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MATHEMATICAL ANALYSIS AND SIMULATION OF A

GIVING UP SMOKING MODEL WITHIN THE SCOPE OF

NON-SINGULAR DERIVATIVE

SÜMEYRA UÇAR, FIRAT EVIRGEN, NECATI ÖZDEMIR, AND ZAKIA HAMMOUCH

Abstract. Smoking has caused the illness and death of many people
around the world for a long time. Therefore, many researchers have
investigated many methods to quit smoking and reduce its use. In this
paper, a smoking model with determination is first examined broadly
with Caputo-Fabrizio derivative. We give the equilibrium points and
their stability analysis for our fractional model. Taking advantage of
fixed point theory, we give some solution properties for the fractional
smoking model with determination. Our findings are highlighted by
presenting some explanatory graphics.

1. Introduction

There are certain matters and values which render life meaningful in the eyes
of the humankind, such as hope, love, home, family, etc. And on the other side
of the coin, there are things stealing our lives away from our hands; these are
matters and values such as poverty, pain, illness, alcohol, and cigarettes. What
a pity it is to waste our lives with a substance called cigarettes and made of
tobacco, inducing only temporary pleasures.

The hazards of smoking are taught in schools, shown on television, and even
written on cigarette packs. Due to the harmful effects of carbon dioxide and haz-
ardous heavy metals, the human body cannot endure and therefore deteriorates.
Smoking causes cancer, heart attack, and skin diseases. Those who feel these
hazardous effects at the utmost are, of course, smokers, because they sense the
impact each inhalation has on their bodies. Their daily lives become harder, even
climbing up the stairs turns into a challenge. Without cigarettes, smokers feel
unhappy with the activities in which they used to take pleasure before. Smoking
is no longer a means of pleasure, turning into a substance to which smokers are
addicted.

Mathematical modeling becomes prominent when it comes to preventing the
aforementioned health hazards and illnesses. There exists a good deal of studies
analyzing numerous mathematical models [8, 9, 11, 14, 16, 20, 24, 30, 33, 34]. In
1993 Perelson et al. [19] studied a model for the interaction of HIV with CD4
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+ T cells. Straughan [21] studied e-cigarette smoking with peer pressure model,
Ahn et al. [1] gave basic SEIRA model related to computer viruses, Mulone et al.
[15] examined a two-stage model for youths with critical drinking problems and
their cure, Han [6] presented dynamical behavior of computer virus on Internet.

Following upon that, fractional analysis has lately come to be a notion of vital
importance concerning the questions how the said models are built and what their
influences are. In the light of the relevant works authored by numerous scholars, it
can be seen that the fractional models illustrate even the actual construction more
effectively compared to the conventional ones. In 2020, Ullah et al. [28] considered
fractional tuberculosis infection disease, Uçar et al. [26] touched on fractional
glucose-insulin regulatory system for the first time. Baleanu et al. [2] presented
the existence of a unique solution of human liver model by using exponential
kernel derivative and Picard-Lindelof approach. Other excellent papers can be
found in [4, 5, 7, 10, 17, 18, 23, 25, 27, 32].

In the present work, observing the great significance of CF fractional derivative
we intend to promote the application of the CF derivative to the smoking model
and present the detailed stability analysis and solution properties. After that,
we interpret the effect of this fractional derivative enriching several numerical
examples and also consider the description memory and hereditary properties
of fractional order models. We deal with a smoking model with determination
presented by [31] of the following integer form:

dP

dt
= µN − β

PS

N
+ α (1− ε)S − µP,

dS

dt
= β

PS

N
− µS − αS,

dQ

dt
= αεS − µQ,

(1.1)

where we believe that during the modeling phase the total population (N) is
constant for all periods t. The whole population is divided into three subclassess:
Potential Smokers (P ), Smokers (S) and Quitters (Q). Potential smokers are
those people who are susceptible to smoking; those who regularly smoke are
Smokers, and those who have stopped smoking are Quitters. Therefore, the
cumulative population N = P + S + Q. Let µ be inflow rate of people in the
group of potential smokers. It also demonstrates per capita natural death in
each unit. Let β be the rate of smoking habit transmission, so that the smoking
incidence rate is denoted by β PS

N . We further believe that smokers quit smoking
at a ratio αS. A fraction α (1− ε)S of these quitters will return to potential
smoker community due to a poor degree of determination and the remaining αεS
will lead to community of quitters. ε is the size of determination. It should be
remembered that if the determination of the quitter is 100%, then those who quit
will switch to Q.

