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Abstract
Introduction: Global developmental delay (DD), intellectual 
disability (ID), and autism spectrum disorder (ASD) are main-
ly evaluated under the neurodevelopmental disorder frame-
work. In this study, we aimed to determine the genetic diag-
nosis yield using step-by-step genetic analysis in 38 patients 
with unexplained ID/DD and/or ASD. Methods: In 38 cases 
(27 male, 11 female) with unexplained ID/DD and/or ASD, 
chromosomal microarray (CMA) analysis, clinical exome se-
quencing (CES), and whole-exome sequencing (WES) analy-
sis were applied, respectively. Results: We found a diagnos-
tic rate of only CMA analysis as 21% (8/38) presenting 8 
pathogenic and likely pathogenic CNVs. The rate of patients 
diagnosed with CES/WES methods was 32.2% (10/31). When 
all pathogenic and likely pathogenic variants were evaluat-
ed, the diagnosis rate was 44.7% (17/38). A dual diagnosis 

was obtained in a case with 16p11.2 microduplication and de 
novo SNV. We identified eight novel variants: TUBA1A 
(c.787C>G), TMEM63A (c.334-2A>G), YY1AP1 (c.2051_ 
2052del), ABCA13 (c.12064C>T), ABCA13 (c.13187G>A), 
USP9X (c.1189T>C), ANKRD17 (c.328_330dup), and GRIA4 
(c.17G>A). Conclusion: We present diagnostic rates of a 
complementary approach to genetic analysis (CMA, CES, 
and WES). The combined use of genetic analysis methods in 
unexplained ID/DD and/or ASD cases has contributed sig-
nificantly to diagnosis rates. Also, we present detailed clinical 
characteristics to improve genotype-phenotype correla-
tion in the literature for rare and novel variants.

© 2023 S. Karger AG, Basel

Introduction

Neurodevelopmental disorder (NDD), decreased mo-
tor functions of the brain, impaired cognitive functions, 
delay in speech, and/or inadequacy in social skills are 
defined [Mithyantha et al., 2017]. NDDs are categorized 
as intellectual disability/developmental delay (ID/DD), 
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communication disorders, autism spectrum disorder 
(ASD), attention-deficit hyperactivity disorder (ADHD), 
specific learning disorders, motor disorders, and other 
NDDs according to the Diagnostic and Statistical Manual 
of Mental Disorders fifth edition (DSM-5) [Blesson and 
Cohen, 2020]. ID/DD and ASD are the most common 
NDDs in children [Liu et al., 2022]. In the text revision of 
the DSM-5 (DSM-5-TR), ID has been added in parentheses 
next to the equivalent term, intellectual developmental 
disorder. ID is characterized by a decrease in cognitive 
functioning and adaptive functioning beginning during 
childhood [Schalock et al., 2007]. ASD is known as lim-
ited social communication and interaction, repetitive be-
havior patterns. Although ID/DD and ASD have separate 
definitions, they are a large and heterogeneous group of 
diseases that affect brain functions with overlapping eti-
ologies and clinical findings [Shan et al., 2022].

The American Academy of Pediatrics and the Ameri-
can College of Medical Genetics and Genomics recom-
mends that children with NDD be evaluated primarily by 
chromosomal microarray (CMA) analysis [Miller et al., 
2010; Huang et al., 2021; Liu et al., 2022]. According to 
recent studies, the rate of determination of NDD etiology 
by CMA is around 20% on average [Miller et al., 2010; 
Chaves et al., 2019; Maia et al., 2022]. Next-generation 
sequencing (NGS) analysis is recommended in the next 
step in patients without pathology with CMA [Huang et 
al., 2021]. NGS is very important in elucidating the mo-
lecular etiologies of multisystemic and heterogeneous 
diseases where it is difficult to make a definitive diagnosis 
with clinical findings such as NDD [Maia et al., 2022]. 
Detection of genetic variants associated with ID/DD has 
increased with the help of NGS. The genetic cause of ap-
proximately 35–50% of patients with NDD is explained 
by exome sequencing [Srivastava et al., 2019; Hiraide et 
al., 2021].

In this study, we aimed to investigate the genetic etiol-
ogy of 38 patients with unexplained ID/DD and/or ASD. 
The genetic diagnostic yield of CMA, clinical exome se-
quencing (CES), and whole-exome sequencing (WES) 
analyses were determined in these patients, respectively.

