction of sensitivity functions.
6. ‘blkdiag’ forms a block diagonal matrix from production of weighting functions and

sensitivity functions.
7. ‘hinfstruct’ tunes the controller.

After successful optimization, H∞ of the designed controller is calculated to be 0.4847.
Additionally, the state-space model data of the designed controller are provided below:

AHstr =


−8.30 40.20 0 0 0
−3.71 −8.16 −0.61 0 0

0 11.72 0.99 1.58 0
0 0 −21.75 −46.59 10.85
0 0 0 −3.29 −36.53



BHstr =


−2.82
−0.18
−0.61
0.55
1.45


CHstr = [0.07−0.61 0.79 1.76 0.03]
DHstr =

[
7.45e−04]

(23)
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The frequency analysis of the closed-loop control system with the Hstr controller can
be conducted using Bode diagrams, as shown in Figure 11. It is evident from the Bode
plots that both responses meet the requirements defined by the fractional order weighting
functions. Therefore, it can be concluded that the designed Hstr controller guarantees
nominal performance and robust stability. However, a better nominal performance is
achieved when the maximum singular values are minimized in the sensitivity matrix at low
frequencies. Conversely, superior robust stability is ensured when the maximum singular
values are minimized in the complementary sensitivity matrix at low frequencies [22].
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It is evident from Figures 8, 9 and 11 that the FOPID controller provides a better
nominal performance margin. It exhibits the smallest maximum singular value in the
direct sensitivity function. Furthermore, in the low-frequency range, below 10−2 rad/s,
the maximum singular value curve of the direct sensitivity function remains at nearly
−20 dB. This demonstrates that load disturbances are attenuated by more than 31.62 times
at the plant output. Conversely, the robust PID controller offers a superior robust stability
margin. The maximum singular value plots of the complementary sensitivity function
reveal that PID has the smallest value at 10−3 rad/s. Additionally, beyond 102 rad/s, the
curve drops below −150 dB, indicating that sensor noise suppression exceeds 1e6 times at
the plant output.

4. Results and Discussion

To assess and compare the effectiveness of the designed controllers in terms of ro-
bustness and noise suppression, the experimental setup outlined in the relevant section
is employed. The feedback control system is subjected to various reference input vectors.
Additionally, the system experiences disturbances as an input vector which consist of an
additional load (30% of the nominal power) applied at the starting time, around t = 60 s.
This disturbance is removed at t = 60 s once the system reaches the desired reference. After
t = 120 s, artificial sensor noise is introduced to speed measurement. The noise takes the
form of a uniform random number between ±25 rpm. Due to the fractional-order small
signal model and structure of the experimental setup, the speed is expressed in actual
speed in rpm, while the triggering command is presented as PWM%. As a result, in the
experimental results, control signals are represented between 0–1 PWM%.

Clearly observed from Figures 12–14, the designed robust controllers successfully
ensure reference tracking. Each of them exhibits a smooth speed response with minimal
rise and settling times. Figure 12 shows that the robust PID controller achieves a settling
time of 8 s without any overshoot. It effectively guides the system trajectories toward the
selected references, demonstrating robustness against both load disturbances and sensor
noises. Whenever a load disturbance is introduced or removed from the system, the
robust PID controller effectively rejects the disturbance and quickly reaches the reference.
Moreover, after t = 120 s, when subjected to noise, the closed-loop robustness is also well
maintained. The robust PID controller remains largely unaffected by measurement noise,
as evident from its control signal in Figure 12.

Figure 13 illustrates that the fixed-structure H∞ controller achieves a settling time
of 8 s without any overshoot. Its capacity to track various references while maintaining
closed-loop robustness against load disturbances is evident. When load disturbances are
introduced or removed from the system, it tracks the reference promptly while rejecting the
disturbance. However, it shows sensitivity to sensor noises, affecting the speed response.
Additionally, the control signal displays chattering effects, which persist whether artificial
noise is present or not. This situation raises a concern: the microcontroller of the system
(dsPIC) may not meet the memory requirements of the designed fixed-structure H∞ con-
troller. A potential solution to the chattering problem might involve using a more suitable
microcontroller in place of the dsPIC.

Finally, the H∞-based FOPID controller outperforms the other designed controllers
in terms of tracking dynamics. Neither load disturbances nor sensor noises manage to
compromise the robustness of the FOPID controller. Right from the start, it efficiently tracks
various references, achieving a short settling time of 6 s without any overshoot. As depicted
in Figure 14, whenever there is a change in the reference, the FOPID controller consistently
responds more quickly compared to the others and reaches the new reference. Furthermore,
in the presence of an external load, it rapidly rejects the disturbance within 5 s, and brings
the trajectories to equilibrium. Importantly, sensor noises do not significantly disrupt its
performance.
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Figure 14. Speed control of the IM by employing H∞-based FOPID controller, process output (y) and 
relevant control signal (u).

