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Acetaminophen is one of the most widely used over‑the‑counter drugs worldwide for the treatment of pain and fever. Although 
acetaminophen use is known to impair hippocampus‑related learning and memory, its effect on anxiety is not clear. Insulin‑like 
growth factor‑1 (IGF‑1) and matrix metalloproteinase‑2 (MMP2) are important for cellular survival, maintenance and tissue 
integrity. The aim of this study was to investigate the dose‑dependent effects of acetaminophen on anxiety levels as well 
as on hippocampus, prefrontal cortex and liver tissue. Doses of 100, 200 and 400 mg/kg acetaminophen were administered 
to male Sprague Dawley rats for 11 days and anxiety tests were conducted on the last day. Twenty‑four hours after the last 
acetaminophen administration, all animals were sacrificed and hippocampus, prefrontal cortex and liver tissues were removed 
for analyses. Hippocampal IGF‑1 and MMP2 levels were shown to decrease only at the highest dose of acetaminophen, which 
was accompanied by pathological changes in histology. The prefrontal cortex was not affected. Behavioral analyses also did 
not indicate changes in anxiety levels in the rats. Liver IGF‑1 and MMP2 levels decreased in all experimental groups. Serum 
alanine aminotransferase and aspartate aminotransferase levels increased in the 200 mg/kg and 400 mg/kg acetaminophen 
groups. Our findings showed that varying doses of acetaminophen did not affect the prefrontal cortex or anxiety levels. Further 
research is needed to elucidate the hippocampal and hepatic protective roles of IGF‑1 and MMP2 in acetaminophen toxicity and 
their potential use in therapeutic approaches.
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INTRODUCTION

Acetaminophen is one of the most commonly used 
over‑the‑counter pain relief medications administered 
worldwide and is considered safe to use in newborns 
and during pregnancy and breastfeeding. It crosses the 
blood‑brain barrier at both therapeutic and toxic doses 

and is homogeneously distributed in the central ner‑
vous system (CNS) (Courad et al., 2001). However, there 
are many health risks associated with the use of acet‑
aminophen, such as attention deficiency, hyperactivity 
syndrome, impaired motor skills and altered cognitive 
functions associated with spatial memory processing 
(Liew et al., 2014; Blecharz‑Klin et al., 2017). Hepato‑
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toxicity and liver failure resulting from acute acet‑
aminophen intoxication is well‑documented (Fontana, 
2008; Murray et al., 2008). Mechanisms associated with 
acetaminophen‑induced liver damage include over‑
whelmed cytochrome P450 metabolism, mitochondrial 
dysfunction and glutathione depletion related to oxi‑
dative stress (Hinson et al., 2010; Letelier et al., 2011; 
Rofaeil et al., 2017).

Recent studies have demonstrated that acetamino‑
phen also affects the brain, especially the hippocampus, 
as it can cross the blood‑brain barrier (Blecharz‑Klin et 
al., 2013; 2014; 2015; 2017); it may trigger autism and 
may be associated with Alzheimer’s disease (Schultz, 
2010, Gilmartin et al., 2015; Wu and Li, 2015). In addi‑
tion, it has been shown that low dose chronic subcuta‑
neous acetaminophen administration leads to a change 
in the bioamine content of the hippocampus and im‑
proves hippocampus associated learning and memory 
(Blecharz‑Klin et al., 2014; 2017).