Materials and Methods

Patients
Between the year of 2019 and 2021, a total of 140 patients were 

referred to the Department of Medical Genetics from the Pediatric 
Neurology Clinic. Thirty-eight patients (a mean age of 5.5 years) 
were evaluated with unexplained ID/DD ± ASD. The exclusion 
criteria for this study were as follows:

• patients with known cause of ID/DD ± ASD
• epilepsy
• abnormal karyotype (numerical and structural chromosomal 

abnormalities)
• genetic diagnosis of Rett syndrome and fragile X (shown in 

Fig. 1)
Molecular etiologies of patients with unexplained ID/DD and/

or ASD were evaluated by CES/WES following CMA. Family seg-
regation analysis was done by Sanger sequencing and/or CMA.

DNA Isolation
Genomic DNA was obtained from peripheral venous blood 

samples of the patients according to the QIAamp Blood & Tissue 
(Qiagen, Hilden, Germany) kit protocol.

Chromosomal Microarray Analysis
DNA isolated from the patient’s sample was analyzed using the 

Illumina CytoSNP-12 v2.1 (300K) chip. It was studied using Hu-
manCytoSNP-12v2.1_LM.bpm SNP manifest file and HumanCy-
toSNP-12v2.1_LM.egt SNP cluster file. BlueFuse Multi v4.5 
(32,178) analysis program and BeadArray v2 standard algorithm; 
BG_Annotation_Ens74_20160909.db and Ensembl version 74; 
GRCh37 Genome build name were used. The data obtained as a 
result of the analysis performed on the patient were searched in 
Databases of Genomic Variants, DECIPHER, Online Mendelian 
Inheritance in Man (OMIM), and other relevant databases with 
the methods recommended in the literature, and the analysis of the 
data was made based on the recommendations of the American 
College of Medical Genetics (ACMG) – ClinGen guideline. The 
logR value of the microarray data obtained from the study was de-
termined as 0.15 (<0.2) and the median call rate value was 0.98 
(0.98–1). Loss and gain copy number variations (CNVs) of 1 Mb 
and/or above are detected. These detected variants were reported 
by using the Database of Genomic Variants (http://dgv.tcag.ca/
dgv/app/home), DECIPHER (https://www.deciphergenomics.
org/), Simons Foundation Autism Research Initiative Gene 
(https://gene.sfari.org/) databases, and OMIM.

Clinical Exome Sequencing
Genomic DNA was extracted from peripheral blood and CES 

was performed by capturing the coding regions and splice sites of 
targeted genes using the Twist CES kit (South San Francisco, 
USA). After library enrichment and quality control, the samples 
were sequenced using the DNBSEQ-G400 (MGI, China) instru-
ment with 100 bp paired-end reads at an average sequencing depth 
of 100×. The patients’ genome coding regions sequenced with the 
platform using the raw data were evaluated using the Genomize® 
(https://seq.genomize.com) data analysis platform. Pathogenic 
variants associated with clinical features were filtered by following 
steps, in order: (1) all missense, nonsense, frameshift, frame, and 
synonymous variants, (2) variants with a 1.0% minor allele fre-
quency in population studies (1000 Genomes [1000 G], Genome 
Aggregation Database [gnomAD]). The reference genome hg19 
was used. Genome Integrative Viewer was used to view sequence 
data. New variants in the HGMD® and ClinVar (http://ncbi.nlm.
nih.gov/clinvar) databases were checked. Pathogenicity of new 
variants was interpreted by using in-silico variant prediction pro-
grams (Mutation Taster, Combined Annotation Dependent De-
pletion [CADD]). Pathogenicity classification was made accord-
ing to the ACMG criteria [Richards et al., 2015].
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Whole-Exome Sequencing
Genomic DNA was extracted from peripheral blood and WES 

was performed by capturing of the coding regions and splice sites 
of targeted genes using the SureSelect v6 Exome kit (Agilent, Inc.). 
After library enrichment and quality control, the samples were se-
quenced using the HiSeq4000 (Illumina, Inc.) instrument with 100 
bp paired-end reads at an average sequencing depth of 100×. Raw 
reads were quality trimmed with Trimmomatic (version 0.40) 
[Bolger et al., 2014]. Surviving high-quality reads were mapped to 
reference human genome (hg19) (https://www.ncbi.nlm.nih.gov/
grc/human/issues/HG-19) using the Burrows-Wheeler Alignment 
Tool (http://bio-bwa.sourceforge.net) [Li and Durbin, 2009]. The 
obtained SAM file was merged with the unmapped and paired 
reads file with PICARD to add metadata and to convert hard-
clipped bases to soft clips. Genome Analysis Toolkit (version 
4.2.3.0) (https://gatk.broadinstitute.org/hc), a software package to 
analyze high-throughput sequencing data, was used to call single-
nucleotide polymorphisms and indels. The following modules of 
Genome Analysis Toolkit were used in this order: RealignerTar-
getCreator; IndelRealigner; BaseRecalibrator; PrintReads; Haplo-
typecaller; SelectVariants; VariantFiltration; and CombineVari-
ants to call and filter single-nucleotide polymorphisms and indels. 
This produced an average of 11.4 Gb of mappable sequences per 
sample, with >79% of the exome covering >50×, enabling high-
confidence variant detection (average coverage was 106× after raw 
data process). Annotation of detected variants was performed us-
ing VarSome (https://varsome.com/), ClinVar (https://www.ncbi.
nlm.nih.gov/clinvar/), OMIM, and PubMed. Rare variants were 
classified according to the ACMG/AMP variant interpretation 
framework [Richards et al., 2015]. The amount of human genome 
covered for the Twist CES kit is 34.9 Mb (in mega base pair DNA), 
compared to 60 Mb for the SureSelect WES kit.

