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A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES

Ramazan Akgün1 UDC 517.5

Based on the Steklov operator, we consider a modulus of smoothness for functions in some Banach
function spaces, which can be not translation invariant, and establish its main properties. A constructive
characterization of the Lipschitz class is obtained with the help of the Jackson-type direct theorem and
the inverse theorem on trigonometric approximation. As an application, we present several examples of
related (weighted) function spaces.

1. Introduction and Main Results

The celebrated theorem of Jackson and Bernstein–Stechkin on the constructive characterization of the Lips-
chitz classes, states that2 (see, e.g., [13, Chapter 7, Theorem 3.3])

a necessary and sufficient condition for f 2 Lp, 1  p  1, to belong to the Lipschitz class of order ↵ > 0,

Lip(↵, p) :=
�
f 2 Lp : !b↵c+1(f, δ)p . δ↵, δ > 0

 
,

is that

inf
Tn2Tn

kf − TnkLp =: En(f)Lp . n−↵ for all n 2 N := {1, 2, 3, . . .},

where bxc := max{n 2 N : n  x} and Tn is a class of trigonometric polynomials

Tn(x) =

nX

k=0

(ak cos kx+ bk sin kx) , ak, bk 2 R,

of degree at most n 2 N,

!r(f, δ)Lp := sup
0hδ

k(I − Th)
rfkLp

is the modulus of smoothness of order r 2 N, and Thf(·) := f(·+ h), h 2 R, is a translation operator.

In view of this equivalence, functions from the Lipschitz classes are characterized only by the orders of their
best approximation. To obtain this equivalence, it is necessary to relate the best approximation order En(f)p with

the modulus of smoothness !r

✓
f,

1

n

◆

Lp

.
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The direct and inverse inequalities of trigonometric approximation give the relations

En(f)Lp . !r

✓
f,

1

n

◆

Lp

, r 2 N, (1)

!r

✓
f,

1

n

◆

Lp

. 1

nr

nX

j=0

(j + 1)r−1Ej(f)Lp (2)

for any n 2 N with constants depending only on r. We note that inequalities (1) and (2) are true (see [15]) for more
general homogeneous Banach spaces (HBS) X , i.e., the class of measurable functions defined on T := [0, 2⇡]

such that the translation operator Th is a continuous isometry and the relation kf(−·)kX = kf(·)kX holds.
See also the results in [20, 21, 27].

Here, the definition of the modulus of smoothness !r(f, ·)X strongly depends on the translation invariance of
the analyzed space X . If the space X is not translation invariant (e.g., for the Lebesgue spaces with a weight),
then the modulus of smoothness !r(f, ·)X may be not well defined.

The main purpose of the present paper is to define a modulus of smoothness ⌦r(·, δ)X that can be also used
for the spaces X that can be not invariant under the action of the translation operator Th. Moreover, the role of X
can be played by certain weighted spaces.

We suppose that:

(I) X is a Banach function space (BFS; see [9]) on T ;

(II) Tn is a dense subset of X;

(III) the Steklov operator

f(x) 7! σhf(x) :=
1

2h

x+hZ

x−h

f(t)dt, x 2 T, f 2 X,

is uniformly bounded (in h) on X.

Let Sn(·, f) be the n th partial sum of the Fourier series of f 2 X ⇢ L1.

The modulus of smoothness in X satisfying property (III) is defined as follows:

⌦r(f, δ)X := sup
0hδ

k(I − σh)
rfkX , r 2 N,

where I is the identity operator on T.

The following theorem is the main result of the present paper; it gives an estimate of the best approximation
error

En(f)X := inf
Tn2Tn

kf − TnkX

from above by the modulus of smoothness ⌦r

✓
f,

1

n

◆

X

:

Theorem 1. Suppose that X satisfy the conditions (I)–(III) and that f 2 X. If

(IV) the operator f 7! Sn is uniformly bounded (in n) on X
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and

(V) En(g)X . n−2

����
d

dx2
g(x)

����
X

for any g 2 X 00 :=

⇢
g 2 X :

d

dx2
g(x) 2 X

�
,

then the Jackson–Stechkin-type estimate

En(f)X . ⌦r

✓
f,

1

n

◆

X

, r 2 N, (3)

is true for n 2 N with some constant depending only on r and X.

In the approximation theory, inequalities of type (3) are known as the direct theorem of trigonometric ap-
proximation. For X = L2, inequality (3) was proved in [1]. If X is an HBS, then (3) can be obtained from
Theorem 10.7 in [16]. In the case where X is a Lebesgue space with a weight ! satisfying the Muckenhoupt
condition Ap, 1 < p < 1, inequality (3) of the form

En(f)p,! . e⌦r

✓
f,

1

n

◆

p,!

:= sup
0hi1/n

�����

rY

i=1

(I − σhi
)f

�����
p,!

, r 2 N, (4)

was proved in [17] (see also, e.g., Theorem 2 in [19]). Considering Example 5 in § 2, we see that (3) clearly
improves inequality (4) for r ≥ 2. Similarly, (3) also improves the direct theorems obtained in [3, 4, 6, 18, 19]
for r ≥ 2.