The prefrontal cortex is involved in the neuro‑
circuitry underlying anxiety in humans and animals 
(Mathew et al., 2008; Adhikari et al., 2010) and the 
hippocampus is the main brain region responsible for 
learning and memory function. Nevertheless, regard‑
less of its well‑known function, there is accumulating 
evidence that it plays a role in anxiety (Engin and Tre‑
it, 2007). A  functional distinction for ventral and dor‑
sal hippocampus exists as the emotional and cognitive 
hippocampus, respectively. The ventral hippocampus is 
particularly associated with anxiety‑related behaviors 
(Bannerman et al., 2004). Due to extensive connectivi‑
ty, these functions are not exclusively attributable to 
hippocampal sub‑regions because a  sharp distinction 
between these sub‑regions is not possible (Amaral and 
Witter, 1989). The dorsal and ventral hippocampal re‑
gions are comprehensively interrelated via the affer‑
ent and efferent projections (Witter and Amaral, 2004) 
and, therefore, it is difficult to discriminate their exact 
functions. For example, the ventral hippocampus has 
also clearly been shown to contribute to the spatial 
learning processes (de Hoz et al., 2003). Thus, to avoid 
confusion, we evaluated the prefrontal cortex for anx‑
iety behavior, and the hippocampus for learning and 
memory function.

There are many factors affecting cell survival and 
cell death that are controlled by the homeostatic bal‑
ance between stimulatory and inhibitory signals. For 
example, tyrosine phosphatase 1B triggers the anti‑ox‑
idant defense system in response to tissue damage via 
an insulin‑like growth factor‑1 (IGF‑1)‑mediated sur‑
vival signal (Aguirre et al., 2000; Mobasher and Valverde 
2014). IGF‑1 is an anabolic hormone with endocrine, 
paracrine and autocrine effects, and it is mainly pro‑
duced by the liver, accounting for 75% of circulating 

IGF‑1 (Le Roith 1997; Sjogren et al., 1999). IGF‑1 induces 
proliferation, growth and regeneration of hepatocytes, 
and it increases hepatocyte polarity and cell junction 
and extracellular matrix proteins (Perez et al., 2008; 
Hao et al., 2011; Lara‑Diaz et al., 2017).

IGF‑1 also plays crucial roles in CNS development 
and maturation that contribute to neuroplasticity. In 
response to damage, the brain has the capacity to ini‑
tiate cellular repair and remodeling mechanisms. This 
is commonly referred to as neuroplasticity (Madathil 
and Saatman, 2015). IGF‑1 specifically regulates hip‑
pocampal neurogenesis among other plasticity‑related 
processes (Llorens‑Martin et al., 2009). Physiological 
IGF‑1 levels are necessary for the healthy maintenance 
of both liver and neuronal tissues. Additionally, IGF‑1 
has been reported to decrease in anxiety and depres‑
sion (Llorens‑Martin et al., 2010), which parallels find‑
ings from our previous study that correlated anxiety 
with decreased blood and prefrontal cortex IGF‑1 lev‑
els (Aksu et al., 2012). Recently, we demonstrated that 
acetaminophen caused a  decrease in blood IGF‑1 lev‑
els (Ozdemir et al., 2016). However, the effect of parac‑
etamol on brain IGF‑1 levels and related behavioral pa‑
rameters are still unknown.

Matrix metalloproteinases (MMPs) have many reg‑
ulatory functions including the activation of growth 
factors, tissue regeneration, angiogenesis, remodel‑
ing of the extracellular matrix and the regulation of 
inflammatory processes. It is fundamental for the de‑
velopment and physiological maintenance of neurons 
(Fujioka et al., 2012; Singh et al. 2015). Optimum levels 
of gelatinases (MMP‑2 and MMP‑9) are critical for the 
structural and functional integrity of the basal lamina 
in neurons. MMP2 levels were shown to increase fol‑
lowing acute hepatic injury and cirrhosis (Zhou et al., 
2004; Bandeira et al., 2017). Gene expression of MMPs is 
regulated by several cytokines and growth factors such 
as IGF‑1, nerve growth factor (NGF) and vascular endo‑
thelial growth factor (VEGF) (Singh et al., 2015).

The aim of this study was twofold: to investigate the 
dose‑dependent effects of acetaminophen on liver and 
hippocampal IGF‑1 and MMP2 levels, which are both 
important for tissue integrity and health, and to deter‑
mine its effect on behavioral parameters rendered via 
central mechanisms.