Sanger Sequencing
In Sanger confirmation, specific PCR primer sets were de-

signed for each candidate variant as a first step. PCR was done for 
each sample in accordance with the appropriate protocol. The PCR 
was checked using 2% agarose gel electrophoresis to determine 
whether the product could be obtained or not. Before sequencing, 
the PCR products were purified using NucleoFast 96 PCR kit (MA-
CHEREY-NAGEL, Düren, Germany). After completion of the 
thermal cycle step, the sequence reactions were purified according 
to the protocol of the ZR-96 DNA Sequencing Clean-up Kit (Zymo 
Research Corp., USA). Capillary electrophoresis of the purified se-
quence products was sequenced by ABI 3130 (Applied Biosystems 
Inc.). Then variants were analyzed using SeqScape 2.5.0 (Applied 
Biosystems Inc.) software.

Results

The mean age of the 38 patients from 37 different 
families in this study was 5.5 years (6 months–17 years). 
The ratio of men to women was 2.45 (27/11). Most of the 
patients presented dysmorphic facial features (25/38; 
65.7%). ASD was present in 14 of 38 cases with a rate of 
36.8% (Table 1). A total diagnostic yield of 44.7% (17/38) 

was obtained. All patients performed CMA analysis as a 
first-tier genetic test. A total of 11 different CNVs were 
detected, 4 pathogenic, 4 likely pathogenic, and 3 of 
uncertain significance, in 11 (11/38 = 28.9%) patients 
(Table  2). These CNVs included 7 microdeletions (2 
pathogenic, 3 likely pathogenic, 2 of uncertain signifi-
cance) and 4 microduplications (2 pathogenic, 1 likely 
pathogenic, 1 of uncertain significance).

In the second tier, CES was performed in 31 patients. 
In these 31 patients, we included patients that were still 
genetically undiagnosed following CMA analysis (a pa-
tient with pathogenic CNV that did not fully overlap with 
clinical and cranial MR findings, 3 patients with CNV of 
uncertain significance, and 27 other patients). We deter-
mined a total of 11 variants as 6 pathogenic variants, 4 
likely pathogenic variants, and 1 variant of uncertain sig-
nificance in 9 (9/31; 29%) patients (Table 3). Pathogenic 
mutations were detected in the TUBA1A, TUBB4A, 
DHCR7, YY1AP1, and NIPBL genes, and likely pathogen-
ic mutations were in the DHCR7, YY1AP1, ABCA13, and 
SPR genes. These variants were associated with lissen-
cephaly 3 (OMIM #611603), leukodystrophy, hypomy-
elinating, 6 (OMIM #612438), Smith-Lemli-Opitz syn-
drome (OMIM #270400), Grange syndrome (GRNG; 
OMIM #602531), Cornelia de Lange syndrome 1 (OMIM 
#122470), dystonia, dopa responsive, due to sepiapterin 
reductase deficiency (OMIM #612716), and ASD. In ad-
dition, one uncertain significance variant was detected in 
the USP9X gene (Table 3).

In the third tier, WES analysis was performed in pa-
tients that presented no genetic variants explaining the 
clinical phenotype following CMA and CES analysis. In 
this step, 7 patients preferred not to continue their clinical 
follow-up and we performed WES analysis in 15 patients. 
WES analysis revealed 4 different variants (2 pathogenic 
and 2 of uncertain significance) in 4 (4/15; 26.6%) pa-
tients (Table 3). These pathogenic variants were associ-
ated with leukodystrophy, hypomyelinating, 19, transient 
infantile (HLD19; OMIM #618688) and mental retarda-
tion, autosomal dominant 35 (OMIM #616355). Further-
more, when the cases in which we performed NGS were 
evaluated separately, the diagnostic yield of CES analysis 
alone was 25.8% (8/31) and the diagnostic yield of WES 
analysis was 13.3% (2/15). We identified 8 novel rare vari-
ants in the TUBA1A (c.787C>G), TMEM63A (c.334-
2A>G), YY1AP1 (c.2051_2052del), ABCA13 (c.12064C>T), 
ABCA13 (c.13187G>A), USP9X (c.1189T>C), ANKRD17 
(c.328_330dup), and GRIA4 (c.17G>A) genes. Flow in 
the application of genetic testing, patient participation 
rates, and diagnostic rates is shown in Figure 1.
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Discussion and Conclusion