The weak inverse of the Jackson-type estimate (3) is given in the following theorem:

Theorem 2. Let X satisfy properties (I)–(III) and let f 2 X. If

(VI) the inequality kT 0
nkX . nkTnkX holds for any Tn 2 Tn,

then

⌦r

✓
f,

1

n

◆

X

. 1

n2r

nX

j=0

(j + 1)2r−1Ej(f)X , r 2 N,

for n 2 N with some constant that depends only on r and X.

Theorems 1 and 2 give the following Marchaud-type inequality:

Corollary 1. Under the conditions of Theorems 1 and 2,

⌦r(f, δ)X . δ2r
1Z

δ

u−2r−1⌦k(f, u)Xdu, 0 < δ < 1,

for r, k 2 N with r < k.

Theorem 3. Under the conditions of Theorems 1 and 2, if

En(f)X . n−β , n 2 N,
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for some β > 0, then, for a given r 2 N,

⌦r(f, δ)X .

8
>>>><

>>>>:

δβ , r > β/2,

δβ log
1

δ
, r = β/2,

δ2r, r < β/2.

Definition 1. Let β > 0, let r := bβ/2c+ 1, and let X be a BFS satisfying condition (III). We define

Lip(β, X) :=
n
f 2 X : ⌦r(f, δ)X . δβ , δ > 0

o
.

The following result gives a constructive characterization of the Lipschitz classes Lip(β, X). As a corollary
of Theorems 1, 2, and 3 and Definition 1, we get the following corollary:

Corollary 2. Let β > 0. Under the conditions of Theorems 1 and 2, the following conditions are equivalent:

(i) f 2 Lip(β, X),

(ii) En(f)X . n−β , n 2 N.

Some examples of the space X are given in Sec. 2. In Sec. 3, we present the proofs of our results.

2. Applications

In this section, we collect some definitions of the function classes suitable for the method proposed in the
previous section.

Nonweighted Setting. Let M be the set of all measurable and scalar-valued functions on T and let M+

be a subset of functions from M whose values lie in [0,1]. By χE we denote the characteristic function of
a measurable set E ⇢ T.

A mapping ⇢ : M+ ! [0,1] is called a function norm if, for all constants a ≥ 0, for all functions f, g, fn,
n 2 N, and for all measurable subsets E of T, the following properties hold:

(i) ⇢(f) = 0 iff f = 0 a.e.; ⇢(af) = a⇢(f) and ⇢(f + g)  ⇢(f) + ⇢(g);

(ii) if 0  g  f a.e., then ⇢(g)  ⇢(f);

(iii) if 0  fn " f a.e., then ⇢(fn) " ⇢(f);

(iv) if a set E in T has a finite Lebesgue measure |E|, then ⇢(χE) < 1 ;

(v) if a set E in T satisfies |E| < 1, then there exists a positive constant C depending only on E and ⇢

and such that
Z

E

f(x) dx  C⇢(f).

For a function norm ⇢, the class of functions

X := X(⇢) = {f 2 M : ⇢(|f |) < 1}
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is called a BFS. For each f 2 X, we define the norm

kfkX := ⇢(|f |), f 2 X.

A BFS X equipped with the norm k · kX is a Banach space (see [9, p. 3–5, Theorems 1.4 and 1.6]). If ⇢ is
a function norm, then its associate norm ⇢a is defined on M+ by

⇢a(g) := sup

8
<

:

Z

T

f(x)g(x) dx : f 2 M+, ⇢(f)  1

9
=

; , g 2 M+.

If ⇢ is a function norm, then ⇢a is itself a function norm [9, p. 8, Theorem 2.2]. The BFS X
�
⇢a
�
determined

by the function norm ⇢a is called the associate space of X = X(⇢) and denoted by Xa. It is well known (see,
e.g., [9, p. 9]) that

kfkX = sup

8
<

:

Z

T

|f(x)g(x)|dx : g 2 Xa, kgkXa  1

9
=

; . (5)

The distribution function µf of a measurable function f is defined as the Lebesgue measure of the set {x 2 T :
|f(x)| > λ} for λ ≥ 0. A Banach function norm is said to be rearrangement invariant (r.i.) if ⇢(f) = ⇢(g) for
every pair of functions f, g, which are equimeasurable, i.e., µf (λ) = µg(λ). If ⇢ is an r.i. function norm, then
the BFS X(⇢) is called an r.i. BFS. Let X be a BFS. We say that a function f 2 X has an absolutely continuous
norm if

lim
n!1

kfχAnkX = 0

for any decreasing sequence of measurable sets {An}n≥1 with χAn ! 0 a.e. If every f 2 X has this property,
then we say that X has an absolutely continuous norm.

