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Abstract

The main aim of this paper is to present some fixed-disc theorems as new solutions to the fixed-circle
problem. For this purpose, we define the notions of Moradi type a0-contraction, Geraghty type a0-
contraction, Jleli-Samet type a0-contraction, Skof type a0-contraction and Li-Jiang type a0-contraction
modifying the some known contractive conditions which are used to obtain fixed-point theorems. Also,
we give an equivalent theorem of some contractions. Finally, we present an application to the rectified
linear unit (ReLU) activation function.

1 Introduction and Motivation

The fixed-point theory is one of the most powerful tools of mathematical studies. This theory is a beautiful
mixture of topology, analysis, and geometry which has many applications in various fields such as applied
mathematics, engineering, activation functions etc. It has gained importance and developed rapidly for the
last one and half century. In mathematics, this theory started with the Banach fixed-point theorem [1]. This
theorem is also known as the contraction mapping theorem and is an important tool in the theory of metric
spaces. It guarantees the existence and uniqueness of fixed points of self-mappings on metric spaces and
provides a method to find those fixed points.
Let X be a nonempty set. A function T : X → X is called a self-mapping on X. A point x ∈ X is called

a fixed point of a self-mapping T : X → X if
Tx = x.

Now, let us consider the following self-mappings T1 : R→ R and T2 : R→ R defined as

T1a =

√
a2 + 1− 1

2
+ a

and

T2a =

{
βa , a < 0
a , a ≥ 0 ,

for all a ∈ R with parameter β. Then the fixed point set of T1 is Fix(T1) = {0} and the fixed point set of
T2 is Fix(T2) = {a ∈ R : a ≥ 0}. We can easily say that the self-mapping T1 has a unique fixed point and
the self-mapping T2 has infinitely number of fixed point. Also, these self-mappings T1 and T2 are activation
functions. T1 is a Bent identity activation function and T2 is a Parametric rectified linear unit activation
function (see [4] and the references therein).
On the other hand, if we consider the self-mapping T3 : R→ R defined as

T3x = ln(1 + e
x),

for all a ∈ R, then the fixed point set of T3 is Fix(T3) = ∅, that is, T3 does not have a fixed point. Also, T3
is a Softplus activation function (see [3]).
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Based on the above reasons, “Fixed-circle problem”follows as a geometric generalization to the fixed-point
theory when the self-mapping T : X → X has more than one fixed point [10].
Let (X, d) be a metric space and T : X → X a self-mapping. Then the circle is defined by

Ca0,ρ = {a ∈ X : d(a, a0) = ρ} .

If Ta = a for every a ∈ Ca0,ρ then Ca0,ρ is called as the fixed circle of T (see [10]).
As a natural consequence of the fixed circle, the notion of a fixed disc was given as follows:
Let (X, d) be a metric space and T : X → X a self-mapping. Then the disc is defined by

Da0,ρ = {a ∈ X : d(a, a0) ≤ ρ} .

If Ta = a for every a ∈ Da0,ρ then Da0,ρ is called as the fixed disc of T (see [11]).
Recently, some solutions was presented by many authors using various techniques and contractive condi-

tions (see, for example [9], [11], [12], [13], [14] [17] and the references therein).
In this paper, we obtain new fixed-disc theorems as new solutions to the fixed-circle problem on metric

spaces. To do this, we inspire some popular contractive conditions (see [2], [5], [6], [8], [15] and [16]). We
introduce the notions of Moradi type a0-contraction, Geraghty type a0-contraction, Jleli-Samet type a0-
contraction, Skof type a0-contraction and Li-Jiang type a0-contraction. Using these new notions, we prove
five fixed-disc theorems. On the other hand, we give an example to show the validity of our obtained results.
Finally, we obtain an equivalent theorem of some contractions and give an application to rectified linear unit
(ReLU) activation functions.