METHODS

Animals

Twenty‑eight outbred adult male Sprague Dawley 
rats (Dokuz Eylul University School of Medicine, Exper‑
imental Animal Laboratory, Izmir, Turkey) were used in 
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this study. All rats were housed in individual cages with 
free access to water and laboratory chow. They were 
kept in a  12h‑light/12h‑dark cycle at constant room 
temperature (22±1°C), humidity (60%).

All experimental procedures were performed fol‑
lowing the principles of animal care of the guidelines 
for the ethical use of animals in applied etiology stud‑
ies and previously approved by Dokuz Eylul University 
School of Medicine Animal Care Committee.

Experimental design

The rats were divided into four groups: (1) Con‑
trol group (n=7), (2) 100  mg/kg acetaminophen group 
(n=7), (3) 200  mg/kg acetaminophen group (n=7), (4) 
400  mg/kg acetaminophen group (n=7). The doses of 
acetaminophen were determined according to our pre‑
vious study (Kandis et al., 2018).

Acetaminophen was administrated as an oral solu‑
tion once a day, for 11 days. An equal volume of saline 
was administered to the control group. On the final 
day, 30  min after the acetaminophen administration, 
anxiety levels were assessed using the open field test 
and elevated plus maze. Twenty‑four  hours following 
the last acetaminophen administration, all animals 
were sacrificed. Blood samples were collected under 
carbon dioxide anesthesia. Brain and liver tissues were 
removed; the hippocampus and prefrontal cortex were 
separated. Tissue samples were stored at ‑80°C until 
homogenization.

Open field test

This test apparatus, which is commonly used to as‑
sess anxiety behavior, consisted of an area of 1 × 1 m 
surrounded with a  wall 75 cm in height, with a  video 
camera installed 2.5 m above.

The rats were placed in the center of the open field 
and anxiety was measured for 5 min in a  soundproof 
observation room illuminated with controlled light 
(100 lx).

Elevated plus maze

The elevated plus maze, another commonly used 
experimental apparatus to assess anxiety, consisted of 
a  central platform (5 cm × 5 cm) with two open arms 
(50 cm long, 10 cm wide and 0.5 cm high borders) and 
two closed arms (50 cm long, 10 cm wide with 40 cm 
high walls), which were elevated 50 cm above the 
ground. The rats were placed on the center of the plat‑

form facing the open arm and were observed for 5 min. 
The total number of entries into the open and closed 
arms as well as the time spent in the open and closed 
arms were measured and assessed using the Noldus 
Ethovision video tracking system.

Biochemical analysis

The serum corticosterone levels were analyzed 
with an enzyme immunoassay for corticosterone kit 
(catalog no: E‑EL‑R0269, Elabscience, Wuhan, China), 
with assay sensitivity 46.88 pg/mL and detection range 
78.13–5000 pg/mL. IGF‑1 and MMP2 levels in tissue ho‑
mogenates were determined by enzyme immunoassay 
and calculated as mg protein per tissue (IGF‑1, catalog 
no: EK0377, Boster, Pleasanton, CA, USA – assay sen‑
sitivity <5 pg/mL, detection range 62.5‑4,000  pg/mL; 
MMP2, catalog no: EK0639, Boster, Pleasanton, CA, 
USA – assay sensitivity <10 pg/mL, detection range 
156‑10,000 pg/mL).

Serum alanine aminotransferase (ALT) and serum 
aspartate aminotransferase (AST) activity was mea‑
sured using a  colorimetric diagnostic kit (Reflotron 
Plus, Roche Diagnostics, Mannheim, Germany).

Histological investigation

Neuronal number was estimated in the hippocam‑
pal regions corresponding to Plates 21, 23, 25 in the rat 
atlas of Paxinos and Watson (1998). All sections were 
stained by hematoxylin and eosin (H&E).

