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Abstract: There are strong relations between the theory of continued fractions and groups of linear fractional
transformations. We consider the group G3,3 generated by the linear fractional transformations = − ∕a z1 1

and = +b z 2. This group is the unique subgroup of the modular group �( )PSL 2, with index 2. We calculate
the cusp point of an element given as a word in generators. Conversely, we use the continued fraction
expansion of a given rational number ∕p q, to obtain an element in G3,3 with cusp point ∕p q. As a result,
we say that the action of G3,3 on rational numbers is transitive.
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1 Introduction

The modular group is the projective special linear group �( )PSL 2, , which is isomorphic to the quotient group
�( )∕ ± ISL 2, , so that an element can be represented by a matrix

= ⎛
⎝

⎞
⎠M

x u

y v , (1)

where �∈x y u v, , , with − =xv yu 1. It should be noted that both the matrix M in (1) and its negative −M both
represent the same element in �( )PSL 2, . Themodular group acts on the upper half plane� �{ ( ) }= ∈ >z Im z: 0

via fractional linear transformations [1]:

⎟⎜
⎛
⎝
⎛
⎝

⎞
⎠

⎞
⎠ →

+
+

x u

y v z
xz u

yz v
, . (2)

Elements of the modular group are orientation preserving isometries of � . The modular group is gener-
ated by the transformations:

( ) ( )= − = +T z
z

U z z
1

and 1,

and the matrix representations of these generators are

= ⎛
⎝

− ⎞
⎠ = ⎛

⎝
⎞
⎠T U

0 1

1 0
and

1 1

0 1
.

As T of order 2 and TU of order 3, �( )PSL 2, has the presentation

�( ) ⟨ ( ) ⟩= = =T U T TUPSL 2, , : 1 ,2 3 (3)
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which can be thought as � �*2 3, the free product of the cyclic group of order 2 and the cyclic group of order
3 [2].

There is a natural relation between continued fractions and the modular group. Consider the element

= ⎛
⎝

⎞
⎠ =W

x u

y v U T U U T. . . ..... . ,r r r in0 1

where �∈rj and =i 0, 1. The fractional linear transformation that corresponds to W is

( ) ( )=

= ⎛
⎝
− ⎞

⎠

= ⎛
⎝ − ⎞

⎠
=

= −
−

−
⋱ −

−

W z U T U T U T z

U T U T U
z

U T U T r
z

r

r

. . . .... . .

. . . .... . .
1

. . . .... .
1

…

1
.

r r r

r r r

r r
n

r

0

1

1

n

n

rn

rn
z

0 1

0 1

0 1

2

1

1

1

1

We can represent the elementW with the continued fraction expansion [ ]r r r z, , …, ;n0 1 . We can adjoin to �

a point at infinity, with the usual convention that =∞ 0
1 . Then we call the image of infinity underW , the cusp

point of W . This can also be written as the finite negative integer continued fraction

( ) [ ]∞ = = = −
−

−
⋱ −

W
x

y
r r r r

r

, , …,
1

.n

r

0 1 0

1

1

rn
rn

2

1

1

1

We interested in the group G3,3, which is the only subgroup of the modular group with index 2 [3].
This group is generated by the transformations:

= = − = = +a U T
z

b U z. 1
1

22

and has presentation

� �⟨ ( ) ⟩= = = ≃G a b a a b, : 1 * .3,3
3 2 3

3 3 (4)

In this study, we obtain relations between integer continued fractions and elements of the group G3,3.
Then we calculate the cusp point of the element given as a word in terms of generators. Conversely, we obtain
an element whose cusp point is a given rational. In addition, it is stated that the cusp point set of G3,3 is �∞.
As a result, we say that the action of G3,3 on �∞ is transitive.

2 Motivation and history

The modular group has been studied extensively. The abstract group structure of the modular group and
its subgroups are studied in [2,4–13]. Some of the popular number sequences, like Fibonacci, Pell, Lucas, etc.,
are related to the modular group and Hecke groups, which are a generalization of the modular group [14–20].

In recent years, many studies have related the theory of continued fractions to the action of some
subgroups of fractional linear transformations of the complex plane. Parabolic and elliptic elements of the
modular group are studied in [21] from the view of continued fractions and graph theory. Demir and Koruoğlu
obtained the word form of such elements using paths in the Farey tree and continued fractions. Also
the transitive action of the modular group on the set of rational numbers is studied in [22].