Remark 1 [9, Chapter 3, Lemma 6.3, Theorem 6.10]. Let X be an r.i. BFS. The following conditions are
equivalent:

(i) the set of trigonometric polynomials Tn is a dense subset of X;

(ii) the translation operator Th is uniformly bounded (in h) on X;

(iii) X has an absolutely continuous norm;

(iv) the Fourier series of f 2 X converges in norm in the space X;

(v) the operator of partial sum Sn(·, f) is uniformly bounded (in n) on X.

We also note that if X is a separable r.i. BFS, then condition (i) in Remark 1 is equivalent to the following
condition:

(vi) X has nontrivial Boyd indices ↵X and βX (i.e., 0 < ↵X ,βX < 1 ; see Chapter 3, Corollary 6.11 in [9]).

We now present some examples of BFS.
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(1) Lebesgue Spaces. We define Lebesgue functionals as follows:

⇢p(f) :=

0

@
Z

T

f(x)p dx

1

A
1/p

, 0 < p < 1, and ⇢1(f) := essup
x2T

f(x).

Then ⇢p(|f |) is a Banach function norm for 1  p  1. We set Lp := X(⇢p) and kfkp := ⇢p(|f |). In this case,
property (I) was proved in Theorem 1.2 of [9]. Property (II) is well known and can be found in any monograph on
the approximation theory (see, e.g., Chapter 1, Part 1.4.1 in [29]). Property (III) is a consequence of the integral
Minkowski inequality [29, p. 592, (12)] and the translation invariance of Lp, 1  p  1. Property (V) is known
from, e.g., [13, p. 206, (2.17)]. Property (VI) was proved in [8] for p = 1 ; in [30], for 1  p  1, and in [7],
for 0  p  1. For (IV), one can see [28, §3, Theorem 1].

(2a) Lorentz Spaces Lpq. Let 0 < p, q  1 and let M0 be a subset of functions from M that are finite
a.e. on T. For f 2 M0, we set

kfkp,q :=

0

@
1Z

0

h
t1/pf⇤(t)

iq dt
t

1

A
1/q

, 0 < p < 1,

kfkp,1 := sup
x2(0,1)

t1/pf⇤(t), kfk(p,1) := sup
x2(0,1)

t1/pf⇤⇤(t),

kfk(p,q) :=

0

@
1Z

0

h
t1/pf⇤⇤(t)

iq dt
t

1

A
1/q

, 0 < p < 1,

where f⇤ is a decreasing rearrangement of the function f [9, Chapter 2, Section 1] and

f⇤⇤(t) :=
1

t

tZ

0

f⇤(s) ds, t > 0.

The class of functions {f 2 M0 : kfkp,q < 1} is denoted by Lpq. It is known that Lpq coincides with Lp for
0 < p  1 and kfkp,p = kfkp, where f 2 Lp. On the other hand, if 1  q  p < 1 or q = p = 1, then
k · kp,q is an r.i. Banach function norm. If 1 < p < 1 and 1  q  1 or q = p = 1, then k · k(p,q) is an r.i.
Banach function norm (see Chapter 4, Theorem 4.3 and Lemma 4.5 in [9]).

(2b) Lorentz Spaces ⇤ and M. Let X be an r.i. BFS on (R+, dx). Suppose that X is renormed so that
its fundamental function 'X is concave. The Lorentz space ⇤(X) consists of all functions f in M+

0 (R+, dx)

for which

kfk⇤(X) :=

1Z

0

f⇤(s) d'X(s) < 1.

The Lorentz space M(X) consists of all functions f in M+
0

�
R+, dx

�
for which

kfkM(X) := sup
t2(0,1)

f⇤⇤(t)'X(t) < 1.

The Lorentz spaces ⇤(X) and M(X) are r.i. BFS (see Chapter 2, Theorem 5.13 in [9]).



A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES 1165

(c) Zygmund Spaces. The spaces L(logL) and Lexp are r.i. BFS (see Chapter 4, Part 6 in [9]). If X is an r.i.
BFS and has an absolutely continuous norm, then properties (I), (II) and (IV) can be obtained from Remark 1, while
properties (III), (V), and (VI) were obtained in [18, Lemmas 2.2 and 2.5 and Theorem 1.2].

(3) Orlicz Spaces. A function ' is called a Young function if ' is even, continuous, and nonnegative in R,
increasing on (0,1), and such that '(0) = 0 and limx!1 '(x) = 1. We say that a Young function ' satisfies
condition ∆2 (and write ' 2 ∆2 ) if there exists a constant C > 0 such that '(2x)  C'(x) for all x 2 R. Two
Young functions ' and '1 are called equivalent (and we write ' ⇠ '1 ) if there are constants C, C 0 > 0 such that

'1(Cx)  '(x)  '1

�
C 0x

�

holds for any x > 0. A nonnegative function M : [0,1)! [0,1) is said to be quasiconvex if there exist a convex
Young function Φ and a constant C ≥ 1 such that

Φ(x)  M(x)  Φ(Cx)

holds for any x ≥ 0. Let ' be a quasiconvex Young function. By L̃'(T ) we denote the class of Lebesgue
measurable functions f : T ! R, satisfying the condition

Z

T

'(|f(x)|)dx < 1.