Statistical evaluation

All statistical procedures were performed in SPSS 
software for Windows, version 11.0 (SPSS, Chicago, IL). 
Statistically significant differences between groups 
were analyzed using one‑way‑ANOVA with Bonferroni 
post‑hoc test. Correlations among groups were calculat‑
ed using Pearson correlation analysis. The results were 
presented as mean ± S.E.M., p values <0.05 were consid‑
ered statistically significant.

RESULTS

The time spent in the middle area of the open field, 
walking speed and walking distance were statistically 
insignificant among the groups (time spent in the mid‑
dle area F(3,20)=1.762, p>0.05; walking speed F(3,20)=1.389, 
p>0.05; walking distance F(3,20)=2.774, p>0.05) (Fig. 1A). 
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Additionally, no differences were observed among 
the groups concerning time spent in the open arms of 
the elevated plus maze, F(3,17)=0.719, p>0.05 (Fig.  1B). 
The total number of entries into the open and closed 
arms of the elevated plus maze and the time spent in 
the closed arms were also statistically insignificant 
(open arm entries, F(3,20)=0.597, p>0.05; closed arm en‑
tries, F(3,20)=2.905, p>0.05; time spent in the closed arms, 
F(3,20)=0.721, p>0.05).

IGF‑1 levels in the hippocampus were found to be 
decreased only in the 400 mg/kg acetaminophen exper‑
imental group (compared to the control and 100 mg/kg 
group, p<0.05; compared to 200  mg/kg group, p<0.01), 
F(3,16)=6.558, p<0.01, whereas no significant changes in 
prefrontal cortex IGF‑1 levels were detected in any of 
the experimental groups when compared to the con‑
trol, F(3,16)=0.774, p>0.05 (Fig. 2A).

Liver IGF‑1 levels were decreased in the 200 mg/kg 
and 400  mg/kg acetaminophen experimental groups 
(compared to control, p<0.05), F(3,15)=6.209, p<0.01 
(Fig. 2B).

MMP2 levels were found to be decreased in all ac‑
etaminophen groups for liver (100  mg/kg compared 
to control, p<0.05; 200  mg/kg and 400  mg/kg groups 
compared to control, both p<0.01), F(3,15)=8.702, p<0.01); 
whereas MMP2 levels in the hippocampus were found 
to be decreased only in the 400 mg/kg acetaminophen 
group (compared to control and 100 mg/kg acetamin‑
ophen group, both p<0.05), F(3,16)=5.508, p<0.01. No sig‑
nificant differences in MMP2 levels for prefrontal cor‑
tex were detected between groups, F(3,16)=0.707, p>0.05) 
(Fig. 2C).

Serum ALT and AST levels were increased in the 
200  mg/kg and 400  mg/kg groups when compared 
to the control group (p<0.001) (for ALT, F(3,16)=24.064, 
p<0.001; for AST, F(3,16)=16.178, p<0.001) (Fig. 2D).

There were no significant changes in serum corti‑
costerone levels among any groups compared to con‑
trol, F(3, 16)=0.344, p>0.05 (Fig. 2E).

Normal hippocampal morphology was observed 
in the control group (Fig.  3A, C). The neuronal layer 
of the CA region (Fig. 3E), and neurons of the dentate 
gyrus (Fig. 3G) displayed normal morphology. Normal 
histological appearance of the layers and neurons was 
observed in the prefrontal cortex (control group – 
Fig. 3I, K).

When compared to controls, histological changes in 
the organization of the hippocampal region were de‑
tected in the 400 mg/kg acetaminophen group (Fig. 3B, 
D). Disorganization of layering as well as neuronal dis‑
persion was observed in the CA region of the hippocam‑
pus in this experimental group (Fig. 3F). Moreover, the 
dentate gyrus neuronal layer was thinner when com‑
pared to controls (Fig.  3H). The prefrontal cortex dis‑
played normal histologic morphology in all experimen‑
tal groups (Fig. 3J, L).