As stated in Section 1, the cusp point (or sometimes it is called parabolic point) of an elementV is the image
of infinity under its action, i.e., ( )∞V . In [23], Koruoğlu used the modular group blocks
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( ) ( )= + =
+

U z z UTU z
z

z
1 and

1

to calculate the cusp point of a given element in terms of these blocks. Powers of these blocks are associated
with simple continued fractions.

The relations between integer continued fractions and Fibonacci numbers with cusp points of the modular
group are studied in [16]. In [24], integer continued fraction expansions and geodesic expansions are studied
from the perspective of graph theory. Short and Walker represented Rosen continued fractions by paths in a
class of graphs in hyperbolic geometry [25]. One of the interesting studies about continued fractions with even
partial quotients is [26]. Kraaikamp and Lopes considered the Theta group Θ, generated by

( ) ( )= − = +T z
z

U z z
1

and 2.2

They obtained important results about even integer continued fractions and closed geodesic analogous to the
one related to the modular group. Moreover, Short and Walker studied the geometric representation of even-
integer continued fractions and some subgroups of the modular group [27].

The natural connection between the modular group and integer continued fractions is due to the gen-
erator T of order 2. In this study, we try not to use the generator T of order 2, and we focus on the subgroup
G3,3, which is the only subgroup of the modular group with index 2. By considering the presentation given
in equation 4, it can be seen that every element in G3,3 has the word form

b a b a b a. .. ,m n m n m nr r0 0 1 1

where � { }∈m \ 0i , =n 1, 2i , m0, and nr can be zero.
Since we do not have the generator T of order 2, it is not straightforward to see the relation between

integer continued fraction expansion and word form of the element. For example, consider the word

a b ab,2 4

then the corresponding linear fractional transformation is

( ) ( )= +

= ⎛
⎝ −

+
⎞
⎠

= ⎛
⎝ + −

+
⎞
⎠

= −
− + + − +

a b ab z a b a z

a b
z

a
z

2

1
1

2

8 1
1

2

1

1 8 1

.

z

2 4 2 4

2 4

2

1

2

We can represent this element with the integer continued fraction expansion [ ]+ z0, 8, 2 . As an another
example, one can consider the word b a b a2 2 3 by the corresponding fractional linear transformation associated
the integer continued fraction expansion [ ]z4, 6, .

3 Results

3.1 Cusp points of G3,3

In this section, we calculate the cusp point of an element in G3,3 given as a word in generators. First, we need
a basic lemma about elements that have same cusp point.

Lemma 1. Let W be an element in the group G3,3, then the elements W and W b. m have same cusp point for all
integers m.
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Proof. Suppose the element W has matrix representation

⎛
⎝

⎞
⎠

x u

y v .

The corresponding fractional linear transformation is

( ) =
+
+

W z
xz u

yz v
,

which has the cusp point ( )∞ =W
x

y
. Now we calculate

= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ = ⎛

⎝
+
+

⎞
⎠W b

x u

y v

m x mx u

y my v
. .

1 2

0 1

2

2
.m

The cusp point of W b. m is equal to the cusp point W . □

Theorem 1. Let =W b a b a b a...m n m n m nr r0 0 1 1 be an element in the group G3,3, where � { }∈m \ 0i , =n 1, 2i , m0 can be
zero. Then, the cusp point of W has integer continued fraction expansion:

⎡
⎣⎢

+ ⎢
⎣⎢

⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ − + ⎢

⎣⎢
⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ −

+ ⎢
⎣⎢

⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ − + ⎢

⎣⎢
⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ −

⎤
⎦⎥−

− − −

m
n

m
n n

m
n n

m
n n

m
n n

2
1

, 2
1 1

1, 2
1 1

1, …,

2
1 1

1, 2
1 1

1 .r

r r

r

r r

0

0

1

0 1

2

1 2

1

2 1 1

Proof. Firstly, if ( ) ( )= = +W z b z z m2m
0

0 , then the cusp point ofW is equal to infinity. Nowwe prove the claim
by induction on r . Let us start with =r 0. There are two cases of n0

Case 1: =n 10

( ) ( )= = + −W z b a z m2 1m

z0

1
0 . The cusp point is ( )∞ = +W m2 10 , which is an integer.