The linear span of the Orlicz class L̃'(T ), denoted by '(L), becomes a normed space with the Orlicz norm

kfk' := sup

8
<

:

Z

T

|f(x)g(x)| dx :
Z

T

'a(|g|) dx  1

9
=

; , (6)

where

'a(y) := sup
x≥0

{xy − '(x)}, y ≥ 0,

is the complementary function of '. It can be easily seen that '(L) ⇢ L1(T ) and '(L) becomes a Banach
space with the Orlicz norm. The Banach space '(L) is called an Orlicz space. In this case, condition (I) can be
replaced by condition (I 0 ), namely, X is a Banach space whose norm satisfies the integral Minkowski inequality.
Hence, the Orlicz norm (6) has this property. Under the conditions that '↵ is a quasiconvex function for some
↵ 2 (0, 1) and ' 2 ∆2, property (II) is a consequence of [23, Lemma 3] and properties (III)–(VI) were proved
in [6, Lemmas 2, 3, and 5 and Theorem 1].

The examples considered in items 1–3 above are HBS and, in these cases, inequalities (1) and (2) can be also
obtained by the method developed in [16, §10]. On the other hand, the examples presented below are, in general,
not translation invariant and, in these cases, the method proposed in [16] is not applicable. The aim of the present
work arises from this fact.

The following example demonstrates a function class that is not rearrangement invariant.

(4) Variable Exponent Lebesgue Spaces. Let P be a class of 2⇡-periodic Lebesgue measurable functions
p = p(x) : T ! (1,1) such that essupx2T p(x) < 1. We consider a class L

p(·)
2⇡ of 2⇡-periodic measurable
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functions f defined on T and such that
Z

T

|f(x)|p(x)dx < 1.

The class Lp(·)
2⇡ is a Banach space [24, Theorem 2.5] with the norm

kfkp(·) := inf

8
<

:↵ > 0 :
Z

T

����
f(x)

↵

����
p(x)

dx  1

9
=

; .

We say that the variable exponent p(·) defined on T satisfies the Dini–Lipschitz property DLγ of order γ if

sup
x1,x22T

{|p(x1)− p(x2)| : |x1 − x2|  δ}
✓
ln

1

δ

◆γ

 C, 0 < δ < 1. (7)

If p(·) satisfies the properties

1 < essinfx2T p(x), essupx2T p(x) < 1

and the Dini–Lipschitz condition (7) of order ≥ 1, then property (I) follows from Theorem 3.2.13 in [14];
properties (II)–(IV) follow from [26, Theorems 6.1 and 6.2 and Lemma 3.1], and properties (V) and (VI) follow
from [3, Theorem 1 and Lemma 1].

Weighted Case. A function ! : T![0,1] is called a weight if ! is measurable and positive a.e. A 2⇡-peri-
odic weight function ! belongs to the Muckenhoupt class Ap, p > 1, if

sup
J

0

@ 1

|J |

Z

J

!(x) dx

1

A

0

@ 1

|J |

Z

J

!1/(1−p)(x) dx

1

A
p−1

 C

with a finite positive constant C independent of J, where J is any subinterval of T.

(5) Weighted Lebesgue Spaces. For a weight !, by Lp(T,!) we denote a class of measurable functions
defined on T and such that !f 2 Lp(T ). We set

kfkp,! := k!fkp

for f 2 Lp(T,!). If !p 2 Ap and 1 < p < 1, then properties (II)–(VI) are known from [19] and property (I) is
a consequence of [22, Lemma 2.5 (b)].

(6a) Weighted Orlicz Spaces '!(L). Let ' be a quasiconvex Young function. By L̃',!(T ) we denote the
class of Lebesgue measurable functions f : T ! R satisfying the condition

Z

T

'(|f(x)|)!(x) dx < 1.
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The linear span of the weighted Orlicz class L̃',!, denoted by '!(L), turns into a normed space with the
Orlicz norm

kfk',! := sup

8
<

:

Z

T

|f(x)g(x)|!(x) dx :
Z

T

'a(|g|)!(x) dx  1

9
=

; . (8)

For a quasiconvex function ', we define the index p(') of ' as follows:

1

p(')
:= inf

�
p : p > 0, 'p is quasiconvex

 
.

If ! 2 Ap('), then it is easy to see that '!(L) ⇢ L1(T ) and '!(L) becomes a Banach space with the Orlicz
norm. The Banach space '!(L) is called a weighted Orlicz space. In this case, condition (I) can be also replaced
by condition (I 0 ). Hence, the Orlicz norm (8) satisfies property (I 0 ). If the conditions that '↵ is quasiconvex for
some ↵ 2 (0, 1) , ' 2 ∆2, and ! 2 Ap(') , are satisfied, then properties (II)–(VI) were proved in [6].

(6b) Weighted Orlicz Spaces LM,!. A convex and continuous function M : [0,1) ! [01) such that

M(0) = 0, M(x) > 0 for x > 0,

lim
x!0

M(x)

x
= 0, and lim

x!1

M(x)

x
= 1,

is called an N -function. The complementary Young function N of M is defined by

N(y) := max{xy −M(x) : x ≥ 0}

for y ≥ 0.