Strong positive correlations were observed be‑
tween liver IGF‑1 and MMP2 levels (r=0.506, p<0.05) 
and between prefrontal cortex IGF‑1 and MMP2 levels 
(r=0.620, p<0.01). Hippocampal IGF‑1 and MMP2 lev‑
els showed a  moderate level of positive correlation 
(r=0.454, p<0.05).

DISCUSSION

In this study, we were able to demonstrate that only 
the highest dose of acetaminophen decreased IGF‑1 and 
MMP2 levels in the hippocampus. In our experimental 
groups, the prefrontal cortex was not affected by ac‑
etaminophen intake. Additionally, in response to the 
administration of different doses of paracetamol, no 

A B

Fig. 1. Behavioral analyses. (A) Time spent in the middle area of open field (s), (B) Time spent in the open arms of elevated plus maze (s).
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changes in anxiety levels were observed in behavior‑
al tasks. In male Sprague Dawley rats, MMP2 levels in 
the liver decreased following both high and low doses 
of successive acetaminophen administration, where‑
as IGF‑1 levels decreased after the successive admin‑
istration of moderate and high doses (200  mg/kg and 
400  mg/kg). To our knowledge, this is the first study 
reporting dose‑dependent effects of acetaminophen 
on liver, prefrontal cortex and hippocampal IGF‑1 and 
MMP2 levels.

The prefrontal cortex is one of the primary brain 
regions involved in emotion regulation and anxiety 
response. Prefrontal cortex activation results in di‑
minished anxiety (Bishop et al., 2004). Decreased do‑
pamine levels in the prefrontal cortex are associated 
with increased anxiety (Mizoguchi et al., 2010). IGF‑1 
has been shown to be essential for the regulation of 
neuronal development, maturation, proliferation and 
survival (Aksu et al., 2012; Ozdemir et al., 2012). We 
previously demonstrated that regular aerobic exer‑

A

C

E

B

D

Fig. 2. Biochemical analyses. (A) Tissue IGF‑1 levels, (B) Liver IGF‑1 levels. (C) Tissue MMP2 levels. (D) Serum ALT and AST levels. (E) Serum corticosterone 
levels. IGF‑1: Insulin like growth factor‑1, MMP2: Matrix metalloproteinase 2, ALT: Serum alanine aminotransferase, AST: Serum aspartate aminotransferase 
*p<0.05, #p<0.01.
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cise increased IGF‑1 levels in both the hippocampus 
and prefrontal cortex of rats (Uysal et al., 2017). In 
addition to its well‑known neuroprotective effect, 

IGF‑1 also has an ameliorative function on anxiety 
and depression (Llorens‑Martin et al., 2010). For in‑
stance, increasing IGF‑1 levels resulted in anxiolyt‑
ic effects in both in vitro and in vivo assays (Malberg 
et al., 2007). Research studies have indicated that 
exercise‑induced anxiolysis was mediated by IGF‑1 
(Llorens‑Martin et al., 2010). On the other hand, in 
mice, long‑term hippocampal IGF‑1 deficiency was 
found to be related to the induction of a  depressive 
phenotype. However, the anxiety measures remained 
unchanged in both the open field and elevated plus 
maze tasks (Mitschelen et al., 2011). Similarly, in our 
previous study, we demonstrated a  strong positive 
correlation between elevated prefrontal cortex IGF‑1 
levels and diminished anxiety (Aksu et al., 2012). Con‑
sequently, based on this data, it can be assumed that 
in the CNS, the IGF‑1‑mediated anxiolytic effect oc‑
curs via the prefrontal cortex rather than the hippo‑
campus. Therefore, based, again, on one of our previ‑
ous findings that acetaminophen lowered IGF‑1 levels 
in the blood (Ozdemir et al., 2016), we aimed to de‑
termine the effect of acetaminophen on central IGF‑1 
levels and anxiety behavior. In the present study, we 
detected no change in anxiety levels, regardless of 
the dose, due to acetaminophen, and also found no 
change in prefrontal cortex IGF‑1 levels. This result 
is consistent with the finding that prefrontal cortex 
IGF‑1 levels were correlated with anxiety behavior 
(Aksu et al., 2012). In the literature, a  limited num‑
ber of studies have investigated the relationship 
between acetaminophen use and anxiety behavior, 
however their results are inconsistent. Umathe et al. 
(2009) demonstrated a dose‑dependent anxiolytic ef‑
fect in mice, administering 50, 100 and 200 mg parac‑
etamol doses 30 minutes after an i.p. drug injection. 
Another study, in which a low (50 mg/kg) and a high 
(300  mg/kg) dose of paracetamol were tested to as‑
sess effects on anxiety, concluded that a high dose of 
paracetamol increased anxiety levels in rats 90 min‑
utes after the drug administration (Chen et al., 2018). 
In these studies, the differing time interval between 
acetaminophen injection and behavioral experiments 
might explain the discrepancy. In addition, central 
IGF‑1 levels may not be the only mechanism explain‑
ing the effects of acetaminophen on anxiety. It is 
known that AM404, a  metabolite of acetaminophen 
that is responsible for its analgesic effect, prevents 
the destruction of anandamide, an endocannabinoid 
(Dani et al., 2007). Anandamide has also been report‑
ed to yield a  dose‑dependent effect on anxiety (Ru‑
bino et al., 2008). As demonstrated in our study, suc‑
cessive acetaminophen administration had no effect 
on anxiety behavior and this may have been because, 
due to the dosage, the prefrontal cortex IGF‑1 levels 