Since N is constant, we can take p = P
N , s = S

N , q = Q
N to obtain:
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dp

dt
= µ− βps+ α (1− ε) s− µp

ds

dt
= βps− µs− αs,

dq

dt
= αεs− µq

(1.2)

with the initial conditions p (0) ≥ 0, s (0) ≥ 0, q (0) ≥ 0.
The paper proceeds as follows. In Section 2, we give some basic definitions

related to Caputo-Fabrizio (CF) derivative that we used. Section 3 introduce
equilibrium points and their stability analysis for this fractional model. Section
4 presents existence and uniqueness conditions for the fractional smoking model
with determination. In Section 5, the simulation results are given and briefly
interpreted. Finally, this work is concluded in Section 6.

2. Some preliminaries

In this part, we give basic definitions about to the CF derivative.

Definition 2.1. [3] Let a < b, g ∈ H1 (a, b) and η ∈ [0, 1] , the Caputo-Fabrizio
derivative is defined as

Dη
t g (t) =

M (η)

1− η

t∫
a

g′ (x) exp

[
−η

t− x

1− η

]
dx, (2.1)

whereM (η) is a normalization function withM (0) = M (1) = 1. If g /∈ H1 (a, b),
this derivative can be written of the following form:

Dη
t g (t) =

ηM (η)

1− η

t∫
a

(g (t)− g (x)) exp

[
−η

t− x

1− η

]
dx. (2.2)

Remark 2.1. If ς = 1−η
η ∈ [0,∞), η = 1

1+ς ∈ [0, 1], then Eq. (5.2) is given by:

Dη
t g (t) =

N (ς)

ς

t∫
a

g′ (x) exp

[
− t− x

ς

]
dx,

with N (0) = N (∞) = 1. Moreover,

lim
ς→ 0

1

ς
exp

[
− t− x

ς

]
= δ (x− t) .

Definition 2.2. Let 0 < η < 1 and g be a function. The fractional integral of
order η is given by [13]:

Iηt g (t) =
2 (1− η)

(2− η)M (η)
g (t) +

2η

(2− η)M (η)

t∫
0

g (s) ds, t ≥ 0. (2.3)
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Additionally, the below result satisfy

2 (1− η)

(2− η)M (η)
+

2η

(2− η)M (η)
= 1,

then M (τ) = 2
2−η for 0 < η < 1.

Using these results, another form of the new Caputo derivative of order 0 <
η < 1 given as [13]:

Dη
t g (t) =

1

1− η

t∫
a

g′ (x) exp

[
−η

t− x

1− η

]
dx. (2.4)

Let 0 < η < 1. The time fractional ordinary differential equation

CF
0 Dη

t f (t) = u (t) ,

has a unique solution using the inverse Laplace transform and from the convolu-
tion theorem below:

f (t) =
2 (1− η)

(2− η)M (η)
u (t) +

2η

(2− η)M (η)

t∫
a

u (s) ds, t ≥ 0.

3. Equilibrium points and their stability analysis

Here, we extend the model (1.2) using CF derivative:

CF
0 Dη

t p (t) = µη − βηps+ αη (1− εη) s− µηp,

CF
0 Dη

t s (t) = βηps− µηs− αηs,

CF
0 Dη

t q (t) = αηεηs− µηq.

(3.1)

with the initial condition p (0) = m1, s (0) = m2, q (0) = m3 where CF
0 Dη

t is CF
derivative.

In order to get the equilibrium points of fractional order model (3.1), we obtain
the points satisfying the following equations:

CF
0 Dη

t p (t) =
CF
0 Dη

t s (t) =
CF
0 Dη

t q (t) = 0.