Let M be an N -function. We denote by LM a linear space of 2⇡-periodic measurable functions f : T ! R
such that

Z

T

M(λ|f(x)|) dx < 1

holds for some λ > 0. Equipped with the norm

kfkM := sup

8
<

:

Z

T

|f(x)g(x)| dx :
Z

T

N(|g(x)|) dx  1

9
=

; ,

where N is the complementary function, LM becomes a Banach space. This space is called the Orlicz space
generated by M.

Let M−1 : [0,1) ! [0,1) be the inverse of the Young function M and let

h(t) := lim sup
x!1

M−1(x)

M−1(x/t)
, t > 0.
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The numbers βM and ↵M defined by

βM := lim
t!1

log h(t)

log t
and ↵M := lim

t!0+

log h(t)

log t

are called the upper and lower Boyd indices of the Orlicz space LM , respectively.
Let ! be a weight function. We denote by LM,! the space of all measurable functions f : T ! R such

that f! 2 LM . The norm in LM,! is defined by kfkM,! := kf!kM . The normed space LM,! is called
a weighted Orlicz space. In the case where M is an N -function, LM,! has nontrivial Boyd indices ↵M and βM ,

and !1/↵M 2A1/↵M
, !1/βM 2A1/↵M

, properties (I)–(VI) were proved in [19]. We note also that the spaces LM,!

and '!(L) are, in general, different (see [10]).

7. Weighted Variable Exponent Lebesgue Spaces. By L
p(·)
! we denote the class of Lebesgue measurable

functions f : T ! R satisfying the condition !f 2 L
p(·)
2⇡ . A weighted variable exponent Lebesgue space L

p(·)
! is

a Banach space with the following norm:

kfkp(·),! := k!fkp(·).

For given p 2 P, the class of weights ! satisfying the condition (see [11])

k!χQkp(·)
��!−1χQ

��
p0(·) . |Q|,

for all balls Q in T is denoted by Ap(·). Here, p0(x) := p(x)/(p(x) − 1) is the conjugate exponent of p(x).

We say that the variable exponent p(x) is log-Hölder continuous on T if there exists a constant C ≥ 0 such that

|p(x1)− p(x2)| .
1

log(e+ 1/|x1 − x2|)
for all x1, x2 2 T.

In the case where

1 < essinfx2T p(x), essupx2T p(x) < 1,

1/p is Log-Hölder continuous on T,

and

!p0 2 A(p(·)/p0)0 for some p0 2 (1, essinfx2T p(x)),

properties (I)–(VI) were established in [4].

8. Weighted r.i. BFS. For a weight !, by X(T,!) we denote a class of measurable functions defined on T

and such that !f 2 X(T ). We set kfkX,! := k!fkX for f 2 X(T,!). In the case where X(T ) is a reflexive r.i.
BFS with nontrivial Boyd indices ↵X and βX such that !1/↵X 2 A1/↵X

and !1/βX 2 A1/↵X
, properties (I)–(VI)

were obtained in [18].

3. Proofs of the Results

The following two lemmas are required to prove Theorem 1. If A . B and B . A simultaneously, then we
write A ⇡ B.
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Lemma 1. Assume that X satisfies conditions (I)–(III), f 2 X, and t, l > 0. Then

⌦1(f, lt)X . (1 + blc)2⌦1(f, t)X

holds with a constant that depends only on r and X.

Proof. Let t > 0. Then there exists n 2 N such that 1/n < t  2/n. We define an operator

(U1/nf)(x) := 3n3

1/nZ

0

tZ

0

uZ

−u

f(x+ s) ds du dt, x 2 T, f 2 X.

In this case (see [3, p. 14]),

d2

dx2
U1/nf(x) = Cn2(I − σ1/n)f(x)

holds for almost all x 2 T with some constant C 2 R.
Hence, in view of the uniform boundedness of the operator f 7! σ1/nf in X (for fixed n 2 N), we conclude

that

d2

dx2
U1/nf(x) 2 X and U1/nf 2 X 00.

On the other hand, it follows from (5) that

kU1/nfkX =

�������
3n3

1/nZ

0

tZ

0

uZ

−u

f(x+ s) ds du dt

�������
X

. n3

1/nZ

0

tZ

0

2ukσufkX du dt

. 3n3kfkX

1/nZ

0

tZ

0

2u du dt = kfkX

and, hence, f − U1/nf 2 X. Then

inf
g2X00

�
kf − gkX + t2kg00kX

 
=: K2

�
f, t,X,X 00�  2K2

�
f, 1/n,X,X 00�

. kf − U1/nfkX + n−2

����
d2

dx2
U1/nf

����
X

=: I1 + I2. (9)

We estimate I1. By using (5), we get

kf − U1/nfkX . n3

1/nZ

0

tZ

0

2uk(I − σu)fkX du dt



1170 RAMAZAN AKGÜN

. sup
0u1/n

k(I − σu)fkX3n3

1/nZ

0

tZ

0

2u du dt

. sup
0u1/n

k(I − σu)fkX = ⌦1(f, 1/n)X . (10)

For the estimate I2, we find

1

n2

����
d2

dx2
U1/nf(x)

����
X

=

����n
−2 d2

dx2
U1/nf(x)

����
X

= kC(I − σ1/n)fkX

. sup
0u1/n

k(I − σu)fkX = ⌦1(f, 1/n)X . (11)

Thus, it follows from (9)–(11) that

K2

�
f, t,X,X 00� . ⌦1(f, 1/n)X  ⌦1(f, t)X .