2 Some Fixed-Disc Results

In this section, we present new solutions to the fixed-circle problem using new types of contractions as follows:

Definition 1 Let (X, d) be a metric space and T : X → X a self-mapping. If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ F (ψ (d(a, a0))) ,

for all a ∈ X, where the functions ψ, F : [0,∞)→ [0,∞) are such that

(i) ψ is nondecreasing with ψ(0) = 0 and 0 < ψ(t) < t for all t > 0,

(ii) F is a function with F (0) = 0 and 0 < F (t) < t for all t > 0,

then T is called Moradi type a0-contraction.

Theorem 1 (Moradi type fixed-disc theorem) Let (X, d) be a metric space, T : X → X Moradi type
a0-contraction with a0 ∈ X and ρ defined as

ρ = inf {d(Ta, a) : Ta 6= a, a ∈ X} . (1)

Then we have

(i) Ta0 = a0,

(ii) T fixes the circle Ca0,ρ,

(iii) T fixes the disc Da0,ρ.
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Proof. (i) Assume that a0 6= Ta0, that is, d(Ta0, a0) > 0. Using the Moradi type a0-contraction hypothesis,
we obtain

ψ (d(Ta0, a0)) ≤ F (ψ (d(a0, a0))) = 0,

which is a contradiction. So it should be Ta0 = a0.
(ii) At first, we suppose ρ = 0. Then we get Ca0,ρ = {a0}. By the condition (i), we have Ta0 = a0, that

is, T fixes the circle Ca0,ρ.
Now, let ρ > 0 and a ∈ Ca0,ρ be any point such that Ta 6= a. Using the Moradi type a0-contraction

condition, we obtain

ψ (d(Ta, a)) ≤ F (ψ (d(a, a0))) < ψ (d(a, a0)) = ψ (ρ) ≤ ψ (d(Ta, a)) ,

which is a contradiction. Hence, it should be Ta = a, that is, T fixes the circle Ca0,ρ.
(iii) By the similar arguments used in the proof of the condition (ii), it can be easily proved.

Definition 2 Let (X, d) be a metric space and T : X → X a self-mapping. If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ α (d(a, a0))ψ (d(a, a0)) ,

for all a ∈ X, where the functions ψ : (0,∞) → (0,∞) and α : (0,∞) → (0, 1) are such that ψ is nonde-
creasing then T is called Geraghty type a0-contraction.

Theorem 2 (Geraghty type fixed-disc theorem) Let (X, d) be a metric space, T : X → X Geraghty
type a0-contraction with a0 ∈ X and ρ defined as in (1). Then we have

(i) Ta0 = a0,

(ii) T fixes the circle Ca0,ρ,

(iii) T fixes the disc Da0,ρ.

Proof. (i) Let d(Ta0, a0) > 0, that is, a0 6= Ta0. Using the Geraghty type a0-contraction hypothesis, we
get

ψ (d(Ta0, a0)) ≤ α (d(a0, a0))ψ (d(a0, a0)) = α (0)ψ (0) ,

which is a contradiction with the definitions of the functions α and ψ. Hence, it should be Ta0 = a0.
(ii) Assume that ρ = 0. Then we get Ca0,ρ = {a0}. By the condition (i), we have Ta0 = a0, that is, T

fixes the circle Ca0,ρ.
Now, let ρ > 0 and a ∈ Ca0,ρ be any point such that Ta 6= a. Using the Geraghty type a0-contraction

condition, we find

ψ (d(Ta, a)) ≤ α (d(a, a0))ψ (d(a, a0)) = ψ (d(Ta, a)) ≤ α (ρ)ψ (ρ)
< ψ (ρ) ≤ ψ (d(Ta, a)) ,

which is a contradiction. So, it should be Ta = a, that is, T fixes the circle Ca0,ρ.
(iii) It can be easily seen by the similar techniques used in the proof of the condition (ii).

Definition 3 Let (X, d) be a metric space and T : X → X a self-mapping. If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ [ψ (d(a, a0))]α ,

for all a ∈ X, where α ∈ (0, 1) and the function ψ : (0,∞)→ (1,∞) is such that ψ is nondecreasing then T
is called Jleli-Samet type a0-contraction.

Theorem 3 (Jleli-Samet type fixed-disc theorem) Let (X, d) be a metric space, T : X → X Jleli-
Samet type a0-contraction with a0 ∈ X and ρ defined as in (1). Then we have
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(i) Ta0 = a0,

(ii) T fixes the circle Ca0,ρ,

(iii) T fixes the disc Da0,ρ.