The smoking-free steady state E0 = (1, 0, 0) and the smoking-persistent steady

state E∗ = (p∗, s∗, q∗) where p∗ = µη+αη

βη , s∗ = µ(p∗−1)
−βηp∗+αη(1−εη) , q

∗ = αηεη

µη s∗. In

order to investigate basic reproduction number we benefit from the method given

in [29]. Using the said method, the matrices F̃ and Ṽ given by

F̃ =

[
βη 0
0 0

]
and Ṽ =

[
µη + αη 0
αηεη µη

]
.

To get the eigenvalues of the matrix F̃ Ṽ −1 at the point at E0, we need the solve
this equation: ∣∣∣F̃ Ṽ −1 − jI

∣∣∣ = 0,
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where j are the eigenvalues of the matrix F̃ Ṽ −1 and I is the identity matrix.
From Theorem 2 in [29], the reproduction number is

R0 =
βη

µη + αη
. (3.2)

The Jacobian matrix for the model (3.1) is given by

J =

 βηs− µη −βηp+ αη (1− εη) 0
βη βηp− (µη + αη) 0
0 αηεη −µη

 .

The corresponding Jacobian matrix of the point E0 is

J1 =

 µη −βη + αη (1− εη) 0
0 βη − µη − αη 0
0 αηεη −µη

 .

The characteristic equation of J1 is

(λ+ µη) (λ+ µη) (λ− βη + µη + αη) = 0.

It is clear that all roots are negative if βη < µη + αηnamely R0 < 1. From
Theorem 1 in [12], if R0 < 1 the smoking-free steady state E0 of model (3.1) is
asymptotically stable.

The Jacobian matrix of the point E∗ is

J2 =

 −βηs∗ − µη −βηp∗ + αη (1− εη) 0
βηs∗ βηp∗ − µη − αη 0
0 αηεη −µη

 .

The characteristic equation of J2 is

(λ+ µη) [(λ+ µη + βηs∗) (λ− βηp∗ + µη + αη)− βηs∗ (αη (1− εη)− βηp∗)] = 0.
(3.3)

One of the root of the Eq. (3.3) is λ1 = −µη and the remaining of the solution is
the root of the following quadratic equation

λ2 +Aλ+B = 0

where A = µη + βηp∗ > 0, if R0 > 1 then B = βηs∗ (µη + αηεη) > 0. So all roots
of the Eq. (3.3) are negative or with negative real parts. From Theorem 1 in [12],
if R0 > 1 the smoking-persistent steady state E∗ of model (3.1) is asymptotically
stable.

4. Existence and uniqueness of the smoking model with
determination

Applying fractional integral to Eq. (3.1), we have

p (t)− p (0) =CF
0 Iηt {µη − βηps+ αη (1− εη) s− µηp} ,

s (t)− s (0) =CF
0 Iηt {βηps− µηs− αηs} ,

q (t)− q (0) =CF
0 Iηt {αηεηs− µηq} .

Using the notation introduced by Losada and Nieto [13], we have
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p (t)− p (0) =
2 (1− η)

(2− η)M (η)
{µη − βηps+ αη (1− εη) s− µηp}

+
2η

(2− η)M (η)

t∫
0

{µη − βηps+ αη (1− εη) s− µηp} dλ,

s (t)− s (0) =
2 (1− η)

(2− η)M (η)
{βηps− µηs− αηs}

+
2η

(2− η)M (η)

t∫
0

{βηps− µηs− αηs} dλ

q (t)− q (0) =
2 (1− η)

(2− η)M (η)
{αηεηs− µηq}

+
2η

(2− η)M (η)

t∫
0

{αηεηs− µηq} dλ, (4.1)

To simplify, we write

K1 (t, p) = µη − βηps+ αη (1− εη) s− µηp,

K2 (t, s) = βηps− µηs− αηs,

K3 (t, q) = αηεηs− µηq.

(4.2)

Theorem 4.1. The kernel K1 satisfies Lipschitz condition and contraction if the
following inequality holds:

0 < βηb+ µη ≤ 1.

Proof. Let p and p1 be two functions, then we have

∥K1 (t, p)−K1 (t, p1)∥ = ∥(−βηs+ µη) (p (t)− p1 (t))∥
≤ [βη ∥s (t)∥+ µη] ∥p (t)− p1 (t)∥ .