On the other hand, for g 2 X 00,

(I − σh)g(x) =
1

2h

hZ

−h

(g(x)− g(x+ t)) dt = − 1

8h

hZ

0

tZ

0

uZ

−u

g00(x+ s) ds du dt.

Therefore,

k(I − σh)gkX =
1

8h
sup
v2Xa

8
<

:

Z

T

������

hZ

0

tZ

0

uZ

−u

g00(x+ s) ds du dt

������
|v(x)| dx : kvkXa  1

9
=

;

 1

8h

hZ

0

tZ

0

2u

������
1

2u

uZ

−u

g00(x+ s) ds

������
X

du dt

. 1

8h

hZ

0

tZ

0

2ukg00kX du dt = h2kg00kX ,

and we find

⌦1(g, t)X . t2kg00kX (12)

for g 2 X 00.

Then, for g 2 X 00,

⌦1(f, t)X . kf − gkX + t2kg00kX .

Thus, taking the infimum on g 2 X 00, we get

⌦1(f, t)X . K2

�
f, t;X,X 00� .



A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES 1171

This yields ⌦1(f, t)X ⇡ K2 (f, t;X,X 00) . By using the last equivalence, we obtain

⌦1(f, lt)X . inf
g2X00

�
kf − gkX + (lt)2kg00kX

 

. (1 + blc)2 inf
g2X00

�
kf − gkX + t2kg00kX

 

. (1 + blc)2⌦1(f, t)X .

The lemma is proved.

Lemma 2. Suppose that X satisfies conditions (I)–(III), f 2 X, and n,m, r 2 N. Then there exists a num-
ber δ 2 (0, 1) depending only on X and such that

⌦r(f, t)X . CδmrkfkX + C 0⌦r+1(f, t)X

holds for any t 2 (0, 1/n), where C > 0 is a constant that depends only on r and X and C 0 > 0 is a constant
that depends only on r, m, and X.

Proof. For any h > 0, there exists a constant C > 1 such that

kσhfkX  CkfkX .

We set δ := C/(1 + C). Further, for any h 2 (0, 1/n), we first prove that

k(I − σh)
rfkX  δr

��(I − σ2
h)

rf
��
X
+ C⌦r+1(f, h)X . (13)

To prove (13), we observe that

I − σh = 2−1(I − σh)(I + σh) + 2−1(I − σh)
2

and

σh(I − σh) = 2−1(I − σh)(I + σh)− 2−1(I − σh)
2.

Hence, for g 2 X,

k(I − σh)gkX + kσh(I − σh)gkX  k(I − σh) (I + σh)gkX +
��(I − σh)

2g
��
X
. (14)

On the other hand,

k(I − σh)
rfkX = δ ((1/C) k(I − σh)

rfkX + k(I − σh)
rfkX)

 δ
⇣
k(I − σh)

rfkp,! + k(I − σh)
rfkX

⌘

= δ
���(I − σh) (I − σh)

r−1f
��
X
+ k(I − σh)

rfkX
�
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= δ
����σh(I − σh) + (I − σh)

2
�
(I − σh)

r−1f
��
X
+ k(I − σh)

rfkX
�

 δ
���σh(I − σh) (I − σh)

r−1f
��
X
+
��(I − σh)

2(I − σh)
r−1f

��
X

�

+ δ k(I − σh)
rfkX

 δ
⇣
kσh(I − σh)

rfkX +
��(I − σh)

r+1f
��
p,!

+ k(I − σh)
rfkX

⌘
. (15)

Setting g := (I − σh)
r−1f in (14), we get

kσh(I − σh)
rfkX + k(I − σh)

rfkX  k(I − σh)
r(σh + I)fkp,! +

��(I − σh)
r+1f

��
X
.

By using this inequality in (15), we find

k(I − σh)
rfkX  δ

⇣
kσh(I − σh)

rfkp,! +
��(I − σh)

r+1f
��
X
+ k(I − σh)

rfkX
⌘

 δ
�
k(I − σh)

r(σh + I)fkX +
��(I − σh)

r+1f
��
X

�
+ δ

��(I − σh)
r+1f

��
X

 δ k(I − σh)
r(σh + I)fkX + 2δ

��(I − σh)
r+1f

��
X
. (16)

Repeating the last inequality r times, we obtain

k(I − σh)
rfkX  δ k(I − σh)

r(σh + I)fkX + 2δ
��(I − σh)

r+1f
��
X

 δ2
��(I − σh)

r(σh + I)2f
��
X
+ 2δ2

��(I − σh)
r+1(σh + I)f

��
X
+ 2δ

��(I − σh)
r+1f

��
X

 . . .  δr k(I − σh)
r(σh + I)rfkX + 2

rX

k=1

δk
���(I − σh)

r+1(σh + I)k−1f
���
X

= δr
��(I − σ2

h)
rf
��
p,!