5. Conclusions 
This paper introduces a robust speed controller for the IM, specifically addressing

the solution of the H∞ weighted mixed sensitivity problem. However, the uncertainty in
the knowledge of machine model and the selection of weighting functions remain major
challenges for the proposed method. To address these challenges, the paper begins with 
fractional order small signal modeling. This entails using the triggering command (PWM 
duty cycle) as the input and the motor’s angular speed as the output. It has been demon-
strated that when compared to integer order modeling, this designed model effectively 
estimates speed with a high accuracy rate (95%). Subsequently, robust speed controllers 
are synthesized based on the mixed sensitivity problem using fractional order weighting 
matrices. Three robust speed controllers are developed using Matlab’s pidtool function, 
structured H∞, and H∞-based FOPID controller. The appropriate bandwidth and phase 
margin are chosen as 0.1676 rad/s and 70.2°, respectively, in pidtool. The H∞ norms of struc-
tured H∞ and H∞-based FOPID controllers are determined to be 0.4847 and 0.523. Fre-
quency responses of these designed controllers are analyzed using Bode diagrams to de-
termine whether they violate the specified robustness and nominal performance limits. 
After confirming the robustness and strong tracking performance of the controllers, real-
time implementations are conducted. All controllers not only exhibit effective tracking 
dynamics but also robustness against load disturbances, thereby validating the capability 
of the designed fractional-order small-signal model. Among the designed controllers, the
H∞-based FOPID demonstrates the best tracking dynamics with a 6 s settling time and no 
overshoot. The FOPID controller effectively rejects load variations and suppresses sensor 
noises. On the other hand, the PID controller exhibits behavior similar to the FOPID con-
troller but with a slightly longer settling time of 8 s, showing some deficiencies in tracking 

0 20 40 60 80 100 120 140 160

Time (s)

0

500

1000

1500

Sp
ee

d 
(rp

m
)

Ref

H∞ FOPID

0 20 40 60 80 100 120 140 160

Time (s)

0

0.2

0.4

0.6

0.8

1

u

u
H ∞ F O P I D

100 120 140 160
1050

1100

1150

Figure 14. Speed control of the IM by employing H∞-based FOPID controller, process output (y) and
relevant control signal (u).

5. Conclusions

This paper introduces a robust speed controller for the IM, specifically addressing
the solution of the H∞ weighted mixed sensitivity problem. However, the uncertainty
in the knowledge of machine model and the selection of weighting functions remain
major challenges for the proposed method. To address these challenges, the paper begins
with fractional order small signal modeling. This entails using the triggering command
(PWM duty cycle) as the input and the motor’s angular speed as the output. It has
been demonstrated that when compared to integer order modeling, this designed model
effectively estimates speed with a high accuracy rate (95%). Subsequently, robust speed
controllers are synthesized based on the mixed sensitivity problem using fractional order
weighting matrices. Three robust speed controllers are developed using Matlab’s pidtool
function, structured H∞, and H∞-based FOPID controller. The appropriate bandwidth and
phase margin are chosen as 0.1676 rad/s and 70.2◦, respectively, in pidtool. The H∞ norms
of structured H∞ and H∞-based FOPID controllers are determined to be 0.4847 and 0.523.
Frequency responses of these designed controllers are analyzed using Bode diagrams to
determine whether they violate the specified robustness and nominal performance limits.
After confirming the robustness and strong tracking performance of the controllers, real-
time implementations are conducted. All controllers not only exhibit effective tracking
dynamics but also robustness against load disturbances, thereby validating the capability
of the designed fractional-order small-signal model. Among the designed controllers, the
H∞-based FOPID demonstrates the best tracking dynamics with a 6 s settling time and
no overshoot. The FOPID controller effectively rejects load variations and suppresses
sensor noises. On the other hand, the PID controller exhibits behavior similar to the
FOPID controller but with a slightly longer settling time of 8 s, showing some deficiencies
in tracking performance. Finally, the fixed-structure H∞ controller excels in tracking the
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reference with an 8-s settling time, but falls short in handling sensor noises. It is evident that
the fixed structure lacks the flexibility required for effective noise suppression. Therefore,
future work may involve the design of a fixed-structure fractional-order H∞ speed controller
for IM.
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Appendix A

Table A1. PSO configuration parameters.

Parameter Value

CreationFcn @pswcreationuniform
Display ‘final’
FunctionTolerance 1.0000 × 106

HybridFcn []
InertiaRange [0.1000,1.1000]
InitialSwarmMatrix []
InitialSwarmSpan 2000
MaxIterations ‘200*numberofvariables’
MaxStallIterations 20
MaxStallTime Inf
MaxTime Inf
MinNeighborsFraction 0.2500
ObjectiveLimit -Inf
OutputFcn []
PlotFcn @pswplotbestf
SelfAdjustmentWeight 1.4900
SocialAdjustmentWeight 1.4900
SwarmSize ‘min(100,10*numberofvariables)’
UseParallel 0
UseVectorized 0
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