Let ϕ1 = βηb+ µη and ∥p (t)∥ ≤ a, ∥s (t)∥ ≤ b, ∥q (t)∥ ≤ c. So we find

∥K1 (t, p)−K1 (t, p1)∥ ≤ ϕ1 ∥p (t)− p1 (t)∥ . (4.3)

Thus, the Lipschitz condition is valid for p1 and 0 < βηb + µη ≤ 1 yields K1 is
contraction. □

Similarly, the other kernels K2 and K3 satisfy the Lipschitz condition and
contraction.

∥K2 (t, s)−K2 (t, s1)∥ ≤ ϕ2 ∥s (t)− s1 (t)∥ ,
∥K3 (t, q)−K3 (t, q1)∥ ≤ ϕ3 ∥q (t)− q1 (t)∥ . (4.4)
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Using the so-called kernels, Eq. (4.1) becomes

p (t) = p (0) +
2 (1− η)

(2− η)M (η)
K1 (t, p) +

2η

(2− η)M (η)

t∫
0

K1 (λ, p) dλ,

s (t) = s (0) +
2 (1− η)

(2− η)M (η)
K2 (t, s) +

2η

(2− η)M (η)

t∫
0

K2 (λ, s) dλ,

q (t) = q (0) +
2 (1− η)

(2− η)M (η)
K3 (t, q) +

2η

(2− η)M (η)

t∫
0

K3 (λ, q) dλ.

(4.5)

Now, we concentrate the following recursive formula:

pn (t) =
2 (1− η)

(2− η)M (η)
K1 (t, pn−1) +

2η

(2− η)M (η)

t∫
0

K1 (λ, pn−1) dλ,

sn (t) =
2 (1− η)

(2− η)M (η)
K2 (t, sn−1) +

2η

(2− η)M (η)

t∫
0

K2 (λ, sn−1) dλ,

qn (t) =
2 (1− η)

(2− η)M (η)
K3 (t, qn−1) +

2η

(2− η)M (η)

t∫
0

K3 (λ, qn−1) dλ.

(4.6)

The initial conditions are given below

p0 (t) = p (0) ,

s0 (t) = s (0) ,

q0 (t) = q (0) .

(4.7)

We give the difference between successive terms as follows:

Ψ∗
1n (t) = pn (t)− pn−1 (t) =

2 (1− η)

(2− η)M (η)
{K1 (t, pn−1)−K1 (t, pn−2)}

+
2η

(2− η)M (η)

t∫
0

{K1 (λ, pn−1)−K1 (λ, pn−2)} dλ,

Ψ∗
2n (t) = sn (t)− sn−1 (t) =

2 (1− η)

(2− η)M (η)
{K2 (t, sn−1)−K2 (t, sn−2)}

+
2η

(2− η)M (η)


t∫
0

K2 (λ, sn−1)−K2 (λ, sn−2)

 dλ,

Ψ∗
3n (t) = qn (t)− qn−1 (t) =

2 (1− η)

(2− η)M (η)
{K3 (t, qn−1)−K3 (t, qn−2)}

+
2η

(2− η)M (η)

t∫
0

{K3 (λ, qn−1)−K3 (λ, qn−2)} dλ.

(4.8)
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It is evident that

pn (t) =
n∑

i=0

Ψ∗
1i (t) ,

sn (t) =
n∑

i=0

Ψ∗
2i (t) ,

qn (t) =
n∑

i=0

Ψ∗
3i (t) .

(4.9)

Taking the norm Eq. (4.8) and using triangular identity, we have

∥Ψ∗
1n (t)∥ = ∥pn (t)− pn−1 (t)∥

=

∥∥∥∥ 2 (1− η)

(2− η)M (η)
{K1 (t, pn−1)−K1 (t, pn−2)}

+
2η

(2− η)M (η)

t∫
0

{K1 (λ, pn−1)−K1 (λ, pn−2)} dλ

∥∥∥∥∥∥ . (4.10)

Because the kernel verifies Lipschitz condition, we gain

∥Ψ∗
1n (t)∥ = ∥pn (t)− pn−1 (t)∥

≤ 2 (1− η)

(2− η)M (η)
ϕ1 ∥pn−1 − pn−2∥+

2η

(2− η)M (η)
ϕ1

t∫
0

∥pn−1 − pn−2∥ dλ.