+ 2
rX

k=1

δk
���(I − σh)

r+1(σh + I)k−1f
���
X
.

Hence,

k(I − σh)
rfkX  δr

��(I − σ2
h)

rf
��
X
+ C(r,X)⌦r+1(f, h)X

and the proof of (13) is complete. By using (13), we get

k(I − σh)
rfkX  δr

��(I − σ2
h)

rf
��
X
+ C(r,X)⌦r+1(f, h)X

 δ2r
��(I − σ4

h)
rf
��
X
+ (δr + 1)C(r,X)⌦r+1(f, h)X

 . . .  δmr
���
�
I − σ2m

h

�r
f
���
X
+ C(r,X,m)⌦r+1(f, h)X . (17)
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For g 2 C(T ), where C(T ) is the class of continuous functions on T , the inequality

���
�
I − σ2m

h

�r
g
���
C(T )

 2rkgkC(T )

holds with a constant c independent of m. The last inequality and Theorem 1.5 in [5] imply that

���
�
I − σ2m

h

�r
f
���
X

 2rCkfkX ,

where C is a constant independent of m.

Taking supremum in inequality (17), we arrive at the relation

⌦r(f, t)X . δmrkfkX + ⌦r+1(f, t)X .

The lemma is proved.

Proof of Theorem 1. Case r = 1. Let n 2 N and f 2 X be fixed. We use the operator U1/nf. By using
(IV), (10), and (11), we find

En(f)X = En(f − U1/nf + U1/nf)X

 En(f − U1/nf)X + En(U1/nf)X

. kf − U1/nfkX + n−2

����
d2

dx2
U1/nf(x)

����
X

. ⌦1

✓
f,

1

n

◆

X

(18)

for any n 2 N.

Case r ≥ 2. Following the idea proposed in [12], we proceed by induction on r. We know that the Jackson-
type estimate (3) holds for r = 1 [see (18)]. Suppose that inequality (3) is true for g 2 X and some r = 2, 3, 4, . . . :

En(g)X . ⌦r

✓
g,

1

n

◆

X

. (19)

It is necessary to verify the validity of inequality (3) for r + 1. We use the mean Snf and show that

kf − SnfkX . ⌦r+1

✓
f,

1

n

◆

X

.

We set u(·) := f(·)− Snf(·). In this case, Sn(u) = 0. Since Snf is the near best approximant for f, i.e.,

kf − SnfkX . En(f)X ,

by using the induction hypothesis (19), we obtain

kukX = ku− Sn(u)kX . En(u)X  C⌦r

✓
u,

1

n

◆

X

.
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It follows from Lemma 2 that

⌦r

✓
u,

1

n

◆

X

 CδmrkukX + C 0⌦r+1

✓
u,

1

n

◆

X

.

If we choose m sufficiently large to guarantee that CCδmr < 1/2, then we get

kukX  C⌦r

✓
u,

1

n

◆

X

 CCδmrkukX + C⌦r+1

✓
u,

1

n

◆

X

and

kukX . ⌦r+1

✓
u,

1

n

◆

X

.

It follows from the uniform boundedness of the operator f 7−! Snf in X that

⌦r+1

✓
u,

1

n

◆

X

. ⌦r+1

✓
f,

1

n

◆

X

,

and the required result

En(f)X . kf − SnfkX = kukX . ⌦r+1

✓
u,

1

n

◆

X

. ⌦r+1

✓
f,

1

n

◆

X

holds for r 2 N.
Theorem 1 is proved.

Proof of Theorem 2. Let Tn 2 Tn, n 2 {0} [ N, be the best approximating trigonometric polynomial
for f 2 X. By using (12), we get

⌦r(g, δ)X . δ2r
���g(2r)

���
X
, r 2 N,

for g(2r) 2 X and δ > 0. On the other hand, for any m 2 N, we conclude that

⌦r(f, δ)X  ⌦r (f − T2m+1 , δ)X + ⌦r (T2m+1 , δ)X (20)

and

⌦r (f − T2m+1 , δ)X . kf − T2m+1kX . E2m+1(f)X . (21)

Then

⌦r (T2m+1 , δ)X . δ2r
���T (2r)

2m+1

���
X

. δ2r

(���T (2r)
1 − T

(2r)
0

���
X
+

mX

i=1

���T (2r)

2i+1 − T
(2r)

2i

���
X

)
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. δ2r

(
E0(f)X +

mX

i=1

2(i+1)2rE2i(f)X

)

. δ2r

(
E0(f)X + 22rE1(f)X +

mX

i=1

2(i+1)2rE2i(f)X

)
.