Proof. (i) Let d(Ta0, a0) > 0, that is, a0 6= Ta0. Using the Jleli-Samet type a0-contraction hypothesis, we
obtain

ψ (d(Ta0, a0)) ≤ [ψ (d(a0, a0))]α = [ψ (0)]α ,
which is a contradiction with the definition of the function ψ. Thereby, it should be Ta0 = a0.
(ii) At first, let ρ = 0. Then we have Ca0,ρ = {a0}. By the condition (i), we get Ta0 = a0, that is, T

fixes the circle Ca0,ρ.
Now, suppose ρ > 0 and a ∈ Ca0,ρ is any point such that Ta 6= a. Using the Jleli-Samet type a0-

contraction condition, we find

ψ (d(Ta, a)) ≤ [ψ (d(a, a0))]α = [ψ (ρ)]α ≤ [ψ (d(Ta, a))]α ,

which is a contradiction with α ∈ (0, 1). So, it should be Ta = a, that is, T fixes the circle Ca0,ρ.
(iii) It can be easily proved.

Definition 4 Let (X, d) be a metric space and T : X → X a self-mapping. If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ aψ (d(a, a0)) + bψ (d(Ta, a)) + cψ (d(Ta0, a0)) ,

for all a ∈ X, where a, b, c ∈ [0, 1) with 0 ≤ a+ b+ c < 1 and the function ψ : [0,∞)→ [0,∞) is such that

(i) ψ is nondecreasing,

(ii) ψ(t) = 0⇐⇒ t = 0,

then T is called Skof type a0-contraction.

Theorem 4 (Skof type fixed-disc theorem) Let (X, d) be a metric space, T : X → X Skof type a0-
contraction with a0 ∈ X and ρ defined as in (1). Then we have

(i) Ta0 = a0,

(ii) T fixes the circle Ca0,ρ,

(iii) T fixes the disc Da0,ρ.

Proof. (i) Let a0 6= Ta0, that is, d(Ta0, a0) > 0. Using the Skof type a0-contraction hypothesis, we get

ψ (d(Ta0, a0)) ≤ aψ (d(a0, a0)) + bψ (d(Ta0, a0)) + cψ (d(Ta0, a0))

= aψ (0) + (b+ c)ψ (d(Ta0, a0))

= (b+ c)ψ (d(Ta0, a0)) < ψ (d(Ta0, a0)) ,

which is a contradiction with b+ c < 1. Then it should be Ta0 = a0.
(ii) Let ρ = 0. Then we get Ca0,ρ = {a0}. By the condition (i), we have Ta0 = a0, that is, T fixes the

circle Ca0,ρ.
Now, let ρ > 0 and a ∈ Ca0,ρ be any point such that Ta 6= a. Using the Skof type a0-contraction condition

and the condition (i), we find

ψ (d(Ta, a)) ≤ aψ (d(a, a0)) + bψ (d(Ta, a)) + cψ (d(Ta0, a0))

= aψ (ρ) + bψ (d(Ta, a))

≤ aψ (d(Ta, a)) + bψ (d(Ta, a))

= (a+ b)ψ (d(Ta, a)) < ψ (d(Ta, a)) ,

which is a contradiction with a+ b < 1. Therefore, it should be Ta = a, that is, T fixes the circle Ca0,ρ.
(iii) It is obvious.
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Definition 5 Let (X, d) be a metric space and T : X → X a self-mapping. If there exists a0 ∈ X such that

d(Ta, a) > 0 =⇒ ψ (d(Ta, a)) ≤ [ψ (m(a, a0))]α ,

for all a ∈ X, where α ∈ (0, 1), the function ψ : (0,∞)→ (1,∞) is such that ψ is nondecreasing and

m(a, b) = max

{
d(a, b), d(a, Ta), d(b, T b),

d(a, T b) + d(b, Ta)

2

}
,

then T is called Li-Jiang type a0-contraction.