In this study, we investigated the genetic etiology of 
patients with unexplained ID/DD and/or ASD. We found 
a diagnostic rate of only CMA analysis as 21% presenting 
8 pathogenic/likely pathogenic CNVs. In the previous 
studies including CMA analysis, CNVs were found in the 
range of 5–35% of the patients, depending on the DD/ID 
patient selection criteria and classification of detected 
variants [Miller et al., 2010; Gürkan et al., 2020; Liu et al., 
2022]. In our study, we found that the diagnosis was 
mostly made by NGS methods. The rate of patients diag-
nosed with CES/WES methods was 32.2%. When all 
pathogenic and likely pathogenic variants were evaluated, 
the diagnosis rate was 44.7%. In studies investigating the 
genetic etiology of ID/DD patients, a genetic cause was 
found in approximately 40% of the patients (25–50%) 
[Nambot et al., 2018; Elmas et al., 2019; Kamath et al., 
2022; Türkyılmaz et al., 2022].

Comorbidities of disorders such as dysmorphism, 
ASD, ADHD, and epilepsy are more common in DD/ID 
patients than in the general population [Misra et al., 2019; 
Wang et al., 2021; Türkyılmaz et al., 2022]. In our study, 
we excluded patients with epilepsy to obtain a more 

homogeneous group of patients specific to NDDs. Facial 
dysmorphism was the most common comorbidity, simi-
lar to the literature [Kamath et al., 2022].

In the presence of ASD comorbid to ID/DD, we de-
tected 6 likely pathogenic and pathogenic variants (2 
CNVs and 4 SNVs) in 14 patients (6/14; 42.9%). Wang et 
al. found that there are significantly more damaging de 
novo variants in the ASD with DD/ID [van Daalen et al., 
2011; Nava et al., 2017; Wang et al., 2021]. We found dis-
ruptive SNVs, including 2 nonsense, 1 missense, and 1 
start loss, supporting this association.

Among the defined pathogenic CNVs, we reported 
6p21.31p21.1 microdeletion, 16p11.2 microduplication 
(OMIM #614671), chromosome 22q13 duplication 
(OMIM #615538) syndrome, and Williams-Beuren syn-
drome (OMIM #194050). The 6p21.3p21.2 deletion was 
first reported by Pillai et al. [2019]. To our knowledge, 
patient #4 is the second case with this deletion. The clini-
cal findings of our patients were consistent with the first 
case reported by Pillai et al. [2019]. Differently, our pa-
tient had bilateral iris coloboma and abnormal brain 
MRI findings (thin corpus callosum, periventricular 
leukomalacia). Patient #7 with 16p11.2 microduplica-
tion had paternal inherited CNV. Father of patient #7 

Fig. 1. Flow in the application of genetic testing, patient participation rates, and diagnostic rates.
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also had diagnosis of ID. In addition, second-tier WES 
was performed in patient #7 because of abnormal brain 
magnetic resonance imaging findings. For patient #7, we 
detected a dual diagnosis of pathogenic 16p11.2 microdu-
plication and de novo SNV. Dual diagnosis for resolution 
of disease phenotypes was implicated in the previous lit-
erature [Posey et al., 2017]. We detected a de novo het-
erozygous NM_001270399.1: c.787C>G variant in the 
TUBA1A gene. This change introduces a smaller residue 
at the same position. The wild-type residue is a proline 
(p.Pro263Ala). Prolines are known to be very rigid and 
therefore induce a special backbone conformation which 
might be required at this position. In addition, this muta-
tion is located in a highly conserved position among oth-
er species [Yun et al., 2010]. This variant was previously 
unreported in the literature. For all of these reasons, it is 
classified as pathogenic (PM1, PM2, PM5, PP2, PP3) ac-
cording to ACMG guidelines [Li et al., 2009]. Mutations 
in the alpha-tubulin 1A gene (TUBA1A [MIM #602529]) 
which encodes alpha-tubulin are associated with lissen-
cephaly 3 (MIM #611603). As a result of the CMA analy-
sis of patient #9, 8,480 kb (gene no: 65) duplication was 
identified in chromosome 22q13.2q13.33. To the best of 
our knowledge, patient #9 has the largest duplication in 
the region of chromosome 22q13.2q13.33. Unlike the 
other two reported cases, he had microcephaly and pectus 
carinatum.