Further, applying the inequality

2(i+1)2rE2i(f)X .
2mX

k=2i−1+1

k2r−1Ek(f)X , i ≥ 1, (22)

we get

⌦r (T2m+1 , δ)X . δ2r

(
E0(f)X + 22rE1(f)X +

2mX

k=2

k2r−1Ek(f)X

)

. δ2r

(
E0(f)X +

2mX

k=1

k2r−1Ek(f)X

)
. (23)

Note that

E2m+1(f)X . 1

n2r

2mX

k=2m−1+1

k2r−1Ek(f)X .

Thus, if we choose m such that 2m  n < 2m+1, then the required result follows from (20)–(23).
Theorem 2 is proved.

Proof of Theorem 3. Let f 2 X and let

En(f)X . n−β , n = 1, 2, 3, . . . ,

for some β > 0. Suppose that δ > 0 and n := b1/δc. From Theorem 2, we obtain

⌦r(f, δ)X  ⌦r

✓
f,

1

n

◆

X

. 1

n2r

nX

j=0

(j + 1)2r−1Ej(f)X

. δ2r

0

@E0(f)X +
nX

j=1

j2r−1Ej(f)X

1

A

. δ2r

0

@E0(f)X +
nX

j=1

j2r−1−β

1

A .

If 2r > β, then we get

⌦r(f, δ)X . δβ .
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Further, if 2r = β, then
nX

j=1

j2r−1−β =

nX

j=1

j−1  1 + log(1/δ),

and, hence,

⌦r(f, δ)X . δβ log(1/δ).

If 2r < β, then the series
Xn

j=0
j2r−1−β is convergent and

⌦r(f, δ)X . δ2r

0

@E0(f)X +

nX

j=1

j2r−1−β

1

A . δ2r

is true.
Theorem 3 is proved.

The present research was supported by the TÜBİTAK, the Scientific and Technological Research Council
of Turkey, and partially by the MTM2011-27637, and the Scientific Research Project 2019/61 of the Balikesir
University.

The author states that there is no conflict of interest.

REFERENCES

1. V. A. Abilov and F. V. Abilova, “Some problems of the approximation of 2⇡-periodic functions by Fourier sums in the space L2
2⇡,”

Math. Notes, 76, No. 5-6, 749–757 (2004).
2. R. Akgün, “Polynomial approximation in weighted Lebesgue spaces,” East J. Approx., 17, No. 3, 253–266 (2011).
3. R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent,” Ukr. Math. Zh., 63,

No. 1, 3–23 (2011); English translation: Ukr. Math. J., 63, No. 1, 1–26 (2011).
4. R. Akgün, “Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth,” Georgian

Math. J., 18, No. 2, 203–235 (2011).
5. R. Akgün, “Exponential approximation in variable exponent Lebesgue spaces on the real line,” Constr. Math. Anal., 5, No. 4, 214–237

(2022).
6. R. Akgün and D. M. Israfilov, “Approximation in weighted Orlicz spaces,” Math. Slovaca, 61, No. 4, 601–618 (2011).
7. V. V. Arestov, “Integral inequalities for trigonometric polynomials and their derivatives,” Izv. Akad. Nauk SSSR Ser. Mat., 45, No. 1,

3–22 (1981).
8. S. N. Bernstein, Collected works, Vol. 1: Constructive Theory of Functions [1905–1930], Izd. Akad. Nauk SSSR, Moscow (1952).
9. C. Bennett and R. Sharpley, “Interpolation of operators,” Pure Appl. Math., 129, Academic Press, Boston, MA (1988).
10. S. Bloom and R. Kerman, “Weighted LΦ integral inequalities for operators of Hardy type,” Studia Math., 110, No. 1, 35–52 (1994).
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24. O. Kováčik and J. Rákosnı́k, “On spaces Lp(x) andW k,p(x),” Czechoslovak Math. J., 41 (116), No. 4, 592–618 (1991).
25. I. I. Sharapudinov, “On the uniform boundedness in Lp (p = p(x)) of some families of convolution operators,” Math. Notes, 59,

No. 1–2, 205–212 (1996).
26. I. I. Sharapudinov, “Some problems in approximation theory in the spaces Lp(x)(E),” Anal. Math., 33, No. 2, 135–153 (2007).
27. I. I. Sharapudinov, “Approximation of functions in L

p(·)
2⇡ by trigonometric polynomials,” Izv. Ros. Akad. Nauk, Ser. Mat., 77, No. 2,

197–224 (2013).
28. R. Taberski, “Approximation of functions possessing derivatives of positive orders,” Ann. Polon. Math., 34, No. 1, 13–23 (1977).
29. A. F. Timan, “Theory of approximation of functions of a real variable,” Internat. Ser. Monogr., Pure Appl. Math., 34, Pergamon Press

Book, Macmillan Co., New York (1963).
30. A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, New York (1959).


	Abstract
	1. Introduction and Main Results
	2. Applications
	3. Proofs of the Results
	REFERENCES