Theorem 5 (Li-Jiang type fixed-disc theorem) Let (X, d) be a metric space, T : X → X Li-Jiang type
a0-contraction with a0 ∈ X and ρ defined as in (1). If d(Ta, a0) ≤ ρ for all a ∈ Ca0,ρ, then we have

(i) Ta0 = a0,

(ii) T fixes the circle Ca0,ρ,

(iii) T fixes the disc Da0,ρ.

Proof. (i) Let a0 6= Ta0, that is, d(Ta0, a0) > 0. Using the Li-Jiang type a0-contraction hypothesis and the
symmetry property, we obtain

ψ (d(Ta0, a0)) ≤ [ψ (m(a0, a0))]α = [ψ (d(Ta0, a0))]α ,

which is a contradiction with α ∈ (0, 1). So, it should be Ta0 = a0.
(ii) At first, we assume ρ = 0. Then we obtain Ca0,ρ = {a0}. By the condition (i), we have Ta0 = a0,

that is, T fixes the circle Ca0,ρ.
Now, we suppose ρ > 0 and a ∈ Ca0,ρ be any point such that Ta 6= a. Using the Li-Jiang type a0-

contraction hypothesis, the symmetry property and the condition (i), we find

ψ (d(Ta, a)) ≤ [ψ (m(a, a0))]α ≤ [ψ (max {ρ, d(a, Ta)})]α = [ψ (d(Ta, a))]α ,

which is a contradiction with α ∈ (0, 1). Hence, it should be Ta = a, that is, T fixes the circle Ca0,ρ.
(iii) It is clear.
Now we give the following example.

Example 1 Let X = R be the usual metric space with the usual metric d defined as

d(a, b) = |a− b| ,

for all a, b ∈ R . Let us define the function T : R→ R as

Ta =

{
a , a ∈ [−2, 2]

a+ 1 , otherwise
,

for all a ∈ R. Then the function T is Moradi type a0-contraction with a0 = 0, the function ψ : [0,∞)→ [0,∞)
defined by

ψ(t) =

{
0 , t = 0
t
6 , t > 0

and the function F : [0,∞)→ [0,∞) defined by

F (t) =

{
0 , t = 0
t
2 , t > 0

.
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Also, the function T is Geraghty type a0-contraction with a0 = 0, the function ψ : (0,∞) → (0,∞) defined
by

ψ(t) = 2t

and the function α : (0,∞)→ (0, 1) defined by

α(t) =
3

4
.

The function T is Jleli-Samet type a0-contraction with a0 = 0, the function ψ : (0,∞)→ (1,∞) defined by

ψ(t) = t+ 1

and α = 0.7. On the other hand, the function T is Skof type a0-contraction with a0 = 0, the function
ψ : [0,∞)→ [0,∞) defined by

ψ(t) = 3t

and a = 1
2 , b =

1
3 , c = 0. Finally, the function T is Li-Jiang type a0-contraction with a0 = 0, the function

ψ : (0,∞)→ (1,∞) defined by
ψ(t) = t+ 1

and α = 0.8. Consequently, we have ρ = 1 and so T fixes the circle C0,1 = {−1, 1} and the disc D0,1 = [−1, 1].

3 The Equivalence of Some Contractions

In the following theorem, we see the equivalence of some contractions used in the fixed-circle and fixed-disc
results.

Theorem 6 Let X 6= ∅, the functions γ, δ : X ×X → R+ be such that

(i) a = b implies γ(a, b) = 0,

(ii) δ(a, b) = 0 implies a = b.

and T a self-mapping on X. Then the followings are equivalent:

(a) There exist a0 ∈ X, a function ψ : (0,∞)→ (0,∞) and λ ∈ [0, 1) such that

γ(a, Ta) > 0 =⇒ ψ (γ(Ta, a)) ≤ λψ (δ(a, a0)) ,

for all a ∈ X.

(b) There exist a0 ∈ X, a function ψ : (0,∞)→ (1,∞) and α ∈ [0, 1) such that

γ(a, Ta) > 0 =⇒ ψ (γ(Ta, a)) ≤ [ψ (δ(a, a0))]α ,

for all a ∈ X.