Fig.  3. Histological findings (H&E staining) in the hippocampus (A, C), 
CA region (E), dentate gyrus (G) and frontal cortex (I, K) of control and 
hippocampi (B, D), CA region (F), dentate gyrus (H) and frontal cortex (J, L) 
of experimental groups.
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had not changed. It should be noted that different re‑
ceptor interactions with paracetamol metabolites in 
frontal or limbic brain regions might also play a role 
in anxiety response.

The tight regulation of tissue IGF‑1 is fundamental 
for the control of cell cycle progression, proliferation 
and prevention of cell death. High or low IGF‑1 lev‑
els are not compatible with physiological functioning 
and survival of tissues. Recent studies report that lo‑
cal IGF‑1 protects brain tissue from oxidative damage 
and toxins (Pang et al., 2010, Ayadi et al., 2016). In 
the present study, only the high‑dose acetaminophen 
group suffered hippocampal cell damage, which cor‑
related with low hippocampal IGF‑1 levels. However, 
there are conflicting reports in the literature on the 
effects of acetaminophen and hippocampal function. 
Some studies have reported that acetaminophen fa‑
cilitated the emergence of autism and Alzheimer’s 
disease (Schultz, 2010; Gilmartin et al., 2015). In con‑
trast, Blecharz‑Klin et al. (2013, 2014, 2017) reported 
that chronic low dose subcutaneous acetaminophen 
administration yielded a positive effect on the hippo‑
campus and hippocampus‑related learning. These dif‑
ferences may be due to specific experimental setups 
and differing doses. In our study, the hippocampus 
was affected only following high‑dose acetaminophen 
administration and indicated that the hippocampal 
damage was associated with the observed decrease in 
IGF‑1 levels. Furthermore, high‑dose acetaminophen 
administration did not seem to affect the prefrontal 
cortex. Blecharz‑Klin et al. (2017) investigated parac‑
etamol use during early life and its effects on brain 
regions such as the hippocampus and prefrontal cor‑
tex. Our results parallel theirs, in which they report‑
ed that the hippocampus was more affected than the 
prefrontal cortex. On the other hand, Onaolapo and 
colleagues (2017) observed increased oxidative stress 
in the cerebral cortex following 800 mg/kg acetamin‑
ophen administration of a  three‑day duration. They 
indicated that cells were negatively affected at the 
microscopic level. Compared with our current study, 
Onaolapo et al. (2017) administered a  relatively high 
acetaminophen dose, and this may account for the 
discrepancy in results.