Case 2: =n 20

( ) ( )= = − − +W z b a z m2m

z

2
0

1

1
0 . Then the cusp point is ( ) [ ]∞ = =W m m2 20 0 .

We see that the claim is true for =r 0. Suppose the claim is true for integers −r0, 1, 2,…, 1. Now we
continue with the integer r .

= − −W b a b a b a b a. .. .m n m n m n m nr r r r0 0 1 1 1 1

Here, nr can be equal to 1 or 2.
By the induction hypothesis, we can calculate the cusp point of the elements that consist of −r 1 times

a and −r 1 times b. In other words, the cusp point of

− −b a b a b a…m n m n m nr r r r1 1 1 1

is equal to

⎡
⎣⎢

+ ⎢
⎣⎢

⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ − + ⎢

⎣⎢
⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥

− + ⎢
⎣⎢

⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ − + ⎢

⎣⎢
⎥
⎦⎥ + ⎢

⎣⎢
⎥
⎦⎥ −

⎤
⎦⎥−

− − −
m

n
m

n n
m

n n
m

n n
m

n n
2

1
, 2

1 1
1, 2

1 1
1, …,2

1 1
1, 2

1 1
1 .r

r r

r

r r

1

1

2

1 2

3

2 3

1

2 1 1

We denote this number by κ. Now we are ready to calculate the cusp point of the element W .

( ) ( )

{ ( )}

( )

∞ = ∞
= ∞
=

− −

− −

W b a b a b a b a

b a b a b a b a

b a κ

. ..

. ..

.

m n m n m n m n

m n m n m n m n

m n

r r r r

r r r r

0 0 1 1 1 1

0 0 1 1 1 1

0 0

The last row of the above equation is equal to + −m2 1
κ0

1 if =n 10 , and − − +m2
κ0

1

1
if =n 20 . We combine

the both subcases
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( ) ( )∞ = = + ⎢
⎣⎢

⎥
⎦⎥ −

⎢⎣ ⎥⎦ − +
W b a κ m

n
κ

2
1 1

1

,m n

n

0

0
1

0 0

0

which concludes the proof. □

Remark 1. We omit the case =n 0r in Theorem 1. Because, if =n 0r then we have the word

= − −W b a b a b a b. .. .m n m n m n mr r r0 0 1 1 1 1

We know from Lemma 1 that W has the same cusp point with the element ′ = − −W b a b a b a. ..m n m n m nr r0 0 1 1 1 1.

Example 1. Consider the word =W a b a b aba2 5 2 3 2 in the group G3,3. Here, we point out the values = =r m3, 00

and =n 23 . By Theorem 1, we have

( )

[ ]

∞ = ⎡
⎣ + ⌊ ⌋ + ⌊ ⌋ − + ⌊ ⌋ + ⌊ ⌋ − + ⌊ ⌋ + ⌊ ⌋ − ⎤

⎦
=

= −

W 0, 10
1

2

1

2
1, 6

1

2

1

1
1, 2

1

1

1

2
1

0, 9, 6, 2

11

97
.

3.2 Obtaining an element in G3,3, with given cusp point

Here, our aim is to construct an element in G3,3 with a given cusp point. We know that any rational has
an integer continued fraction expansion. We use the digits in the expansion to obtain the powers of the
generators a and b in the word form of the element.

Theorem 2. Let the reduced rational number p

q
has integer continued fraction expansion [ ]r r r r, , , …, n0 1 2 . Then,

=W b a b a b a b. ..k m k m k m in n0 0 1 1

is the element in G3,3 with cusp point p

q
, where

= ⎢
⎣

⎥
⎦ =

⎧
⎨
⎩

k
r

m
if r is odd

if r is even2
,

1, ,

2, ,
0

0

0

0

0

i is an arbitrary integer and for ≤ ≤j n1

=

⎧

⎨
⎪

⎩
⎪

⎢
⎣

⎥
⎦ =

⎢
⎣⎢

+ ⎥
⎦⎥ =

−

−

k

r
if m

r
if m

2
, 1,

1

2
, 2,

j

j

j

j

j

1

1

( ) ( )