(c) There exist a0 ∈ X, a function ψ : (0,∞)→ R and t > 0 such that

γ(a, Ta) > 0 =⇒ t+ ψ (γ(Ta, a)) ≤ ψ (δ(a, a0)) ,

for all a ∈ X.
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Proof. (a) =⇒ (b) : Let the condition (a) holds. From the inequality given in the condition (a), we have

exp [ψ (γ(Ta, a))] ≤ exp [λψ (δ(a, a0))] = exp [ψ (δ(a, a0))]λ . (2)

If we define α ∈ [0, 1) by α = λ and the function ψ′ : (0,∞) → (1,∞) by ψ′(t) = exp [ψ(t)], then using the
inequality (2), we get

ψ′ (γ(Ta, a)) ≤
[
ψ′ (δ(a, a0))

]α
,

which proves the condition (b).
(b) =⇒ (c) : Let the condition (b) holds. By the condition (b), we obtain

ln [ln [ψ (γ(Ta, a))]] ≤ ln [ln [[ψ (δ(a, a0))]α]] = ln [ln [ψ (δ(a, a0))]] + ln(α). (3)

If we define t > 0 by t = − ln(α) and ψ′′ : (0,∞) → R by ψ′′(t) = ln (ln(ψ(t))), then using the inequality
(3), we get

t+ ψ′′ (γ(Ta, a)) ≤ ψ′′ (δ(a, a0)) ,

which proves the condition (c).
(c) =⇒ (a) : Let the condition (c) holds. By the condition (c), find

exp [ψ (γ(Ta, a))] ≤ exp [ψ (δ(a, a0))− t] = exp [ψ (δ(a, a0))] exp(−t). (4)

If we define λ ∈ [0, 1) by λ = exp(−t) and ψ′′′ : (0,∞) → (0,∞) by ψ′′′(t) = exp(ψ(t)), then using the
inequality (4), we obtain

ψ′′′ (γ(Ta, a)) ≤ λψ′′′ (δ(a, a0)) ,

which proves the condition (a).
From Theorem 6, we obtain the following remarks.

Remark 1 (i) The condition (a) can be considered as Banach type contraction to obtain a fixed-circle
result.

(ii) The condition (b) can be considered as Jleli-Samet type contraction to obtain a fixed-circle result.

(iii) The condition (c) can be considered as Wardowski type contraction to obtain a fixed-circle result.

4 An Application to ReLU Activation Functions

In this section, we give an application to “Rectified Linear Unit Activation Function (ReLU)”(see [4], [7],
[18] and the references therein). For this purpose, at first, we recall the notions of ReLU as follows:

ReLU(x) = max{0, x} =
{
0 , x ≤ 0
x , x > 0

.

Let X = {−1} ∪ [0,∞) be the usual metric space with the usual metric. Then we obtain that

• The activation function ReLU is Moradi type a0-contraction with a0 = 1, the function ψ : [0,∞) →
[0,∞) defined by

ψ(t) =

{
0 , t = 0
t
8 , t > 0

and the function F : [0,∞)→ [0,∞) defined by

F (t) =

{
0 , t = 0
4t
5 , t > 0

.
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• The activation function ReLU is Geraghty type a0-contraction with a0 = 1, the function ψ : (0,∞)→
(0,∞) defined by

ψ(t) =

{
1 , t ≤ 1

t+ 1 , t > 1

and the function α : (0,∞)→ (0, 1) defined by

α(t) =
2

3
.

• The activation function ReLU is Jleli-Samet type a0-contraction and Li-Jiang type a0-contraction with
a0 = 1, the function ψ : (0,∞)→ (1,∞) defined by

ψ(t) =

{
t+ 1 , t ≤ 1
t3 , t > 1

and α = 0.5.

• The activation function ReLU is Skof type a0-contraction with a0 = 1, the function ψ : [0,∞)→ [0,∞)
defined by

ψ(t) = 4t

and a = 1
2 , b = c = 1

8 .

Consequently, we have ρ = 1 and so the activation function ReLU fixes the circle C1,1 = {0, 2} and the
disc D1,1 = [0, 2].
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