All of the likely pathogenic CNVs were de novo except 
in patient #6 (adopted child). Patient #6 had a 3.1-Mb 
CNV in the 15q11.1q11.2 chromosomal region. Gürkan 
et al. [2020] reported a similar duplication of 4,170 kb in 
the 15q11.1q11.2 region in a patient with intrauterine 
growth retardation, DD, and motor retardation findings. 
De novo uncertain significance CNVs detected in patient 
#1 and patient #2 partially overlap with the clinical fea-
tures of chromosome 2p16.3 deletion syndrome (OMIM 
#614332) and chromosome 2q37 deletion syndrome 
(OMIM #600430), respectively. It is expected that the 
findings of the patients will be milder due to the absence 
of genes in both regions. The uncertain significance-in-
herited CNV detected in patient #11 was not associated 
with any disease in the OMIM database. However, Prasad 
et al. [2012] reported a paternally inherited deletion con-
taining the SLC24A2 gene in the 9p22.1 region in a male 
patient with autism.

We identified eight novel rare variants in the TUBA1A 
(c.787C>G), TMEM63A (c.334-2A>G), YY1AP1 (c.2051_ 
2052del), ABCA13 (c.12064C>T), ABCA13 (c.13187G>A), 
USP9X (c.1189T>C), ANKRD17 (c.328_330dup), and 
GRIA4 (c.17G>A) genes using CES/WES analysis. Of these 

novel variants, 6 variants were associated with diseases 
having an autosomal-dominant inheritance pattern. Two 
cases, carrying variants of ABCA13:c.13187G>A and 
GRIA4:c.17G>A, presented maternal inheritance (patient 
#17 and patient #23, respectively). Mother of patient #17 
suffered from learning disability. Variants of GRIA4 gene 
were reported as causing a very rare disease with highly 
variable severity. The mother carrying the variant of 
GRIA4:c.17G>A variant presented microcephaly. For pa-
tient #13 carrying TMEM63A:c.334–2A>G variant and 
patient #16 carrying ABCA13:c.12064C>T variant, pater-
nal inheritance was detected. Fathers of both cases suf-
fered from ID. In addition, variant of TUBA1A:c.787C>G 
was found as de novo, while the inheritance pattern of 
ANKRD17:c.328_330dup variant was unclear.

We detected a novel TMEM63A (NM_014698.3):c.334-
2A>G variation in patient #13. This variant, which has 
not been reported before in the literature, is classified as 
pathogenic (PVS1, PM2, PP3) according to ACMG [Rich-
ards et al., 2015]. Pathogenic variations of the TMEM63A 
[MIM 618685] gene cause HLD19 (MIM #618688). It was 
first reported in 2019 as a novel infantile onset transient 
leukodystrophy syndrome by Yan et al. [2019]. HLD19 is 
characterized by hypotonia, nystagmus, cognitive retar-
dation, and hypomyelinating leukodystrophy findings on 
brain MR in the first months of life. In the few studies 
reported on HLD19, five different missense mutations 
were detected in eight different individuals [Yan et al., 
2019; Tonduti et al., 2021; Yan et al., 2021; Fukumura et 
al., 2022]. To the best of our knowledge, our study pres-
ents the ninth patient.

Patient #15 was diagnosed as an extremely rare GRNG 
disease. GRNG (MIM #602531) is characterized by 
brachydactyly, syndactyly, learning disabilities, arterial 
occlusive disease, and cardiovascular anomalies. YY1-as-
sociated protein 1 (YY1AP1, MIM 607860]) gene muta-
tions are associated with GRNG. It encodes YY1-associ-
ated protein 1, which is involved in cell cycle regulation 
and transcriptional regulation. The patient was not suf-
fering from hypertension. She has a novel compound het-
erozygous variant combination c.1903_1906del/c.2051_ 
2052del in the YY1AP1 (NM_001198903.1) gene.

We detected two different novel variants in the 
ABCA13 gene in two unrelated cases. We reported a case, 
patient #16, with a novel ABCA13:c.12064C>T variant. 
This variant was inherited from the patient’s father, who 
also has an ID. Patient #17, an 8-year-old male, presented 
with ASD and DD. In this patient, we detected a maternally 
inherited heterozygous ABCA13 gene: (NM_152701.5): 
c.13187G>A (p.Trp4396Ter) nonsense mutation. Both 
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