(4.11)

and

∥Ψ∗
1n (t)∥ ≤ 2 (1− η)

(2− η)M (η)
ϕ1

∥∥∥Ψ∗
1(n−1) (t)

∥∥∥+ 2η

(2− η)M (η)
ϕ1

t∫
0

∥∥∥Ψ∗
1(n−1) (λ)

∥∥∥ dλ.
(4.12)

Analogously, we get the below identities:

∥Ψ∗
2n (t)∥ ≤ 2 (1− η)

(2− η)M (η)
ϕ2

∥∥∥Ψ∗
2(n−1) (t)

∥∥∥+ 2η

(2− η)M (η)
ϕ2

t∫
0

∥∥∥Ψ∗
2(n−1) (λ)

∥∥∥ dλ,
∥Ψ∗

3n (t)∥ ≤ 2 (1− η)

(2− η)M (η)
ϕ3

∥∥∥Ψ∗
3(n−1) (t)

∥∥∥+ 2η

(2− η)M (η)
ϕ3

t∫
0

∥∥∥Ψ∗
3(n−1) (λ)

∥∥∥ dλ.
(4.13)

In the light of above results, we give the following theorem.

Theorem 4.2. Fractional model given in (3.1) has a solution, if we can find t0
such that

2 (1− η)

(2− η)M (η)
ϕi +

2η

(2− η)M (η)
ϕit0 < 1,
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for i = 1, 2, 3.

Proof. We know that p (t), s (t), q (t) are bounded functions and the kernels
provide Lipschitz condition. Using Eqs. (4.12) and (4.13), we have the succeeding
relations as below:

∥Ψ∗
1n (t)∥ ≤ ∥pn (0)∥

[
2 (1− η)

(2− η)M (η)
ϕ1 +

2η

(2− η)M (η)
ϕ1t

]n
,

∥Ψ∗
2n (t)∥ ≤ ∥sn (0)∥

[
2 (1− η)

(2− η)M (η)
ϕ2 +

2η

(2− η)M (η)
ϕ2t

]n
,

∥Ψ∗
3n (t)∥ ≤ ∥qn (0)∥

[
2 (1− η)

(2− η)M (η)
ϕ3 +

2η

(2− η)M (η)
ϕ3t

]n
. (4.14)

So, the existence and continuity of the above solutions are showed. We aim to
show that the above functions are solution of Eq. (3.1), assume that

p (t)− p (0) = pn (t)− d1n (t) ,

s (t)− s (0) = sn (t)− d2n (t)

q (t)− q (0) = qn (t)− d3n (t) . (4.15)

Thus,we have

∥d1n (t)∥ =

∥∥∥∥ 2 (1− η)

(2− η)M (η)
{K1 (t, p)−K1 (t, pn−1)}

+
2η

(2− η)M (η)

t∫
0

{K1 (λ, p)−K1 (λ, pn−1)} dλ

∥∥∥∥∥∥
≤ 2 (1− η)

(2− η)M (η)
∥K1 (t, p)−K1 (t, pn−1)∥

+
2η

(2− η)M (η)

t∫
0

∥K1 (λ, p)−K1 (λ, pn−1) dλ∥

≤ 2 (1− η)

(2− η)M (η)
ϕ1 ∥p− pn−1∥+

2η

(2− η)M (η)
ϕ1t ∥p− pn−1∥ . (4.16)

By continuing this process recursively, it gives at t0

∥d1n (t)∥ ≤
(

2 (1− η)

(2− η)M (η)
+

2η

(2− η)M (η)
t0

)n+1

ϕn+1
1 a. (4.17)

As n approaches to ∞, ∥d1n (t)∥ tends to 0. Similarly, we obtain

∥d2n (t)∥ → 0 and ∥d3n (t)∥ → 0. (4.18)

□

To prove the uniqueness of the solutions for the model (3.1), we give the below
steps. Let p1 (t), s1 (t) and q1 (t) be another solutions, we have
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p (t)− p1 (t) =
2 (1− η)

(2− η)M (η)
{K1 (t, p)−K1 (t, p1)}

+
2η

(2− η)M (η)

t∫
0

{K1 (λ, p)−K1 (λ, P1)} dλ. (4.19)