Research studies have demonstrated that IGF‑1 
protected liver cells from acetaminophen‑induced 
hepatotoxicity; furthermore, it also reversed doxoru‑
bicin‑induced hepatocellular apoptosis (Alexia et al., 
2004; Hwang et al., 2007). Acetaminophen increases 
oxidative stress in the liver, leading to oxidative dam‑
age and triggering apoptosis. In a previous report we 
showed that acetaminophen induced apoptosis in the 
liver by lowering IGF‑1 levels (Ozdemir et al., 2016). In 
the current study, we observed that IGF‑1 levels were 

low in regions with tissue damage. IGF‑1 works as an 
anti‑apoptotic factor by protecting cell membrane 
integrity (Galvan et al., 2003). The binding of IGF‑1 
to its receptor triggers survival signals in acetamino‑
phen‑induced hepatotoxicity (Mobasher et al., 2013).

MMPs are necessary for cell survival (Singh et al., 
2015). While other MMPs localize to the extracellular 
area, MMP‑1, MMP‑2 and MMP‑11 are found in the 
intracellular compartment and interact with other 
intracellular proteins (Kwan et al., 2004; Limb et al., 
2005). It has been reported that MMP‑2 reduced he‑
patic injury and increased liver regeneration (Padris‑
sa‑Altes et al., 2010). Many factors such as cytokines, 
growth factors and hormones control the expression 
of MMPs. IGF‑1 is one of the hormones known to regu‑
late MMP2 expression.

IGF‑1 was shown to regulate MMP2 expression in 
transformed cell lines, retina and Müller glial cells 
(Sjogren et al., 1999; Yoon and Hurta, 2001; Zhang and 
Brodt, 2003; Lorenc et al., 2015). Sobrevals et al. (2010) 
reported that IGF‑I gene transfer to cirrhotic liver in‑
duced the expression of MMP2 and other hepato‑pro‑
tective factors and yielded an improvement in liver 
function. In addition to the identification of one of 
the IGF‑1 binding proteins as an MMP‑2 substrate 
(Dean and Overall, 2007), Zhang et al. (2004) reported 
a dual regulatory role for IGF‑1 in which it can up‑reg‑
ulate MMP‑2 expression through the PI 3‑kinase/Akt/
mTOR signaling pathway while concomitantly trans‑
mitting a negative regulatory signal through the Raf/
ERK pathway. In the present study, low IGF‑1 levels 
were correlated with reduced tissue MMP2 levels. 
This may be due to the reported dual effect that IGF‑1 
has on MMP2 expression, which depends on several 
factors that can shift its regulatory role towards re‑
pression. A similar observation was reported by Ban‑
deira et al. (2017), demonstrating that the adminis‑
tration of 500 mg/kg acetaminophen decreased liver 
MMP2 levels.

CONCLUSION

Our objective was to investigate the dose‑depen‑
dent impact of acetaminophen on brain and liver 
IGF‑1 and MMP2 levels. Only a  repeated high dose of 
acetaminophen administration decreased IGF‑1 and 
MMP2 levels in the hippocampus. However, prefrontal 
cortex IGF‑1 and MMP2 levels did not change. The rats’ 
anxiety levels were also not affected based on varying 
doses of acetaminophen. The behavioral results can 
be explained by similarly consistent IGF‑1 levels in 
the prefrontal cortex. Our results indicate that both 
low and high doses of acetaminophen pathologically 
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affect the liver and that this is accompanied by a de‑
crease in tissue IGF‑1 and MMP2 protein expression. 
To our knowledge, this is the first experimental study 
focusing on brain levels of IGF‑1 and MMP2 in rats ad‑
ministered acetaminophen. Reduced IGF‑1 may conse‑
quently decrease MMP2 levels, adding to the increase 
in cellular damage. In addition to the protective roles 
of IGF‑1 and MMP2, further research is needed to in‑
vestigate other MMPs and how they relate to acet‑
aminophen toxicity.
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