( ) ( )
=

⎧
⎨
⎩

= ∧ ∨ = ∧
= ∧ ∨ = ∧

− −

− −
m

if m r is odd m r is even

if m r is even m r is odd

1, 1 2 ,

2, 1 2 .
j

j j j j

j j j j

1 1

1 1

Proof. We prove the theorem by induction on n. First, =n 0 means [ ]= =r r
p

q 0 0 is an integer. Since

the generator b provides a 2 unit translation, we need = −
−a

z

2
1

1
to map infinity to zero and than b

r0

2 to map 0

to r0 if r0 is even. In other words, the word b a2
r0

2 has the cusp point r0. If r0 is odd, we first map infinity to 1

by = −a 1
z

1 . Then we apply −r 1

2

0 units translation by
−

b
r0 1

2 . Hence, the desired element is
−

b a
r0 1

2 . This means
the claim is true for =n 0.
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Suppose the theorem is true for −n0, 1, 2,…, 1. We continue the induction with n. Let the rational p

q

has continued fraction expansion [ ]−r r r r, , …, ,n n0 1 1 . Consider the rational [ ]=′
′ −r r r, , …,

p

q n0 1 1 . By the induction
hypothesis, the element

′ = − −W b a b a b a. ..k m k m k mn n0 0 1 1 1 1

has cusp point ′
′

p

q
where the powers of the generators are calculated as in the stated theorem. Hence, the linear

fractional transformation that corresponds to ′W has one of the following forms:

( )′ = −
−

⋱ −− −

W z r

r

1

r

0

1

1

n
z

1

1

1

or

( )′ = −
−

⋱ − + −−

W z r

r

1
.

r

0

1

1

1 1n
z

1

1

It is easy to see that =−m 2n 1 in the first case and =−m 1n 1 for the latter. We investigate both.
Case 1: =−m 2n 1

In this case, let us set = ⌊ ⌋+
kn

r 1

2

n . If rn is odd, we consider the word b ak 2n . Then one can see by calculation
that the desired word is = ′W W b a. k 2n . Similarly, if rn is even, we now choose the block b akn . And the element
with cusp point p

q
is = ′W W b a. kn

Case 2: =−m 1n 1

As in the first case, we set = ⌊ ⌋kn

r

2

n . For rn is odd, the element with cusp point p

q
is = ′W W b a. kn . And if rn

is even, then we obtain the element = ′W W b a. k 2n .
After obtaining the word W , by Lemma 1, one can multiply this word with any integer power of b from

the right. □

Example 2. Suppose the given rational is [ ] = −0, 9, 6, 2
11

97
. By using Theorem 2, we have

= =

= ⎢
⎣

+ ⎥
⎦ = =

= ⎢
⎣

+ ⎥
⎦ = =

= ⎢
⎣

⎥
⎦ = =

k m

k
r

m

k
r

m

k
r

m

0 2

1

2
5 2

1

2
3 1

2
1 2.

0 0

1

1

1

2

2

2

3

3

3

Hence, we obtain the word =W a b a b aba2 5 2 3 2. Considering Lemma 1, we can also say that the elements
a b a b aba bi2 5 2 3 2 have cusp point − 11

97
for �∈i .

We know that a real number is rational if and only if it has finite integer continued fraction expansion.
Theorem 2 says every rational number can be considered as a cusp point of an element in G3,3. In addition to

that, we can consider infinity as a fraction 1

0
, the cusp point of the generator ( ) = +b z z 2. Hence, the cusp point

set of G3,3 is �∞. Now let W1 and W2 be two elements in G3,3 with cusp points �∈′
′ ∞,

p

q

p

q
, respectively. Then

the element = −
W W W.2 1

1 maps p

q
to ′

′
p

q
. As a result, we obtain the following corollary.

Corollary 1. The action of the group G3,3 on �∞ is transitive.
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4 Conclusion

The theory of continued fractions arises from the Euclidean algorithm, one of the oldest and most basic
concepts of mathematics. There is a natural relation between continued fractions and the modular group.
We exhibit this relation for the subgroup G3,3. We calculate the integer continued fraction expansion of
the cusp point of an element in the group G3,3. Then conversely, we obtain an element with a given cusp point.
For further research, one can consider the elliptic generators

= = −
−

= = −
+

a x
z

a b y
z

1

1
and

1

1

2 2

Then every element in the group G3,3 consists of the blocks xy x y xy, ,2 2, and x y2 2. By using the technique
in [3,20], one can relate our results to Fibonacci and Pell numbers.
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