Applying norm to Eq. (4.19) and utilizing the fact that the kernel satisfies
Lipschitz condition, we find

∥p (t)− p1 (t)∥ ≤ 2 (1− η)

(2− η)M (η)
ϕ1 ∥p (t)− p1 (t)∥

+
2η

(2− η)M (η)
ϕ1t ∥p (t)− p1 (t)∥ . (4.20)

This gives

∥p (t)− p1 (t)∥
(
1− 2 (1− η)

(2− η)M (η)
ϕ1 −

2η

(2− η)M (η)
ϕ1t

)
≤ 0. (4.21)

If the following inequality holds(
1− 2 (1− η)

(2− η)M (η)
ϕ1 −

2η

(2− η)M (η)
ϕ1t

)
≥ 0

then ∥p (t)− p1 (t)∥ = 0.Thus we have

p (t) = p1 (t) .

Benefiting from same steps, we find

s (t) = s1 (t) and q (t) = q1 (t) .

5. Numerical Results

In order to get solution for nonlinear differential equation in the sense of CF
operator, Toh et al. [22] has enhanced a new simple numerical method. We take
account of the following fractional ordinary differential equation to give their
scheme:

CF
0 Dη

t g (x) = f (x, g (x)) , (5.1)

with the initial condition i = 0, 1, ..., n− 1 where n = ⌈η⌉ and g(i) (0) = g
(i)
(0).

Theorem 5.1. [22] The initial value problem in Eq. (5.1) is

g (x) = Tn−1 (x) +
1− (η)

M (η) (n− 2)!

x∫
0

(x− t)n−2 f (t, g (t)) dt

+
η

M (η) (n− 1)!

x∫
0

(x− t)n−1 f (t, g (t)) dt, (5.2)
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where Tn−1 (x) is the Taylor expansion of g (x) centered at x0 = 0

Tn−1 (x) =

n−1∑
i=0

xi

i!
g
(i)
(0). (5.3)

Proof. Applying Laplace transform to both sides of Eq. (5.1), we get

L
[
CF
0 Dη

t g (x)
]
= L [f (x)] , s > 0,

M (η)

s (1− η) + η

(
snF (s)−

n−1∑
i=0

sn−kg(k−1) (0)

)
= G (s) .

So,

F (s) =
1

sn

n−1∑
i=0

sn−kg(k−1) (0)
s (1− η)

snM (η)
G (s) +

η

snM (η)
G (s)

=
n−1∑
i=0

1

sk
g(k−1) (0) +

1− η

M (η)

(
1

sn−1
G (s)

)
+

η

M (η)

(
1

sn
G (s)

)
.

Taking into consideration inverse Laplace transform properties

g (x) =
n−1∑
i=0

xi

i!
g(i) (0) +

1− η

M (η)

(
1

Γ (n− 1)
xn−2 ∗ f (x)

)
+

η

M (η)

(
1

Γ (n)
xn−1 ∗ f (x)

)
.

Thus, we obtain

g (x) =
n−1∑
i=0

xi

i!
g(i) (0) +

1− η

(n− 2)!M (η)

x∫
0

(x− t)n−2 f (t) dt

+
η

(n− 1)!M (η)

x∫
0

(x− t)n−1 f (t) dt.

This gives the proof of Theorem 5.1. □

Furthermore, the initial value problem in Eq. (5.2) can be approximated and
obtained from Adams-Bashforth-Moulton method.

g (xk+1) = Tn−1 (xk+1) +
1− η

M (η) (n− 2)!

xk+1∫
0

(xk+1 − t)n−2 u (t) dt

+
η

M (η) (n− 1)!

xk+1∫
0

(xk+1 − t)n−1 u (t) dt. (5.4)
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The integration part can be approximated by

xk+1∫
0

(xk+1 − t)n−2 u (t) dt ≈
xk+1∫
0

(xk+1 − t)n−2 ũk+1 (t) dt,

xk+1∫
0

(xk+1 − t)n−1 u (t) dt ≈
xk+1∫
0

(xk+1 − t)n−1 ũk+1 (t) dt, (5.5)

where ũk+1 (t) is the approximation of u (t).
By determining ũk+1 (t)|[xi,xi+1)

= u (xi) with 0 ≤ i ≤ k or in order words, we

instead integrate the part from Eq. (5.5) by the rectangle rule, we find the explicit
method, fractional Euler method. The approximation solution, g (xi) ≈ gi at
discrete space xi.

Hence, the predictor formula, gpk+1 can be determined by the fractional Adams-
Bashforth method as below:

gpk+1 = Tn−1 (xk+1) +
1− η

M (η) (n− 2)!

k∑
i=0

ci,k+1f (xi, gi)

+
η

M (η) (n− 1)!

k∑
i=0

di,k+1f (xi, gi) . (5.6)

where

ci,k+1 =
hn−1

n− 1

[
(k − i+ 1)n−1 − (k − i)n−1

]
,

di,k+1 =
hn

n

[
(k − i+ 1)n − (k − i)n−1

]
. (5.7)

If ũk+1 (s)|[xi,xi+1)
=

xk+1−s
h u (xi) +

s−xi
h u (xi+1), we get the implicit method,

fractional trapezoidal rule. The corrector formula gk+1 can be determined by the
fractional Adams-Moulton method as below:

gk+1 = Tn−1 (xk+1) +
1− η

M (η) (n− 2)!

[
k∑

i=0

ai,k+1f (xi, gi) + ak+1,k+1f
(
xk+1, g

p
k+1

)]

+
η

M (η) (n− 1)!

[
k∑

i=0

bi,k+1f (xi, gi) + bk+1,k+1f
(
xk+1, g

p
k+1

)]
, (5.8)

where

ai,k+1 =
hn−1

n (n− 1)

 kn − (k + 1)n−1 (k − n+ 1) , i = 0
(k − i+ 2)n − 2 (k − i+ 1)n + (k − i)n , 1 ≤ t ≤ k

1, i = k + 1
,

bi,k+1 =
hn

n (n+ 1)


kn+1 − (k + 1)n (k − n) , i = 0

(k − i+ 2)n+1 − 2 (k − i+ 1)n+1 + (k − i)n+1 , 1 ≤ t ≤ k
1, i = k + 1

.

(5.9)
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We find the predictor in Eq. (5.6) by calculating an initial approximation gpk+1

from current value fk. Meanwhile, the corrector in Eq. (5.8) applies the approx-
imation, gpk+1 to get the refined corrector value of gk+1, which is used in next
iteration successively.

Using the above numerical method [22], we illustrate some numerical sim-
ulations. With this design, we choose initial values p (0) = 0.6, s (0) = 0.3,
q (0) = 0.1, and parameters µ = 0.02, β = 0.4, α = 0.05, δ = 0.1, ε = 0.2 given in
[31]. Fig. 1 shows that the number of individuals categorized as smokers quickly
escalates in the beginning, then arrives at its maximal point possible in line with
various fractional orders. Still, the smoker group diminishes in number when the
fractional order also shows a decline. Therefore, in order to restrain the number
of smokers and enlarge the group of potential smokers, one can make use of the
above-mentioned model featuring small fractional orders, supporting an eventual
diminution in the commonness of smoking in the long run. Fig. 2 shows that the
attitude of the model components are displayed according to several values of the
fractional order η. Furthermore, from Fig. 2 as the fractional order η decreases,
the number of potential smokers increases, whereas the number of smokers and
quitters reduce .
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Figure 1. Numerical simulations for the Eq. (3.1) at η =
0.95, η = 0.75, η = 0.55.

6. Conclusion

The secret to quitting smoking is to be determined about it. There are millions
of people in the world who have smoked before but are not smoking now, anyone
who is willing can quit smoking. Paying attention to these facts, in this paper,
we first touch on the smoking model with determination in [31] enlarging the CF
derivative with exponential kernel. The equilibrium points of the fractional model
have been calculated and the stability of these points have been investigated. Our
theoretical studies give that the solution of the so-called model in Eq. (3.1) is
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Figure 2. The behavior of the fractional smoking model with
determination components for distinct values of η.

exist and unique. Then, several numerical graphics are depicted with distinct
values of η and shortly interpreted. The use of fractional derivatives gives useful
information about the complexity of the dynamics of the smoking model with
determination.
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